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Abstract

It is shown that if two planar convex n-gons are oppositely oriented,

then the segments joining the corresponding vertices have a common

transversal. A different formulation is also given in terms of two cars

moving along two convex curves in opposite directions. Some possible

analogues in 3-space are also considered, and an example is shown that

the full analogue is not true in the space.

Polygons in the plane

In this paper we discuss a property of planar convex polygons, namely

Theorem 1 If A1, . . . , An and B1, . . . , Bn are convex polygons in the plane
with opposite orientation, then there exists a line that intersects each of the line
segments A1B1, . . . , AnBn.

Thus, the claim is that the segments AjBj have a common transversal, see
Figure 1 for illustration.

Theorem 1 was proposed by the authors as a problem for the 1999 Miklós
Schweitzer Contest for university students — a contest organized every year
in Hungary by the János Bolyai Mathematical Society since 1948. About 10
questions are proposed for 10 days, and the students can use any literature
they want. Accordingly, the questions are usually more difficult than on other
mathematics competitions, see [2] and [6] for the problems and solutions up to
1992.1

There is an alternative formulation of Theorem 1 given in

Theorem 2 Let γ1 and γ2 be convex curves in the plane. Suppose that on
each curve a car moves around, one of them in the clockwise, the other in the
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1There was only one correct approach for the particular problem we are considering: it

was by Péter Frenkel, who basically found the official solution.
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Figure 1: The convex polygons and a common transversal of AiBi

counterclockwise direction, returning to the starting point at the same time.
Then there exists a line such that the two cars are always on opposite sides of
that line.

The line itself is considered to belong to both of its sides.
The cars may stop in their movement, but they cannot make retreats, see

Figure 2.
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Figure 2: Two convex curves and one-one car on each

Clearly, Theorem 1 follows from Theorem 2. Indeed, given A1, . . . , An and
B1, . . . , Bn, let us assume that the two cars start at A1 and B1, and each cover
one side of the polygon (for example with uniform speed) in 1 minute. Then,
after i−1 minutes, the first car is at Ai and the second car is at Bi (i = 1, . . . , n).
Let l be the line found in Theorem 2. Since, for each i, the points Ai and Bi

are on the opposite sides of l, the line l intersects the segment AiBi.
A simple approximation argument (take as the vertices of the two polygons

the positions of the two cars at times t = (k/n)T , k = 1, . . . , n, where T is the
time needed for the cars to make a full round) shows that conversely, Theorem
1 implies Theorem 2, so these two statements are equivalent.
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Proof of Theorem 2. For definiteness assume that Car #1, the car on γ1,
moves in the positive, that is counterclockwise direction. It is also convenient
to think of the cars not stopping after making a full round, but continuing their
movement periodically forever.

If there is a line that separates the two curves (meaning that the two curves
lie on opposite sides of the line including the line itself), then this line clearly
satisfies the claim in the theorem. Furthermore, if the intersection of the inte-
riors of two convex curves on the plane is empty, then the two curves can be
separated by a line, so in what follows we may assume that there is a common
interior point of the two regions enclosed by the curves.

First assume that both curves are strictly convex, i.e. neither of them con-
tains a line segment and that the cars do not make stops.

We shall need to speak of directed lines. A direction α on the plane is given
by a unit vector, say by a vector pointing from the origin to a point on the
unit circle. We can parametrize such a direction by the angle α that the vector
forms with the positive real half-line. So this parameter α lies in [0, 2π), but it
is convenient to extend the parametrization periodically to the whole real line.
A directed line is just a line on a which a direction (parallel with the given line)
is given. If we move on the line in the given direction, then we can speak of the
left- resp. right-hand side of the line.

