A layered double hydroxide, a synthetically useful heterogeneous catalyst for azide–alkyne cycloadditions in a continuous-flow reactor

Sándor B. Ötvös^{a,b}, Ádám Georgiádes^a, Mónika Ádok-Sipiczki^{c,d}, Rebeka Mészáros^{c,d}, István Pálinkó^{c,d}, Pál Sipos^{d,e} and Ferenc Fülöp^{a,b*}

^a Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
^b MTA-SZTE Stereochemistry Research Group, Hungarian Academy of Sciences, Eötvös u. 6, H-6720 Szeged, Hungary
^c Department of Organic Chemistry, University of Szeged, Dóm tér 8, Szeged, H-6720 Hungary
^d Material and Solution Structure Research Group, Institute of Chemistry, University of Szeged, H-6720 Szeged, Hungary
^e Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, Szeged, H-6720 Hungary

* Corresponding author. Tel: +36 62545562, Fax: +36 62545705. E-mail address: fulop@pharm.u-szeged.hu (F. Fülöp)
Table of Contents

Additional figures and tables .. S2
Analytical data of the triazole products ... S4
Collection of NMR spectra .. S10
Oxidative homocoupling of 4-ethynylanisole ... S23
CuAAC reactions with the individual LDH components ... S24
References ... S25
Fig. 1S Schematic structure of LDHs.

Fig. 2S Experimental setup for the CF reactions.

Fig. 3S FT-IR spectra of the Cu(II)Fe(III)-LDH: as-prepared material (a), after the 10-hour long synthesis (b).

Fig. 4S. Elemental map of the as-prepared Cu(II)Fe(III)-LDH.
Fig. 5 TG/dTG curves of the as-prepared Cu(II)Fe(III)-LDH.

Fig. 6 XPS spectra indicating the presence of only Cu(II) ions for the as-prepared material (a) and as well as for the LDH sample after the 10-hour long run.

Table 1 Elemental composition of the Cu(II)Fe(III)-LDH determined by ICP–AES.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Cu wt%</th>
<th>Cu mmol/g</th>
<th>Fe wt%</th>
<th>Fe mmol/g</th>
<th>Cu/Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>as-prepared</td>
<td>32.45</td>
<td>5.107</td>
<td>16.21</td>
<td>2.903</td>
<td>1.76</td>
</tr>
<tr>
<td>after the 10-hour long run</td>
<td>32.44</td>
<td>5.105</td>
<td>16.21</td>
<td>2.902</td>
<td>1.76</td>
</tr>
</tbody>
</table>
1-Benzyl-4-phenyl-1H-1,2,3-triazole, 1:

White solid; mp: 121–124 °C (lit.[81] mp: 123–125 °C); NMR data is in agreement with the literature reference.[81] ¹H NMR (400.1 MHz, CDCl₃) δH: 5.60 (s, 2H, CH₂), 7.31–7.38 (m, 3H, Ar-H), 7.38–7.47 (m, 5H, Ar-H), 7.70 (s, 1H, Ar-H), 7.80–7.88 (d, 2H, Ar-H, J=7.4 Hz).

1-(2-Fluorobenzyl)-4-phenyl-1H-1,2,3-triazole, 2:

White solid; mp: 87–91 °C (lit.[82] mp: 89–92 °C); NMR data is in agreement with the literature reference.[83] ¹H NMR (400.1 MHz, CDCl₃) δH: 5.63 (s, 2H, CH₂), 7.07–7.21 (m, 2H, Ar-H), 7.27–7.47 (m, 5H, Ar-H), 7.77 (s, 1H, Ar-H), 7.78–7.86 (d, 2H, Ar-H, J=7.8 Hz).

1-(4-Fluorobenzyl)-4-phenyl-1H-1,2,3-triazole, 3:

White solid; mp: 130–133 °C (lit.[84] mp: 129–131 °C); NMR data is in agreement with the literature reference.[84] ¹H NMR (400.1 MHz, CDCl₃) δH: 5.52 (s, 2H, CH₂), 6.98–7.11 (t, 2H, Ar-H, J=8.1 Hz), 7.23–7.35 (m, 3H, Ar-H), 7.36–7.45 (m, 2H, Ar-H), 7.67 (s, 1H, Ar-H), 7.74–7.85 (d, 2H, Ar-H, J=7.4 Hz).

