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The interaction of oxygen with a carbidized Mo(1 0 0) surface was investigated at different temperature

K–1000K) with-angle resolved X-ray photoelectron spectroscopy. A carbide overlayer with a homogeneous

stoichiometry (down to the information depth of XPS) was produced by the high-temperature decomposition of

on Mo(1 0 0).

O2 adsorbs dissociatively on Mo2C/Mo(1 0 0) at room temperature. Oxidation of the carbide at 800K results

partial removal of carbon and leads to sub-surface O migration, accompanied by the appearance of highly oxidize

states. Raising the O2 adsorption temperature to 900K decreased the carbon content further, without affectin

amount and the distribution of adsorbed O. Performing the oxidation at 1000K led to an even more effective re

of carbon, but the oxygen content of the surface region was also reduced.
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The favourable mechanical, electronic
chemical properties of transition metal car
have attracted considerable attention in diff
fields, such as material science and catalysis
The formation and structure of carbide

layers, generally prepared by the high-temper
decomposition of C2H4 on group IVB
transition metal single-crystal surfaces, have
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tion of molybdenum surfaces is well docum
[3–6]. Oxygen adsorbs dissociatively o
Mo2C(0 0 0 1) at 150–300K [7,8]. At higher
peratures the formation of CO is observed [8
migration of O into the bulk of the carbid
also been assumed [7,8].
Recently, we investigated the carbidizatio

the Mo(1 0 0) surface by C2H4 decomposition
also the high-temperature oxidation of the ca
up to 1265K [9]. The aim of the present wor
the characterization of the carbidized Mo(
surface as regards the stoichiometry and t
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elaborate picture of its interaction with oxyg
different temperatures.
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Fig. 1. C(1 s) and Mo(3d) regions of the X-ray photoelectron

spectra of the carbidized surface collected at different take-off

angles (y). Inset: peak area ratio of the carbidic C(1 s)

component and the Mo(3d) doublet as a function of y.
Angle-Resolved X-ray Photoelectron Spe
scopy (ARXPS) experiments were performed
UHV system (base pressure 5� 10�10mbar),
an Al Ka X-ray anode and a Leybold EA1
hemispherical analyser, applying 50 eV pas
ergy. The sample could be tilted for angle res
XPS measurements, but the anode and
analyser were at fixed positions. The bin
energy scale was referenced to the position o
Mo(3d5/2) peak of the carbide, taken t
227.95 eV [10,11]. Scoefield photoelectric c
sections [12] and inelastic-mean-free-paths (
obtained by the method of Gries [13] were use
composition and coverage calculations. XP p
were fitted using Gauss–Lorentz functions,
background subtraction [14].
The Mo(1 0 0) single crystal was cleane

heating in oxygen, followed by argon ion
bardment and annealing at 1500K. The rema
oxygen impurities could be removed a
completely during carbidization.
3. Results and discussion
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A carbide overlayer was prepared on Mo(1
using a similarly to the method of Schöberl [1
repeating C2H4 adsorption (50L) at 900K
annealing in vacuum to 1265K until the C co
reached saturation. The C(1 s) peak at no
detection (y ¼ 901) was found at 282.
(Fig. 1A) that is characteristic of carbides
The C feature, however, had a small tail to
higher binding energies, which appeared
shoulder (284.3 eV) at low take-off angles, ind
ing the presence of some graphite contamina
At y ¼ 231 emission angle a small, but h
reproducible downward shift (�0.1 eV) o
carbon peak maximum was observed, indic
a somewhat different state of the first carbon
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not shift at glancing emission (Fig. 1B).
The peak area ratio of the carbidic C

component and the Mo(3d) doublet was ind
dent of y (Fig. 1), clearly indicating that
dispersed homogeneously in the crystal dow
the information depth of XPS at normal emis
Based on the homogeneous C distribution, t
Mo atomic ratio was calculated to be
indicating Mo2C stoichiometry. The inform
depth was estimated to be 5.7 nm (three time
imfp in Mo2C).
To learn more about the interaction of ox