We claim that, for every direction α, there is a unique directed line l = l(α)
with direction α such that Car #1 spends, within one period, exactly as much
time on the right side of l as Car #2 spends on the left-side of l; note that it is
NOT claimed that this happens during the same time interval. (This claim is
somewhat similar to the Ham-Sandwich theorem, see [1].) To prove this claim,
let us choose a line l0 with direction α so that both curves lie on the right side
of l0 and move continuously this line, in one unit of time, using translations, to
a position l1, where both curves lie on the left-side of l1. Let T1(t) be the time
that Car #1 spends (in one period) on the right side of lt (the line at time t)
and T2(t) be the time that Car #2 spends on the left-side of lt. The function
f(t) = T1(t)− T2(t), f : [0, 1] → R, is continuous, strictly monotone decreasing,
f(0) = 1 and f(1) = −1 (continuity is due to the fact that we assumed strict
convexity of the curves). Therefore, there is a unique point t0 ∈ [0, 1] such that
f(t0) = 0. The line lt0 is the one we are looking for.

Now we show that the line l(α) intersects both curves in exactly 2 points.
Indeed, if this line intersects one of the curves in no or one point, then this curve
is completely on one side of l(α), so the other curve must be completely on the
other side of l(α). But that would mean that l(α) separates the two curves,
which we assumed not to be the case.

Let Bj(α) denote the point where the line l(α) enters the region enclosed
by γj , and Kj(α) where it leaves that region for j = 1, 2. Clearly, Bj(α) and
Kj(α) are 2π-periodic functions from the real line into the complex plane. A
simple argument shows that they are continuous. It is heuristically clear that,
as α moves from 0 to 2π, the point Bj(α) goes around the curve γj once in
the positive direction. Unfortunately, the points Bj(α) do not necessarily move
always in the counterclockwise direction, so this is a subtle point, to which we
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shall return at the end of the proof.
Let φ : γ2 → γ1 be the following bijection between the two curves: Car

#2 is at the point P on γ2 exactly when Car #1 is at φ(P ) on γ1 (there is
such a bijection since we assumed no stopping of the cars). Since the two cars
move in opposite directions, the point φ(B2(α)) goes around γ1 once in the
negative (clockwise) direction as α moves from 0 to 2π. It follows that there
exists α0 such that B1(α0) = φ(B2(α0)) (see more explanation at the end of
the proof). Note that both B1(α0) and B2(α0) lie on l(α0), and the equality
B1(α0) = φ(B2(α0)) means that the two cars are in these two points of l(α0)
precisely at the same moment.

We claim that the line l(α0) satisfies the condition of the theorem. Indeed,
when Car #1 is at the point B1(α0), then Car #2 is at the point B2(α0). From
that position Car #1 moves to the right side of l(α0) (since Car #1 moves in
the counterclockwise direction), while Car #2 moves to the left-side of l(α0).
Since Car #1 spends as much time on the right side of l(α0) as Car #2 spends
on the left-side of l(α0), we must also have that Car #1 is at the point K1(α0)
exactly when Car #2 is at the point K2(α0). From that position Car #1 moves
to the left-side of l(α0) and Car #2 moves to the right side of l(α0), and then
they hit the line l(α0) again at the points B1(α0) and B2(α0). It follows that
the two cars are always on opposite sides of the line l(α0), and we are done.

In the preceding argument we extensively used continuity, which was due to
the fact that the curves γj , j = 1, 2, are strictly convex. In the general case
when this is not necessarily so, we can use approximation and take limit as
follows. Still assuming that neither of the cars make a stop, let O1 be a point

inside γ1 and let γ
(m)
1 be obtained from γ1 by shrinking it from O1 by the factor

1 − 1/m, m = 2, 3, . . .. Select a strictly convex curve γ1,m in between γ1 and

γ
(1)
1 . At each moment project Car #1 onto γ1,m from O1 — this way we get

Car #1m moving along γ1,m in the positive direction. We construct γ2,m and
Car #2m in the same way for the second curve. Now γ1,m and γ2,m are strictly
convex, therefore, by the first part of the proof, there is a line lm that separates
Car #1m and Car #2m at every moment. We can select a subsequence {mk} of
the natural numbers so that the lines lmk

converge to some line l as mk → ∞,
and it is simple to check that then l separates the original two cars at every
moment.

The case when the cars make stops can be handled similarly: we approximate
such movement by movements without stops, and take limit. We leave the
details to the reader.