1-(2,5-Difluorobenzyl)-4-phenyl-1H-1,2,3-triazole, 4:

White solid; mp: 100–103 °C (lit.[82] mp: 98–102 °C); NMR data is in agreement with the literature reference.[82] ¹H NMR (400.1 MHz, CDCl₃) δH: 5.61 (s, 2H, CH₂), 6.93–7.16 (m, 3H, Ar-H), 7.29–7.36 (m, 1H, Ar-H), 7.37–7.46 (m, 2H, Ar-H), 7.73–7.89 (m, 3H, Ar-H).
1-(2-Chlorobenzyl)-4-phenyl-1H-1,2,3-triazole, 5:

![Chemical Structure](image)

White solid; mp: 80–83 °C (lit.\[^{[S]}\] mp: 79–81 °C); NMR data is in agreement with the literature reference.\[^{[S]}\] \[^{1}\]H NMR (400.1 MHz, CDCl\(_3\)) \(\delta\): 5.71 (s, 2H, CH\(_2\)), 7.18–7.35 (m, 4H, Ar-H), 7.36–7.48 (m, 3H, Ar-H), 7.78 (s, 1H, Ar-H), 7.79–7.88 (d, 2H, Ar-H, \(J=7.8\) Hz).

1-(4-Nitrobenzyl)-4-phenyl-1H-1,2,3-triazole, 6:

![Chemical Structure](image)

Yellowish solid; mp: 156–159 °C (lit.\[^{[S1]}\] mp: 158–159 °C); NMR data is in agreement with the literature reference.\[^{[S1]}\] \[^{1}\]H NMR (400.1 MHz, CDCl\(_3\)) \(\delta\): 5.71 (s, 2H, CH\(_2\)), 7.30–7.40 (t, 1H, Ar-H, \(J=7.9\) Hz), 7.40–7.50 (m, 4H, Ar-H), 7.77 (s, 1H, Ar-H), 7.80–7.88 (d, 2H, Ar-H, \(J=7.7\) Hz), 8.20–8.31 (d, 2H, Ar-H, \(J=8.3\) Hz).

1-(2-Methylbenzyl)-4-phenyl-1H-1,2,3-triazole, 7:

![Chemical Structure](image)

White solid; mp: 91–94 °C (lit.\[^{[S6]}\] mp: 94–95 °C); NMR data is in agreement with the literature reference.\[^{[S6]}\] \[^{1}\]H NMR (400.1 MHz, CDCl\(_3\)) \(\delta\): 2.32 (s, 3H, CH\(_3\)), 5.56 (s, 2H, CH\(_2\)), 7.18–7.27 (m, 3H, Ar-H), 7.27–7.34 (m, 2H, Ar-H), 7.35–7.43 (t, 2H, Ar-H, \(J=7.3\) Hz), 7.55 (s, 1H, Ar-H), 7.75–7.84 (d, 2H, Ar-H, \(J=7.3\) Hz).

1-(4-Methylbenzyl)-4-phenyl-1H-1,2,3-triazole, 8:

![Chemical Structure](image)

White solid; mp: 92–94 °C (lit.\[^{[S1]}\] mp: 93–95 °C); NMR data is in agreement with the literature reference.\[^{[S1]}\] \[^{1}\]H NMR (400.1 MHz, CDCl\(_3\)) \(\delta\): 2.36 (s, 3H, CH\(_3\)), 5.52 (s, 2H, CH\(_2\)), 7.15–7.25 (m, 4H, Ar-H), 7.29–7.34 (m, 1H, Ar-H), 7.35–7.43 (m, 2H, Ar-H), 7.65 (s, 1H, Ar-H), 7.75–7.83 (d, 2H, Ar-H, \(J=7.4\) Hz).
1-(Naphthalen-1-ylmethyl)-4-phenyl-1H-1,2,3-triazole, 9:

![Chemical structure of 1-(Naphthalen-1-ylmethyl)-4-phenyl-1H-1,2,3-triazole, 9](image)

White solid; mp: 138–141 °C (lit.\[^{[S7]}\] mp: 141–142 °C); NMR data is in agreement with the literature reference.\[^{[S7]}\] \(^1\)H NMR (400.1 MHz, CDCl\(_3\)) \(\delta_H\): 5.76 (s, 2H, CH\(_2\)), 7.30–7.37 (m, 1H, Ar-H), 7.38–7.45 (m, 3H, Ar-H), 7.50–7.59 (m, 2H, Ar-H), 7.71 (s, 1H, Ar-H), 7.78–7.92 (m, 6H, Ar-H).

