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Running title: Cold-adapted proteinase from Trichoderma atroviride 

 

ABSTRACT 

 

Eleven cold-tolerant Trichoderma isolates were screened for the production of 

proteolytic activities at 10 °C. Based on the activity profiles determined with 

paranitroanilide substrates at 5 °C, strain T221 identified as Trichoderma atroviride was 

selected for further investigations. The culture broth of the strain grown at 10 °C in 

casein-containing culture medium was concentrated by lyophilization and subjected to 

gel filtration, which was followed by chromatofocusing of the fraction showing the 

highest activity on N-benzoyl-Phe-Val-Arg-paranitroanilide. The purified enzyme had a 

molecular weight of 24 kDa, an isoelectric point of 7.3 and a pH optimum of 6.2. The 

temperature optimum of 25 °C and the low thermal stability suggested that it is a true 

cold-adapted enzyme. Substrate specificity data indicate that the enzyme is a proteinase 

with a preference for Arg or Lys at the P1 position. The effect of proteinase inhibitors 

suggests that the enzyme has a binding pocket similar to the one present in trypsin. 

 

Keywords: cold tolerance − psychrophylic enzymes − Trichoderma − trypsin-like 

proteinase 
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INTRODUCTION 

 

Members of the genus Trichoderma are asexual, soil-inhabiting filamentous fungi with 

teleomorphs belonging to the genus Hypocrea (Ascomycota, Pyrenomycetes, 

Hypocreales, Hypocreaceae). Certain Trichoderma species are well-known as cellulase 

producers of biotechnological importance [17], while other representatives of the genus 

are effective antagonists of plant pathogenic fungi, thus being potential candidates for 

biological control. Proposed mechanisms of antagonism include competition for space 

and nutrients, antibiosis, facilitation of seed germination and growth of the plants, 

induction of plant defense responses and mycoparasitism by the action of cell-wall 

degrading enzymes [3, 8, 13]. Although the involvement of extracellular chitinolytic 

and β-1,3-glucanolytic enzyme systems in the mycoparasitism of Trichoderma has been 

studied in details [10, 22], the extracellular proteolytic enzyme system remained 

relatively unknown in the case of this genus. Fortunately, in the recent years more and 

more attention is focused on the investigation of Trichoderma proteinases and their 

potential role in biological control [9, 19].  

Thermal environments in temperate soils may be around 10 °C at 5−10 cm in 

September and can rapidly cool to just above freezing by mid-October [14]. As most of 

the Trichoderma strains are mesophilic, they can not protect germinating seeds from 

soilborne diseases caused by cold-tolerant strains of plant pathogenic fungi at low 

temperatures. Only a few studies have addressed the effect of temperature on the 

interaction between Trichoderma as a biocontrol agent and the targeted plant pathogens. 

Antal et al. [2] selected cold-tolerant Trichoderma strains capable of considerable 

growth on artificial media even at 5 °C. These cold-tolerant isolates inhibited the 
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mycelial growth of plant pathogenic fungi and overgrew them in confrontation assays 

performed at 10 °C. Clarkson et al. [4] have found that T. viride destroyed about 40% of 

Sclerotium cepivorum sclerotia at 10 °C after 8 weeks and suggested that further 

degradation may occur at both 10 °C and 5 °C with longer incubation. Trichoderma 

strains with such capabilities are promising candidates for biological control during cold 

seasons therefore the investigation of their extracellular enzymes supposed to be 

involved in mycoparasitism is of great importance.  In the present study we report the 

purification and characterization of a psychrophilic (cold-adapted) proteinase from a 

cold-tolerant Trichoderma strain. 