with the carbide overlayer, detailed XPS mea
ments were performed, with y ¼ 231 and y ¼

emission angles (Figs. 2 and 3). Oxidative
ments caused similar, but more pronou
changes at y ¼ 231 take-off angle than at no
emission. For this reason we describe the r
obtained at y ¼ 231 more thoroughly. U
saturation (12L) O2 exposure at room temper
resulted in a small (0.1 eV) shift of the C(1 s)
toward higher binding energies, but its inte
did not change (Fig. 2). Similarly, a small up
shift and a slight broadening of the M
doublet were observed due to O2 adsorptio
300K. This feature could be fitted with
components: a carbidic (227.95 eV), a sli
perturbed (228.2 eV) and a weak strongly
turbed (229.3 eV). The latter state is tenta



assigned to Mo sites coordinating more O atoms
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Fig. 2. C(1 s), Mo(3d) and O(1 s) windows of the XP spectr

recorded after different treatments of Mo2C/Mo(1 0 0) in O

taken at y ¼ 231.

Fig. 3. C(1 s), Mo(3d) and O(1 s) windows of the XP spectr

recorded after different treatments of Mo2C/Mo(1 0 0) in O

taken at y ¼ 901.
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Room temperature oxygen adsorption induce
appearance of an O(1 s) peak at 529.7 eV,
acteristic of chemisorbed (atomic) or oxidic
gen [5,16]. We assume that adsorbed oxygen a
are located exclusively on the topmost lay
300K.
A higher amount of oxygen (108L) at T

800K led to a substantial decrease in the car
C(1 s) component, indicating that C was par
removed by O, possibly in the form of CO
Mo(3d) area was also diminished due t
adsorption at 800K, but only to a smaller e
.
e
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of adsorbed O, acting as a reaction partner fo
Mo(3d) and C(1 s) photoelectrons. More
oxidized (Mo(II) at 228.25 eV, Mo(IV
229.5 eV and possibly Mo(V) at 231.1 eV) m
denum states appeared [5,16,17]. As regard
assignment of Mo(IV) and Mo(V) peaks,
authors claimed that both the Mo(3d5/2) pe
�229.5 eV and that at �231 eV belong to M
in MoO2 [5,16]. In any case, one part of Mo a
was oxidized in our case at least to Mo(IV).
The O(1 s) peak area obtained at y ¼ 231

800K O2 adsorption was 2.3 times higher th
room temperature. The ratio of the correspo
O(1 s) areas collected at y ¼ 901 was much h
(3.8), indicating that subsurface migratio
oxygen. O is dispersed inhomogeneousl
800K, because the O(1 s)/Mo(3d) area ratio
two times higher at y ¼ 231 than at y ¼ 901.
Raising the adsorption temperature to 9

resulted in a further decrease of the ca
content, but the amount of adsorbed ox
changed only slightly both at y ¼ 231
y ¼ 901, implying an oxygen distribution si
to that produced at 800K. Accordingly
Mo(3d) lineshape observed at 900K was
similar to that found at 800K.
Removal of carbon was even more pronou

at Tads ¼ 1000K, but the oxygen content
much smaller, probably due to the higher ca
mobility at this temperature, supplying con
ously a reaction partner for oxygen. Accord
the Mo(IV) component almost disappeared
new component appeared at 227.8 eV, nea
position of metallic Mo [10], assigned in our
to Mo atoms coordinating a few C and a few
oxygen at all.
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It was shown by ARXPS measurements t
homogeneous Mo2C overlayer down to
information depth of XPS was produce
Mo(1 0 0) by the high-temperature decompo
of C2H4.
O2 adsorbs dissociatively on Mo2C/Mo(

at room temperature. Oxidation of the ca



overlayer at 800K resulted in the partial removal
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of carbon and in subsurface O migration, ac
panied by the appearance of highly oxidized
states. Raising the O2 adsorption temperatu
900K decreased the carbon content further,
out affecting the amount and the distributio
adsorbed O.
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