1-Phenethyl-4-phenyl-1H-1,2,3-triazole, 10:

![Chemical structure of 1-Phenethyl-4-phenyl-1H-1,2,3-triazole, 10](image)

White solid; mp: 139–142 °C (lit.\[^{[S1]}\] mp: 141–142 °C); NMR data is in agreement with the literature reference.\[^{[S1]}\] \(^1\)H NMR (400.1 MHz, CDCl\(_3\)) \(\delta_H\): 3.19–3.31 (t, 2H, CH\(_2\), \(J=7.2\) Hz), 4.56–4.68 (t, 2H, CH\(_2\), \(J=7.2\) Hz), 7.09–7.18 (d, 2H, Ar-H, \(J=7.3\) Hz), 7.23–7.37 (m, 4H, Ar-H), 7.37–7.46 (m, 2H, Ar-H), 7.49 (s, 1H, Ar-H), 7.73–7.83 (d, 2H, Ar-H, \(J=7.3\) Hz).

1-Cyclohexyl-4-phenyl-1H-1,2,3-triazole, 11:

![Chemical structure of 1-Cyclohexyl-4-phenyl-1H-1,2,3-triazole, 11](image)

White solid; mp: 106–109 °C (lit.\[^{[S1]}\] mp: 108–109 °C); NMR data is in agreement with the literature reference.\[^{[S1]}\] \(^1\)H NMR (400.1 MHz, CDCl\(_3\)) \(\delta_H\): 1.20–1.37 (m, 1H, CH\(_2\)), 1.38–1.56 (m, 2H, CH\(_2\)), 1.69–1.86 (m, 3H, 2 CH\(_2\)), 1.86–2.01 (m, 2H, CH\(_2\)), 2.16–2.32 (m, 2H, CH\(_2\)), 4.40–4.54 (m, 1H, CH), 7.28–7.35 (m, 1H, Ar-H), 7.36–7.46 (m, 2H, Ar-H), 7.70–7.90 (m, 3H, Ar-H).

3-(4-Phenyl-1H-1,2,3-triazol-1-yl)dihydrofuran-2(3H)-one, 12:

![Chemical structure of 3-(4-Phenyl-1H-1,2,3-triazol-1-yl)dihydrofuran-2(3H)-one, 12](image)

White solid; mp: 138–142 °C (lit.\[^{[S1]}\] mp: 140–141 °C); NMR data is in agreement with the literature reference.\[^{[S1]}\] \(^1\)H NMR (400.1 MHz, CDCl\(_3\)) \(\delta_H\): 2.98–3.20 (m, 2H, CH\(_2\)), 4.46–4.62 (m, 1H, CH\(_2\)), 4.62–4.79 (m, 1H, CH\(_2\)), 5.30–5.46 (t, 1H, CH, \(J=9.1\) Hz), 7.30–7.39 (m, 1H, Ar-H), 7.39–7.49 (m, 2H, Ar-H), 7.77–7.90 (d, 2H, Ar-H, \(J=7.7\) Hz), 8.05 (s, 1H, Ar-H).
Ethyl 5-(4-phenyl-1H-1,2,3-triazol-1-yl)pentanoate, 13:

White solid; mp: 50–53 °C (lit. mp: 50–53 °C); NMR data is in agreement with the literature reference.\(^{[88]}\)

\(^{[88]}\)\(\delta \)H NMR (400.1 MHz, CDCl\(_3\)) \(\delta \)H: 1.17–1.29 (m, 3H, CH\(_3\)), 1.61–1.74 (m, 2H, CH\(_2\)), 1.92–2.05 (m, 2H, CH\(_2\)), 2.23–2.40 (m, 2H, CH\(_2\)), 4.03–4.17 (m, 2H, CH\(_2\)), 4.33–4.45 (m, 2H, CH\(_2\)), 7.28–7.35 (m, 1H, Ar-H), 7.36–7.45 (m, 2H, Ar-H), 7.72–7.86 (m, 3H, Ar-H).