 

MATERIALS AND METHODS 

 

Strains and culture conditions 

 

Cold-tolerant Trichoderma strains involved in the study were T66, T114, T221, 

T228 and T334 isolated from forest soil [2] as well as TB17, TB37, TB69, TB75, TB94 

and TB103 isolated from the roots of winter wheat [20]. All isolates derived from South 

East Hungary were maintained on minimal medium (5 g l−1 glucose, 5 g l−1 (NH4)2SO4, 

1 g l−1 KH2PO4, 0.5 g l−1 MgSO4 and 15 g l−1 agar]. The strains were grown at 10 °C on a 

shaker at 200 rpm in flasks of 700 ml volume containing 200 ml of a casein-containing 

medium inductive for proteinases (1 g l−1 MgSO4, 1 g l−1 NaNO3, 1 g l−1 KH2PO4, 1 g 

l−1 Na2SO4, 1 g l−1 mannitol and 1 g l−1 skim milk powder). After seven days of 

culturing, the culture broths were collected by filtration and kept frozen at −20 °C until 

screening for proteolytic activities. 
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Screening for proteolytic activities 

 

Proteolytic activities were assayed with the paranitroanilide (pNA) substrates N-

benzoyl-Phe-Val-Arg-pNA and N-succinyl-Ala-Ala-Pro-Phe-pNA (Sigma-Aldrich). In 

the wells of a microtiter plate, 50 µl of each culture broth was incubated for 30 minutes 

at 5°C with 50 µl substrate (1 mg ml−1 in dimethyl-sulfoxide) in a final volume of 150 

µl buffered to pH 6.5 with Sørensen phosphate buffer. The optical density of the 

samples was determined with a Uniskan II microtiter plate spectrophotometer 

(Labsystems, Helsinki, Finland) at a wavelength of 405 nm. Enzyme activities were 

expressed in unit (u), 1 u is defined as the activity that releases 1 nmol paranitroaniline 

in 1 min under the assay conditions. 

 

Molecular identification of strain T221 

 

DNA-isolation, PCR-amplification of the internal transcribed spacer (ITS) 

region and automatic DNA sequencing of the fragments were carried out as described 

previously [16]. ITS sequence analysis was performed with TrichOkey 1.0 

(http://www.isth.info/) based on an oligonucleotide barcode: a diagnostic combination 

of several oligonucleotides (hallmarks) specifically allocated within the ITS 1 and 2 

sequences of the ribosomal DNA repeat [5]. 

 

Purification of a proteinase from strain T221 
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The culture broth was concentrated 40-fold by lyophilization and 10 ml was 

applied to a Sephadex G-100 chromatography column (Pharmacia) of 3.34 X 36 cm 

dimensions. A total number of 55 fractions (4.5 ml each) were collected at a flow rate of 

1.5 ml min−1, the eluent contained 1 g l−1 NaCl. Trypsin-like activities were measured at 

5 °C in fractions 1−30 with N-benzoyl-Phe-Val-Arg-pNA as described above. The 

fraction showing the highest activity was concentrated on a membrane-filter and 

subjected to chromatofocusing on a 12 cm Polybuffer exchanger 94 (Sigma) gel bed 

prepared in 3 µg ml−1 histidin (pH 7.0) and eluted with Polybuffer 74. A total number of 

60 fractions (1.5 ml each) were collected and their proteolytic activities were measured 

with both N-benzoyl-Phe-Val-Arg-pNA and N-succinyl-Ala-Ala-Pro-Phe-pNA. 

Fractions 39-46 with the highest activities on N-benzoyl-Phe-Val-Arg-pNA were pooled 

and concentrated 3-fold by lyophilization for the further characterization of the enzyme.   

 

Characterization of the purified enzyme 

 

The molecular weight of the enzyme was determined by SDS-polyacrylamide 

gel electrophoresis (SDS-PAGE) carried out for 50 minutes at 200 V in NuPAGE 

MOPS running buffer on a 4-12% NuPAGE Bis-Tris precast gel (Invitrogen) run in an 

XCELL vertical gel electrophoresis system (Novex, San Diego, CA, USA). The marker 

SeeBlue Plus2 (Invitrogen) was used for the determination of the molecular weight of 

the enzyme.  The isoelectric point was determined by isoelectric focusing on a pH 3−10 

vertical precast IEF gel (Invitrogen) run at 5 °C for 1 hour at 100 V followed by 1 hour 

at 200 V and finally 1 hour at 500 V in an XCELL vertical gel electrophoresis system. 