It remains to prove the heuristic claim that the points Bj(α) traverse (not
necessarily monotonically) the curves γj once in the positive direction as αmoves
from 0 to 2π, and, due to that, there is an α0 for which B1(α0) = φ(B2(α0)).
Consider γ1, and all directed lines in the direction α which hit γ1. There are two
of them that are supporting lines to γ1, one touching γ1 on the right side of l(α)
at a point P1,α and one touching γ1 on the left-side of l(α) at a point Q1,α. All
other lines enter the interior of γ1 somewhere on the arc I1,α := Q1,αP1,α that
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goes from Q1,α to P1,α in the counterclockwise direction. In particular, B1(α) is
an interior point of that arc, see Figure 3. Note that P1,α and Q1,α move (as α
increases) monotonically in the counterclockwise direction, and we express this
fact by saying that the arc I1,α moves in the counterclockwise direction.
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Figure 3: The curve γ1, the line l(α), the two supporting lines parallel with
it together with the corresponding touching points P1,α and Q1,α, and the arc
I1,α = Q1,αP1,α

Let us denote the analogue of P1,α, Q1,α, I1,α on the curve γ2 by P2,α, Q2,α, I2,α,
and consider their image under the mapping φ. Because the cars move in op-
posite direction, φ(I2,α) is a proper subarc of γ1 with endpoints φ(P2,α) and
φ(Q2,α) in the counterclockwise direction, and the arc φ(I2,α) moves in the
clockwise direction (again in the sense that its endpoints do so monotonically).
Thus, on γ1 the proper arc I1,α moves continuously in the counterclockwise di-
rection and the point B1(α) is always on that arc and moves continuously, while
the proper arc φ(I2,α) moves in the clockwise direction and the point φ(B2(α))
is always on that second arc and moves continuously, see Figure 4. The claim
we are dealing with is that then the points B1(α) and φ(B2(α)) must meet,
which is heuristically clear, since the arcs I1,α and φ(I2,α) “sweep through each
other” (actually twice within one full round). A formal proof is as follows.

Let O be a fixed point in the interior of γ1, which we may assume to be the
origin. If S(α), α ∈ R, is a continuously and periodically moving point avoiding
O (formally S : R → R2 \ {O} is a continuous 2π-periodic mapping), then its
winding number (relative to O) tells us how many times S(α) goes around O
within one period (i.e. while α runs through [0, 2π]), where counterclockwise
motions are counted as positive and clockwise motions are counted as negative
(see [4, Chapter 3.a] for a precise definition). Now a basic fact is that if S(α)
and S̃(α) are two such points continuously moving along γ1 which do not meet,
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Figure 4: The oppositely moving arcs I1,α and φ(I2,α)

then their winding numbers must be the same. Indeed, if S(α) 6= S̃(α) for any
α, then the line segments joining S(α) and −S̃(α) never hit O, therefore, by the
“Dog-on-a-Leash” theorem [4, Theorem 3.11], S(α) and −S̃(α) have the same
winding numbers, which is the same that S(α) and S̃(α) have the same winding
numbers.

After this, let us return to the points B1(α) and φ(B2(α)). Since B1(α) and
P1,α do not meet, and the latter has winding number 1, we conclude that B1(α)
has winding number 1. In a similar fashion, φ(B2(α)) has winding number −1,
since it never meets φ(P2,α) and this latter has winding number −1. Thus,
B1(α) and φ(B2(α)) have different winding numbers, so they must meet.

Polytopes in 3-space

In this section, we briefly discuss if Theorem 1 is a purely 2-dimensional result
or if it has an analogue in 3-space. As we shall see, there are difficulties in giving
the full analogue of Theorem 1 in higher dimensions.

The analogue of a convex polygon in 3-space is a convex polytope A1, . . . , An,
and if someone would like to speak of oppositely oriented polytopes, that is not
as simple as in the plane. For example, it would be difficult to compare the
orientation of a cube with that of a pyramid with a 7-gon base, even though
both of them have 8 vertices. However, there is no problem with tetrahedrons:
a tetrahedron ABCD is said to be positively (negatively) oriented if the vectors
−−→
AB,

−→
AC,

−−→
AD are right-oriented (left-oriented), i.e. they follow each other as

the thumb, forefinger and middle fingers on our right hand (left hand). And for
tetrahedrons we have
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Proposition 3 If A1A2A3A4 and B1B2B3B4 are oppositely oriented tetrahe-
drons, then there is a plane that intersects every segment AiBi, i = 1, 2, 3, 4.