1-Butyl-4-phenyl-1H-1,2,3-triazole, 14:

White solid; mp: 46–49 °C (lit. mp: 46–47 °C); NMR data is in agreement with the literature reference.\(^{[89]}\)

\(^{[89]}\)\(\delta \)H NMR (400.1 MHz, CDCl\(_3\)) \(\delta \)H: 0.92–1.04 (t, 3H, CH\(_3\), \(J=7.4 \) Hz), 1.36–1.46 (m, 2H, CH\(_2\)), 1.88–1.99 (m, 2H, CH\(_2\)), 4.35–4.44 (t, 2H, CH\(_2\), \(J=7.3 \) Hz), 7.30–7.37 (m, 1H, Ar-H), 7.38–7.46 (m, 2H, Ar-H), 7.75 (s, 1H, Ar-H), 7.79–7.88 (d, 2H, Ar-H, \(J=7.5 \) Hz).

1-(But-3-en-1-yl)-4-phenyl-1H-1,2,3-triazole, 15:

Brownish solid, mp: 40–43 °C (lit. mp: 42–44 °C); NMR data is in agreement with the literature reference.\(^{[91]}\)

\(^{[91]}\)\(\delta \)H NMR (400.1 MHz, CDCl\(_3\)) \(\delta \)H: 2.63–2.76 (m, 2H, CH\(_2\)), 4.38–4.53 (t, 2H, CH\(_2\), \(J=7.2 \) Hz), 5.03–5.19 (d, 2H, CH\(_2\), \(J=12.7 \) Hz), 5.71–5.87 (m, 1H, CH), 7.29–7.36 (m, 1H, Ar-H), 7.37–7.46 (m, 2H, Ar-H), 7.75 (s, 1H, Ar-H), 7.78–7.87 (d, 2H, Ar-H, \(J=7.4 \) Hz).

1-(3-Chloro-2-methylpropyl)-4-phenyl-1H-1,2,3-triazole, 16:

White solid; mp: 48–50 °C (lit. mp: 50–51 °C); NMR data is in agreement with the literature reference.\(^{[88]}\)

\(^{[88]}\)\(\delta \)H NMR (400.1 MHz, CDCl\(_3\)) \(\delta \)H: 1.06–1.15 (d, 3H, CH\(_3\), \(J=6.7 \) Hz), 2.51–2.64 (m, 1H, CH), 3.40–3.52 (m, 2H, CH\(_2\)), 4.28–4.52 (m, 2H, CH\(_2\)), 7.28–7.37 (m, 1H, Ar-H), 7.38–7.47 (m, 2H, Ar-H), 7.75–7.89 (m, 3H, Ar-H).
1-benzyl-4-(4-methoxyphenyl)-1H-1,2,3-triazole, 17:

![Chemical structure of 1-benzyl-4-(4-methoxyphenyl)-1H-1,2,3-triazole]

White solid; mp: 140–143 °C (lit. [S1] mp: 143–145 °C); NMR data is in agreement with the literature reference. [S1] \(^1\)H NMR (400.1 MHz, CDCl\(_3\)) \(\delta_{\text{H}}\): 3.81 (s, 3H, CH\(_3\)), 5.53 (s, 2H, CH\(_2\)), 6.88–6.97 (d, 2H, Ar-H, J=8.5 Hz), 7.27–7.41 (m, 5H, Ar-H), 7.59 (s, 1H, Ar-H), 7.69–7.76 (d, 2H, Ar-H, J=8.6 Hz).

1-Benzyl-4-propyl-1H-1,2,3-triazole, 18:

![Chemical structure of 1-Benzyl-4-propyl-1H-1,2,3-triazole]

Brownish oil; NMR data is in agreement with the literature reference. [S1] \(^1\)H NMR (400.1 MHz, CDCl\(_3\)) \(\delta_{\text{H}}\): 0.93–1.01 (t, 3H, CH\(_3\), J=7.2 Hz), 1.64–1.76 (m, 2H, CH\(_2\)), 2.65–2.76 (t, 2H, CH\(_2\), J=7.6 Hz), 5.52 (s, 2H, CH\(_2\)), 7.25–7.30 (m, 2H, Ar-H), 7.32–7.45 (m, 4H, Ar-H).