Novex IEF cathode, anode and sample buffers were applied for isoelectric focusing 
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according to the manufacturer’s instructions.  IEF-Marker pI 3.6−9.3 (Fluka) was used 

as the pI standard. The gels were stained with the EZBlue gel staining reagent (Sigma-

Aldrich).   

Temperature dependence was examined by activity measurements after 1 h of 

incubation with N-benzoyl-Phe-Val-Arg-pNA at 9 temperature values in the range of 

5−45 °C on a chilling/heating block for microtiter plates (Cole-Parmer Instruments 

Company, Vernon Hills, IL, USA). The thermal stability of the enzyme was examined 

after preincubation at 40, 50, 60 and 70 oC for 60 min by the measurement of the 

residual activity at 25 oC as described above. pH-dependence was measured in the pH 

range between 5.0 and 8.0 adjusted with Sørensen phosphate buffer and the enzyme 

activities were measured at 25 °C. The substrate specificity of the purified proteinase 

was examined with the chromogenic substrates listed in Table 1 (all from Sigma-

Aldrich). Each examined substrate was tested at an end concentration of 1 mM, 

measurements were performed after 30 min of incubation at 25 °C. The inhibition 

effects of the inhibitors listed in Table 2 on the proteinase activity were determined by 

the measurement of the residual activity after preincubation with the inhibitors (end 

concentrations given in Table 2) at 25 oC for 1 h. All measurements were carried out in 

three replicates, the standard deviation values were determined. 

 

RESULTS 

 

Screening of Trichoderma strains for cold adapted proteolytic activities 
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Proteolytic activities were measured at 5 °C from the culture broth of cold-

tolerant Trichoderma strains grown in casein-containing medium at 10 °C. Strain T221 

exhibited the highest trypsin-like (5.76 u/ml) and chymotrypsin-like activities (6.29 

u/ml) cleaving the substrates N-benzoyl-Phe-Val-Arg-pNA and N-succinyl-Ala-Ala-

Pro-Phe-pNA, respectively. Based on our previously recorded data, the radial extension 

rates of the examined cold tolerant isolates ranged from 1.72±0.11 to 2.04±0.04  

mm/day on yeast extract agar medium at 5°C. Although strain T221 could be 

characterized with the best growth capabilities (2.04±0.04 mm/day), the differences 

between the radial extension rates of the isolates were modest when compared with the 

differences between their proteolytic activities measured. Trypsin-like and 

chymotrypsin-like activities of T221 were 1.9-5.5 and 1.7-9.0 times higher, 

respectively, than those of the other cold tolerant strains, suggesting that T221 has the 

highest specific proteolytic activity, therefore this strain was selected for further 

investigations. 

 

Identification of strain T221 

 

Strain T221 was originally identified as T. aureoviride using the key of Rifai 

[15]. However, since this morphology-based identification, T. aureoviride and its 

teleomorph Hypocrea aureoviridis have been redefined as rare species restricted to the 

UK and the Netherlands, as the molecular characters of most strains originally identified 

as T. aureoviride proved to be different from those of the ex-type [11]. Based on the 

analysis of ITS 1 and 2 sequences (GenBank accession no. AY585878) with TrichOkey 
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1.0, the strain proved to belong to T. atroviride, a species of section Trichoderma, clade 

Rufa according to the currently accepted species concept of the genus [6]. 