Proof. For t ∈ [0, 1] let a point Pi(t) move continuously on the segment AiBi

from Ai to Bi. Thus, P1(0)P2(0)P3(0)P4(0) is the tetrahedron A1A2A3A4,
while P1(1)P2(1)P3(1)P4(1) is the tetrahedron B1B2B3B4. The vector triple
−−−−−−−→
P1(t)P2(t),

−−−−−−−→
P1(t)P3(t),

−−−−−−−→
P1(t)P4(t) changes continuously, and at t = 0 and at

t = 1 its orientation is different. So somewhere this orientation must change,
and that is possible only if at some t0 ∈ (0, 1) these vectors lie in the same
plane. Clearly, that plane then intersects each of the segments AiBi.

For the pedantic readers let us state here the precise meaning of “somewhere
this orientation must change”: if t0 is the supremum of all t for which the vector

triplet
−−−−−−−→
P1(t)P2(t),

−−−−−−−→
P1(t)P3(t),

−−−−−−−→
P1(t)P4(t) is right-oriented, then t0 ∈ (0, 1), and

for t = t0 all these vectors must line in a plane.
Those familiar with signed volumes (which, for P1(t)P2(t)P3(t)P4(t) is 1/6-

times the mixed product of the vectors
−−−−−−−→
P1(t)P2(t),

−−−−−−−→
P1(t)P3(t),

−−−−−−−→
P1(t)P4(t)) will

recognize that this proof amounts to the same as with P1(t)P2(t)P3(t)P4(t) we
continuously move from a positive volume to a negative one, so at some point
P1(t0)P2(t0)P3(t0)P4(t0) must have zero volume, i.e. it must be degenerate: all
four points P1(t0), P2(t0), P3(t0), P4(t0) lie on the same plane.

Next, consider more general polytopes in 3-space, but to avoid the above
mentioned problem concerning a cube and a pyramid, let us suppose that P :
A1 · · ·An and Q : B1 · · ·Bn are two polytopes with the property that whenever
Ai1 · · ·Aik form a face of P then Bi1 · · ·Bik form a face of Q. We are not
trying to define in general “opposite orientation” for such polytopes, but any
meaningful definition should imply at least that all such corresponding faces
Ai1 · · ·Aik and Bi1 · · ·Bik are oppositely oriented (by looking at them, say,
from the outside). The simplest case when we can have such a correspondence
in between the vertices of P and Q is when P and Q are isometric, and in
this case we can state the following proposition, in which ”opposite orientation”
means that the corresponding faces are oppositely oriented.

Proposition 4 If A1 · · ·An and B1 · · ·Bn are oppositely oriented isometric
polytopes, then there is a plane that intersects every segment AiBi, i = 1, 2, . . . , n.

Of course, in this formulation we assume that the isometry in between the two
polytopes moves Ai into Bi.

Proof. It is known (see, e.g., [3, Chapter 7]) that in 3-space the isometries are
the following:

a) screw (a rotation about some axis followed by a translation parallel to that
axis),
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b) glide reflection (reflection onto a plane followed by a translation with a vector
that is parallel with the plane),

c) rotatory reflection (axial rotation followed by a reflection onto a plane that
is perpendicular to the axis of rotation).

The first type preserve orientation, but the latter two types reverse it. Now, if
the isometry moving A1 · · ·An into B1 · · ·Bn is of type b) or c), then the plane
of reflection in b) or c) intersects each segment AiBi.