Ethyl 1-benzyl-1H-1,2,3-triazole-4-carboxylate, 19:

![Chemical structure of Ethyl 1-benzyl-1H-1,2,3-triazole-4-carboxylate]

Yellowish solid; mp: 79–82 °C (lit. [S1] mp: 82–83 °C); NMR data is in agreement with the literature reference. [S1] \(^1\)H NMR (400.1 MHz, CDCl\(_3\)) \(\delta_{\text{H}}\): 1.30–1.46 (t, 3H, CH\(_3\), J=7.2 Hz), 4.32–4.46 (q, 2H, CH\(_2\), J=7.1 Hz), 5.59 (s, 2H, CH\(_2\)), 7.24–7.35 (m, 2H, Ar-H), 7.35–7.46 (m, 3H, Ar-H), 8.02 (s, 1H, Ar-H).

(1-Benzyl-1H-1,2,3-triazol-4-yl)methyl acetate, 20:

![Chemical structure of (1-Benzyl-1H-1,2,3-triazol-4-yl)methyl acetate]

Yellowish solid; mp: 55–58 °C (lit. [S8] mp: 55–56 °C); NMR data is in agreement with the literature reference. [S8] \(^1\)H NMR (400.1 MHz, CDCl\(_3\)) \(\delta_{\text{H}}\): 2.05 (s, 3H, CH\(_3\)), 5.20 (s, 2H, CH\(_2\)), 5.52 (s, 2H, CH\(_2\)), 7.23–7.31 (m, 2H, Ar-H), 7.34–7.41 (m, 3H, Ar-H), 7.57 (s, 1H, Ar-H).

4-(1-Benzyl-1H-1,2,3-triazol-4-yl)butanenitrile, 21:

![Chemical structure of 4-(1-Benzyl-1H-1,2,3-triazol-4-yl)butanenitrile]
White solid; mp: 61–64 °C (lit. \[^{[S8]}\] mp: 64–66 °C); NMR data is in agreement with the literature reference. \[^{[S8]}\] \(^{1}\)H NMR (400.1 MHz, CDCl\(_3\)) \(\delta\): 2.05–2.14 (m, 2H, CH\(_2\)), 2.40–2.47 (t, 2H, CH\(_2\), \(J=7.0\) Hz), 2.83–2.91 (t, 2H, CH\(_2\), \(J=7.20\) Hz), 5.53 (s, 2H, CH\(_2\)), 7.27–7.32 (m, 3H, Ar-H), 7.36–7.45 (m, 3H, Ar-H).

\(N\)-((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)benzamide, 22:

White solid; mp: 125–128 °C (lit. \[^{[S10]}\] mp: 126–128 °C); NMR data is in agreement with the literature reference. \[^{[S12]}\] \(^{1}\)H NMR (400.1 MHz, CDCl\(_3\)) \(\delta\): 4.69–4.75 (d, 2H, CH\(_2\), \(J=5.6\) Hz), 5.55 (s, 2H, CH\(_2\)), 6.86 (m, 1H, NH), 7.31–7.34 (m, 1H, Ar-H), 7.37–7.50 (m, 5H, Ar-H), 7.51–7.58 (m, 2H, Ar-H), 7.77–7.84 (m, 2H, Ar-H).

\(1\)-Benzyl-4-ferrocenyl-1H-1,2,3-triazole, 23:

Golden yellow solid; mp: 147–150 °C (lit. \[^{[S13]}\] mp: 145–147 °C); NMR data is in agreement with the literature reference. \[^{[S3]}\] \(^{1}\)H NMR (400.1 MHz, CDCl\(_3\)) \(\delta\): 1.26–1.33 (t, 3H, CH\(_3\)), 1.39–1.44 (t, 3H, CH\(_3\)), 4.31–4.40 (q, 2H, CH\(_2\), \(J=7.3\) Hz), 4.41–4.50 (q, 2H, CH\(_2\), \(J=7.3\) Hz), 5.85 (s, 2H, CH\(_2\)), 7.31–7.34 (m, 2H, Ar-H), 7.35–7.45 (m, 4H, Ar-H).