 

Purification of a proteinase from T. atroviride T221 

 

The purification process is presented in Fig. 1. A single, sharp peak of 

proteolytic activities cleaving N-benzoyl-Phe-Val-Arg-pNA at 5 °C could be observed 

after gel filtration chromatography, with maximal activity in fraction 20 (Fig. 1A). As a 

previous study reported that Trichoderma strains produce chymotrypsin-like activities 

in the same molecular weight range as that of trypsin-like activities [1], fraction 20 from 

gel filtration was further purified by chromatofocusing. Activity in the chromatofocused 

fractions was assayed for substrates N-benzoyl-Phe-Val-Arg-pNA and N-succinyl-Ala-

Ala-Pro-Phe-pNA. Maximal trypsin-like and chymotrypsin-like activities were detected 

in fractions 42 (3.1 u/ml) and 11 (1.4 u/ml), respectively, indicating that 

chromatofocusing clearly separates these two types of activities (Fig. 1B). 

 

Characterization of the purified enzyme 

 

The molecular weight of the enzyme proved to be about 24 kDa by SDS PAGE, 

the isoelectric point was estimated at 7.3. The temperature optimum was detected at 25 

°C (Fig. 2), which supports the idea that this cold-tolerant Trichoderma strain is able to 

secrete a true psychrophilic proteinase. The enzyme was completely inactivated after 1 

h of preincubation at all tested temperatures except for 40 °C (49% residual activity), 

indicating high thermal instability. The pH optimum of the proteinase proved to be 6.2. 
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Substrate specificity data indicate the preference of the purified enzyme for a positively 

charged polar residue (Arg or Lys) at the carboxyl side of the cleaved bond, as expected 

for a trypsin-like proteinase (Table 1). Substrates for elastases and chymotrypsin were 

not hydrolyzed. The enzyme was inhibited by leupeptin and TLCK, as well as by 

benzamidine indicating the presence of a binding pocket for Arg or Lys, similar to the 

one present in trypsin (Table 2). The examined inhibitors of chymotrypsin-like serine 

proteinases (TPCK), metalloproteinases (EDTA) and cystein proteinases (N-ethyl-

maleimide) did not influence the enzymatic activity. Mercury strongly inhibited the 

enzyme, while copper caused significant enhancement of the activity. 

 

DISCUSSION 

 

Data available about the purification and characterization of proteolytic enzymes 

including acidic aspartyl proteinases, subtilisin-like serine proteinases as well as 

trypsin-like serine proteinases produced by Trichoderma species have been reviewed by 

Kredics et al. [9]. In the present study, the combination of gel filtration on a Sephadex 

G-100 column and chromatofocusing on a Polybuffer exchanger 94 gel bed has been 

applied for the purification of a proteinase to electrophoretic homogeneity from the 

culture broth of the cold-tolerant strain T. atroviride T221.  

The molecular weight of the isolated enzyme proved to be about 24 kDa, similar 

to those of the trypsin-like serine proteinases purified from T. harzianum by Suarez et 

al. [18] (28 kDa) and from T. viride by Uchikoba et al. [21] (25 kDa). These two 

previously purified enzymes were characterized with pI values of 4.8 and 7.3, 
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respectively, the latter is in congruence with the isoelectric point of the proteinase 

described here.  

The thermodependence and stability of the purified proteinase exhibited the 

characteristics described for cold-adapted enzymes, i.e. high activity in the low 

temperature range, a maximal activity shifted towards lower temperatures and weak 

thermostability resulting from improved flexibility [7]. Where reported, the temperature 

values optimal for other Trichoderma proteinases were found to be higher, between 35 

and 50 °C [9, 18].  

To our knowledge, the present study is the first report about the purification of a 

cold-adapted proteinase from the genus Trichoderma. Previous studies provided data 

about the extracellular enzyme activities of cold tolerant Trichoderma strains [2, 9]. 

Besides proteinases, they have been shown to secrete also chitinolytic and cellulolytic 

activities that are functional at 5 °C [2]. Psychrotrophic soil microorganisms are 

supposed to employ enzyme systems with a range of temperature optimized isoenzymes 

[12]. Psychrophilic enzymes may therefore play an important role in the adaptation of 

cold-tolerant strains belonging to the otherwise mesophilic genus Trichoderma. 