Next, we show that a slight distortion of the polytopes in Proposition 4 may
result in “almost isometric” polytopes for which the proposition is no longer
true. Let A1 · · ·A5A

′

6 and B∗

1 · · ·B
∗

5B
′

6 be two isometric regular octahedrons of
opposite orientation, see Figure 5. Now move A′

6 off the A5A2A4 plane towards

A1
B3

A2
B2

A3
B1

A4
B4

A6 B6

A5
B5

*

*

*

*

*
*

A6 B6

Figure 5: The two regular octahedrons and their modifications

A3 to get the octahedron A1 · · ·A6, and move B′

6 off the B∗

5B
∗

2B
∗

4 plane towards
B∗

1 to get the octahedron B∗

1 · · ·B
∗

6 . Finally move this last octahedron B∗

1 · · ·B
∗

6

so that B∗

2 aligns with A2; B
∗

4 aligns with A4 and B∗

5 aligns with A5. Now if
B1 · · ·B6 is the octahedron that we obtain after this last motion, then A2 = B2,
A4 = B4 and A5 = B5, so a plane intersecting all segments AiBi would have to
be the A2A4A5 plane. But, by construction, A6 and B6 lie on the same side of
that plane, so in this arrangement the segments AiBi do not have a common
plane transversal.

Finally, we consider a situation that includes both the case of tetrahedrons
and the case of isometric polytopes that have been discussed so far. This will
also show the strength of algebraic methods in geometry.

An affine mapping is a mapping of R3 that preserves parallelism. Alter-
natively, if we use coordinates, then affine transformations can be defined as
mappings T (x1, x2, x3) = (y1, y2, y3), where

y1 = a11x1 + a12x2 + a13x3 + b1,
y2 = a21x1 + a22x2 + a23x3 + b2,
y3 = a31x1 + a32x2 + a33x3 + b3
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with some numbers aij and bi. Such a T preserves orientation (say of faces) if
the determinant |aij |

3
i,j=1 is positive, and it reverses orientation if it is negative.

If A1A2A3A4 and B1B2B3B4 are two tetrahedra, then there is a unique affine
map taking A1A2A3A4 into B1B2B3B4. Isometries are affine maps in which the
matrix (aij)

3
i,j=1 is orthogonal, i.e. ai1aj1 + ai2aj2 + ai3aj3 is 0 if i 6= j and is 1

if i = j, 1 ≤ i, j ≤ 3. So the following statement contains both the tetrahedron
and the isometric polytope cases discussed before.

Proposition 5 Let A1 · · ·An be a polytope and B1 · · ·Bn an affine image of
it. If these polytopes are oppositely oriented (in the sense that corresponding
faces in them are oppositely oriented), then there is a plane that intersects every
segment AiBi, i = 1, 2, . . . ,m.

Proof. Let T be the affine mapping in between A1 · · ·An and B1 · · ·Bn with
matrix A = (aij)

3
i,j=1, so that if

x =





x1

x2

x3



 ,

then with some vector b we have Tx = Ax+ b. Let

I =





1 0 0
0 1 0
0 0 1





be the identity matrix. For t ∈ [0, 1] set At = (1 − t)I + tA and consider
the transformation Ttx = Atx + tb, so that T0 is the identity and T1 is the
mapping T . By assumption, the latter reverses orientation, so A1 has negative
determinant, while the determinant of A0 is 1. Therefore, there must be a
t0 ∈ (0, 1) such that the determinant of At0 is 0, which means that Tt0 is
singular, i.e., it maps the whole space into a plane S. This S intersects every
segment AiBi, the intersection points being Tt0(Ai).

Note that these 3-D results are rather limited, e.g. even though in Proposi-
tion 5 convexity is not needed, the proposition itself is a quite restricted analogue
of Theorem 1: in it the existence of a common transversal plane is due to the
fact that there is a plane that intersects every segment that connects a point
with its affine image (under the affine transformation considered). However,
the example in Figure 5 shows that, in some sense, this is necessary: a slight
distortion of the affine images may lead in 3-space to situations when there are
no common transversal planes.

Similar results hold in higher dimensions (in Rd) for simplices and affine
polytopes.

The authors thank three unanimous referees whose remarks helped to con-
siderably improve the presentation. In particular, one of the referees suggested
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the elegant argument based on comparing the winding numbers of B1(α) and
P1,α (φ(B2(α)) and φ(P2,α)) that was used at the end of the proof of Theorem
1. Two of the referees raised the question of a pure combinatorial proof of Theo-
rem 1 (i.e. not using the continuous reformulation in Theorem 2), and they also
pointed out some possibly relevant literature, see [5] and the references there.
The authors also thank János Kincses for stimulating discussions.
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