Diethyl 1-benzyl-1H-1,2,3-triazole-4,5-dicarboxylate, 24:

Colorless oil; NMR data is in agreement with the literature reference. \[^{[S14]}\] \(^{1}\)H NMR (400.1 MHz, CDCl\(_3\)) \(\delta\): 1.26–1.33 (t, 3H, CH\(_3\), \(J=7.3\) Hz), 1.39–1.44 (t, 3H, CH\(_3\), \(J=7.3\) Hz), 4.31–4.40 (q, 2H, CH\(_2\), \(J=7.3\) Hz), 4.41–4.50 (q, 2H, CH\(_2\), \(J=7.3\) Hz), 5.85 (s, 2H, CH\(_2\)), 7.26–7.31 (m, 3H, Ar-H), 7.33–7.38 (m, 2H, Ar-H).
1-Benzyl-4-phenyl-1H-1,2,3-triazole, 1, 1H NMR in CDCl$_3$:

\[
\text{Diagram of 1-Benzyl-4-phenyl-1H-1,2,3-triazole.}
\]

1-(2-Fluorobenzyl)-4-phenyl-1H-1,2,3-triazole, 2, 1H NMR in CDCl$_3$:

\[
\text{Diagram of 1-(2-Fluorobenzyl)-4-phenyl-1H-1,2,3-triazole.}
\]
1-(4-Fluorobenzyl)-4-phenyl-1H-1,2,3-triazole, 3, 1H NMR in CDCl$_3$:

![1-(4-Fluorobenzyl)-4-phenyl-1H-1,2,3-triazole, 3, 1H NMR in CDCl$_3$](image1)

1-(2,5-Difluorobenzyl)-4-phenyl-1H-1,2,3-triazole, 4, 1H NMR in CDCl$_3$:

![1-(2,5-Difluorobenzyl)-4-phenyl-1H-1,2,3-triazole, 4, 1H NMR in CDCl$_3$](image2)
1-(2-Chlorobenzyl)-4-phenyl-1H-1,2,3-triazole, 5, 1H NMR in CDCl$_3$:

![NMR spectrum of 5](image)

1-(4-Nitrobenzyl)-4-phenyl-1H-1,2,3-triazole, 6, 1H NMR in CDCl$_3$:

![NMR spectrum of 6](image)
1-(2-Methylbenzyl)-4-phenyl-1H-1,2,3-triazole, 7, 1H NMR in CDCl$_3$:

1-(4-Methylbenzyl)-4-phenyl-1H-1,2,3-triazole, 8, 1H NMR in CDCl$_3$:
1-(Naphthalen-1-ylmethyl)-4-phenyl-1H-1,2,3-triazole, \(9\), \(^1\)H NMR in CDCl₃:

![NMR Spectrum of \(9\)]

1-Phenethyl-4-phenyl-1H-1,2,3-triazole, \(10\), \(^1\)H NMR in CDCl₃:

![NMR Spectrum of \(10\)]
1-Cyclohexyl-4-phenyl-1H-1,2,3-triazole, 11, 1H NMR in CDCl$_3$:

3-(4-Phenyl-1H-1,2,3-triazol-1-yl)dihydrofuran-2(3H)-one, 12, 1H NMR in CDCl$_3$:
Ethyl 5-(4-phenyl-1H-1,2,3-triazol-1-yl)pentanoate, 13, 1H NMR in CDCl$_3$:

![NMR spectrum of Ethyl 5-(4-phenyl-1H-1,2,3-triazol-1-yl)pentanoate](image1)

1-Butyl-4-phenyl-1H-1,2,3-triazole, 14, 1H NMR in CDCl$_3$:

![NMR spectrum of 1-Butyl-4-phenyl-1H-1,2,3-triazole](image2)
1-(But-3-en-1-yl)-4-phenyl-1H-1,2,3-triazole, **15**, 1H NMR in CDCl$_3$:

![NMR spectrum of 1-(But-3-en-1-yl)-4-phenyl-1H-1,2,3-triazole, **15**](image)