Furthermore, the ability to produce cold-adapted extracellular hydrolases makes cold-

tolerant Trichoderma strains promising candidates for the biological control of plant 

pathogenic fungi at lower temperatures. 

 

ACKNOWLEDGEMENTS 

 

 We thank Miss Mária Lele for her technical help. L. Kredics is a grantee of the 

János Bolyai Research Scholarship. 



 13 

REFERENCES 

 

1.  Antal, Z., Kredics, L., Manczinger, L., Ferenczy, L. (2001) Extracellular enzyme 

profiles of mycoparasitic Trichoderma strains. IOBC/WPRS Bull. 24(3), 337–340. 

 

2.  Antal, Z., Manczinger, L., Szakács, G., Tengerdy, R. P., Ferenczy, L. (2000) 

Colony growth, in vitro antagonism and secretion of extracellular enzymes in 

cold-tolerant strains of Trichoderma species. Mycol. Res. 104, 545–549. 

 

3.  Benítez, T., Rincón, A. M., Limón, M. C., Codón A. C. (2004) Biocontrol 

mechanisms of Trichoderma strains. Int. Microbiol. 7, 249−260. 

 

4.  Clarkson, J. P., Mead, A., Payne, T., Whipps, J. M. (2004) Effect of 

environmental factors and Sclerotium cepivorum isolate on sclerotial degradation 

and biological control of white rot by Trichoderma. Plant Pathol. 53, 353–362. 

 

5.  Druzhinina, I., Kopchinskiy, A. G., Komon, M., Bissett, J., Szakacs, G., Kubicek, 

C. P. (2005) An oligonucleotide barcode for species identification in Trichoderma 

and Hypocrea. Fungal Genet. Biol. 42, 813−828. 

 

6.  Druzhinina, I., Kubicek, C. P. (2005) Species concepts and biodiversity in 

Trichoderma and Hypocrea:  from aggregate species to species clusters? J. 

Zhejiang Univ. Sci. 6B, 100–112. 

 



 14 

7.  Feller, G. (2003) Molecular adaptations to cold in psychrophilic enzymes. Cell. 

Mol. Life Sci. 60, 648–662. 

 

8.  Howell, C. R. (2003) Mechanisms employed by Trichoderma species in the 

biological control of plant diseases: the history and evolution of current concepts. 

Plant Dis. 87, 4−10. 

 

9.  Kredics, L., Antal, Z., Szekeres, A., Hatvani, L., Manczinger, L., Vágvölgyi, C., 

Nagy, E. (2005) Extracellular proteases of Trichoderma species – a review. Acta 

Microbiol. Immunol. Hung. 52, 169−184. 

 

10.  Kubicek, C. P., Mach, R. L., Peterbauer, C. K., Lorito, M. (2001) Trichoderma: 

from genes to biocontrol. J. Plant Pathol. 83(S2), 11−23. 

 

11.  Lieckfeldt, E., Kullnig, C. M., Kubicek, C. P., Samuels, G. J., Börner, T. (2001) 

Trichoderma aureoviride: phylogenetic position and characterization. Mycol. Res. 

105, 313–322. 

 

12.  Loveland, J., Gutshall, K., Kasmir, J., Prema, P., Brenchley, J. E. (1994) 

Characterisation of psychrotropic microorganisms producing β-galactosidase 

activities. Appl. Environ. Microbiol. 60, 12−28. 

 

13.  Naár, Z., Kecskés, M. (1998) Factors influencing the competitive saprophytic 

ability of Trichoderma species. Microbiol. Res. 153, 119–129. 



 15 

 

14.  Payne, D., Gregory, P. J. (1988) The temperature of the soil. In: Wild, E. (ed.) 

Russel’s Soil Conditions and Plant Growth, 11th edn. Longman Scientific and 

Technical, Harlow, U.K., pp. 282–297.  

 

15.  Rifai, M. A. (1969) A revision of the genus Trichoderma. Mycol. Pap. 116, 1–56. 

 

16.  Rigó, K., Varga, J., Tóth, B., Mesterházy, Á., Kozakiewicz, Z. (2002) 

Phylogenetic analysis of Aspergillus section Flavi based on sequences of the 

internal transcribed spacer regions and the 5.8 S rRNA gene. J. Gen. Appl. 

Microbiol. 48, 9–16. 

 

17.  Schmoll, M., Kubicek, C. P. (2003) Regulation of Trichoderma cellulase 

formation: lessons in molecular biology from an industrial fungus. Acta Microbiol. 

Immunol. Hung. 50, 125–140. 

 

18.  Suarez, B., Rey, M., Castillo, P., Monte, E., Llobell, A. (2004) Isolation and 

characterization of PRA1, a trypsin-like protease from the biocontrol agent 

Trichoderma harzianum CECT 2413 displaying nematicidal activity. Appl. 

Microbiol. Biotechnol. 65, 46−55. 

 

19.  Szekeres, A., Kredics, L., Antal, Z., Manczinger, L., Kevei, F. (2004) Isolation 

and characterization of protease overproducing mutants of Trichoderma 

harzianum. FEMS Microbiol. Lett. 233, 215−222. 



 16 

 

20.  Szekeres, A., Láday, M., Kredics, L., Antal, Z., Hatvani, L., Manczinger, L. 

(2004) Investigation of Trichoderma strains isolated from winter wheat 

rhizosphere. IOBC/WPRS Bull. 27(8), 155–158. 

 

21.  Uchikoba, T., Mase, T., Arima, K., Yonezawa, H., Kaneda, M. (2001) Isolation 

and characterization of a trypsin-like protease from Trichoderma viride. Biol. 

Chem. 382, 1509−1513. 

 

22.  Vazquez-Garciduenas, S., Leal-Morales, C. A., Herrera-Estrella, A. (1998) 

Analysis of the β-1,3-glucanolytic system of the biocontrol agent Trichoderma 

harzianum. Appl. Environ. Microbiol. 64, 1442−1446. 

 

 



 17 

Table 1 

Substrate specificity of the purified proteinase 

Substrate Relative activity (%)
a 

N-benzoyl-Phe-Val-Arg-pNA 100 

N-benzoyl-L-Arg-pNA   65 

N-benzoyl-Pro-Phe-Arg-pNA   30 

N-benzoyl-Val-Gly-Arg-pNA   24 

Np-tosyl-Gly-Pro-Arg-pNA 180 

Np-tosyl-Gly-Pro-Lys-pNA   63 

N-succinyl-Ala-Ala-Pro-Phe-pNA     0 

N-succinyl-Ala-Ala-Ala-pNA     3 

N-succinyl-Ala-Ala-Pro-Leu-pNA     2 

N-CBZ-Ala-Ala-Leu-pNA     0 

 

arelative activities are presented in the percentage of the activity on N-benzoyl-Phe-Val-

Arg-pNA 
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Table 2 

Effects of various compounds on the proteinase purified from T.  atroviride 

Inhibitor End concentration (mM) Relative activity (%) 

None -            100.0 

TLCK 10.0 5.6 

TPCK 10.0            100.3 

Leupeptin   1.0 3.2 

Benzamidine   2.0              20.0 

PMSF 10.0              43.9 

EDTA   1.0            100.4 

N-ethyl-maleimide   1.0              93.0 

2-mercaptoethanol   1.0              95.4 

HgCl2   1.0              10.1 

CuSO4   1.0            124.0 

 

TLCK: tosyl-L-lysine chloromethyl ketone, TPCK: tosyl-L-phenylalanine chloromethyl 

ketone, PMSF: phenylmethyl-sulphonylfluoride
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Figure legends: 

 

Fig. 1. Purification of a proteinase from T. atroviride T221 by gel filtration (A) and 

chromatofocusing (B). 

 

Fig. 2. Temperature dependence of the purified proteinase. Error bars indicate standard 

deviation. 
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