1H NMR in CDCl$_3$:

1.90, 1.86, 2.00, 2.18, 2.05 ppm

1-(3-Chloro-2-methylpropyl)-4-phenyl-1H-1,2,3-triazole, **16**, 1H NMR in CDCl$_3$:

![NMR spectrum of 1-(3-Chloro-2-methylpropyl)-4-phenyl-1H-1,2,3-triazole, **16**](image)

1H NMR in CDCl$_3$:

2.00, 1.70, 0.99, 2.79 ppm
1-benzyl-4-(4-methoxyphenyl)-1H-1,2,3-triazole, 17, 1H NMR in CDCl$_3$:

![NMR spectrum of 1-benzyl-4-(4-methoxyphenyl)-1H-1,2,3-triazole, 17](image1)

1-Benzyl-4-propyl-1H-1,2,3-triazole, 18, 1H NMR in CDCl$_3$:

![NMR spectrum of 1-Benzyl-4-propyl-1H-1,2,3-triazole, 18](image2)
Ethyl 1-benzyl-1H-1,2,3-triazole-4-carboxylate, 19, 1H NMR in CDCl$_3$:

(1-Benzyl-1H-1,2,3-triazol-4-yl)methyl acetate, 20, 1H NMR in CDCl$_3$:
4-(1-Benzyl-1H-1,2,3-triazol-4-yl)butanenitrile, 21, 1H NMR in CDCl$_3$:

![NMR Spectrum of 4-(1-Benzyl-1H-1,2,3-triazol-4-yl)butanenitrile, 21](image)

N-((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)benzamide, 22, 1H NMR in CDCl$_3$:

![NMR Spectrum of N-((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)benzamide, 22](image)
1-Benzyl-4-ferrocenyl-1H-1,2,3-triazole, 23, 1H NMR in CDCl$_3$:

Diethyl 1-benzyl-1H-1,2,3-triazole-4,5-dicarboxylate, 24, 1H NMR in CDCl$_3$:
The test reactions to check the efficacy of the individual LDH components (Cu(NO$_3$)$_2$·3H$_2$O and Fe(NO$_3$)$_3$·9H$_2$O) were carried out as follows.

The benzyl azide–phenylacetylene model reaction (1 equiv. azide, 1.5 equiv. alkyne, $c_{\text{azide}}=0.085$ M) was repeated in a flask with 10 mol% of Cu(NO$_3$)$_2$·3H$_2$O and then with 10 mol% of Fe(NO$_3$)$_3$·9H$_2$O in 5 mL acetonitrile as solvent (the metal salts were not soluble in CH$_2$Cl$_2$). After 6 hours of stirring at reflux temperature, the mixture was concentrated under vacuum and was worked up with aqueous NaCl solution and CH$_2$Cl$_2$. The combined organic layers were dried over Na$_2$SO$_4$ and concentrated under reduced pressure. No traces of triazole products was found according to 1H NMR measurements with either of the metal salts.
Continuous-flow oxidative homocoupling of 4-ethynylanisole (in CH$_2$Cl$_2$ as solvent) mediated by the Cu(II)Fe(III)-LDH (1 g loaded into the catalyst bed, unused portion), and the 1H NMR spectra of the crude product in CDCl$_3$ with signal assignments.\[S15\]
The test reactions to check the efficacy of the individual LDH components (Cu(NO$_3$)$_2$·3H$_2$O and Fe(NO$_3$)$_3$·9H$_2$O) were carried out as follows.

The benzyl azide–phenylacetylene model reaction (1 equiv. azide, 1.5 equiv. alkyne, c_{azide}=0.085 M) was repeated in a flask with 10 mol% of Cu(NO$_3$)$_2$·3H$_2$O and then with 10 mol% of Fe(NO$_3$)$_3$·9H$_2$O in 5 mL acetonitrile as solvent (the metal salts were not soluble in CH$_2$Cl$_2$). After 6 hours of stirring at reflux temperature, the mixture was concentrated under vacuum and was worked up with aqueous NaCl solution and CH$_2$Cl$_2$. The combined organic layers were dried over Na$_2$SO$_4$ and concentrated under reduced pressure. No traces of triazole products was found according to 1H NMR measurements with either of the metal salts.
References