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Abstract

The extensive projection of orexigenic neurons and the diffuse expression of orexin 

receptors suggest that endogenous orexins are involved in several physiological functions of 

the central nervous system, including learning and memory. Our previous study demonstrated 

that orexin A improves learning, consolidation and retrieval processes, which involves α- and 

β-adrenergic, cholinergic, dopaminergic, GABA-A-ergic, opiate and nitrergic 

neurotransmissions. However, we have little evidence about the action of orexin B on 

memory processes and the underlying neuromodulation. Therefore, the aim of the present 

study was to investigate the action of orexin B on passive avoidance learning and the 

involvement of neurotransmitters in this action in rats. Accordingly, rats were pretreated 

withthe selective orexin 2 receptor (OX2R) antagonist, EMPA; the γ-aminobutyric acid 

subunit A (GABA-A) receptor antagonist, the bicuculline; a D2, D3, D4 dopamine receptor 

antagonist, haloperidol; the nonselective opioid receptor antagonist, naloxone; the non-

specific nitric oxide synthase (NOS) inhibitor, nitro-L-arginine; the nonselective α-adrenergic 

receptor antagonist, phenoxybenzamine and the β-adrenergic receptor antagonist, propranolol. 

Our results demonstrate that orexin B can improve learning, consolidation of memory and 

retrieval. EMPA reversed completely the action of orexin B on memory consolidation. 

Bicuculline blocked fully; naloxone, nitro-L-arginine, phenoxybenzamine and propranolol 

attenuated the orexin B-induced memory consolidation, whereas haloperidol was ineffective. 

These data suggest that orexin B improves memory functions through OX2R and GABA-

ergic, opiate, nitrergic, α- and β-adrenergic neurotransmissions are also involved in this 

action.
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1. Introduction

The 33-amino acid orexin A (also known as hypocretin-1) and the 28-amino acid 

orexin B (also known as hypocretin-2) were described in the hypothalamus in 1998. Both 

neuropeptides are derived from the common precursor peptide (preproorexin) [1, 2]. Orexin-

expressing neurons are predominantly localized in the lateral hypothalamus area (LHA) and 

posterior hypothalamus and extensively project to the entire neuroaxis, including the cerebral 

cortex, olfactory bulb, thalamus, anterior and posterior hypothalamus, diagonal band of 

Broca, amygdala, hippocampus, bed nucleus of the stria terminalis, septum, brainstem and 

spinal cord [1-6].

Orexins activate at least two distinct G-protein coupled receptors, the orexin 1 receptor 

(OX1R) and the orexin 2 receptor (OX2R). OX1R has a tenfold greater affinity for orexin A 

than orexin B, whereas OX2R has nearly equal affinity for both neuropeptides [2, 7]. OX1R 

and OX2R are located on both pre- and post-synaptic processes, as well as on cell bodies [8, 

9]. Prominent expression of OX1R mRNA was found in the locus coeruleus (LC) and to a 

lesser extent in the dorsal raphe nucleus, hippocampal formation and tenia tecta. On the other 

hand, OX2R mRNA was identified mainly in the cerebral cortex, nucleus accumbens, 

paraventicular thalamic and subthalamic nuclei [10, 11].

The extensive projection of orexigenic neurons and the diffuse expression of orexin 

receptors suggest that endogenous orexins may be involved in several physiological functions

of the central nervous system (CNS), such as regulation of blood pressure [12, 13], body 

temperature [14], drinking behavior [15], food intake [2], nociception [16], sleep-waking 

cycle [17, 18], sleep disorder [19], reward and drug addiction [20], stress and arousal [21, 22], 

LH secretion [23, 24], prolactin secretion [25], and thyroid function [26]. The presence of 

numerous orexigenic terminals in the memory related brain regions, such as the hippocampus 

and amygdala suggests the involvement of orexins in learning and memory.

In our previous study, we have demonstrated that orexin A improves learning, 

consolidation and retrieval processes [27]. Several other studies provided further evidence 

about the memory enhancing action of orexin A [28, 29] and about the role of OX1R in 

memory [30-32]. In contrast, the effect of orexin B on memory processes has not been 

elucidated. Additionally, there are indications that the orexins might act as neurotransmitters 

per se or in concert with other monoaminergic structures [33, 34]. In our previous study, we 

demonstrated that a number of transmitters could be involved in the action of orexin A on 

memory consolidation [27]. However, we have little evidence about the underlying 

neuromodulation of the presumable effect of orexin B on learning and memory. Therefore, the 
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first aim of the present study was to investigate the action of orexin B on passive avoidance 

learning and memory formation in rats. The second aim of our study was to investigate the

involvement of neurotransmitters in mediating the action of orexin B on memory 

consolidation, thus the animals were pretreated with transmitter receptor antagonists prior to 

peptide administration.

2. Methods and Materials

2.1. Experimental animals and ethics statement

Male Wistar rats, weighing 150-250 g were used. The animals were maintained and 

treated during the experiments in accordance with the instructions of the Ethical Committee 

for the Protection of Animals in Research of the University of Szeged (Szeged, Hungary), 

which specifically approved this study. The rats were kept in their home cages at a constant 

temperature (23 ◦C) on a standard illumination schedule with 12-h light and 12-h dark periods 

(lights on from 6:00 AM). Commercial food and tap water were available ad libitum. To 

minimize the effects of nonspecific stress, the rats were handled daily. All surgery was 

performed under anesthesia, and all efforts were made to minimize suffering.

2.2. Surgery 

For intracerebroventricular (icv) administration, the rats were implanted with a 

stainless steel Luer canulla (10 mm long) aimed at the right lateral cerebral ventricle under 

Nembutal (35 mg/kg, intraperitoneally, ip) anesthesia. The stereotaxic coordinates were 0.2 

mm posterior; 1.7 mm lateral to the bregma; 3.7 mm deep from the dural surface, according to 

the atlas of Pellegrino et al., 1979 [35]. Cannulas were secured to the skull with dental cement 

and acrylate. The rats were used after a recovery period of 5 days.

2.3. Treatments

Orexin B and the selective OX2R antagonist EMPA (N-ethyl-2-[(6-methoxy-pyridin-

3-yl)-(toluene-2-sulphonyl)-amino]-N-pyridin-3-ylmethyl-acetamide) were purchased from 

Bachem Inc., Switzerland. Orexin B was applied via the icv cannula in a dose of 0.5 or 1.0 

µg/animal. For combined treatment, only 1.0 µg orexin B was used. Orexin B was 

administered 30 min before the learning trial (learning), after the learning trial (consolidation) 

and 30 min before the 24 h test (retrieval). EMPA was injected icv in a dose of 2.0, 4.0 or 8.0 

µg/animal.
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EMPA and the receptor blockers were applied immediately after the learning trial, 

followed 30 min later by orexin B administration. 

The following receptor blockers were used: bicuculline methiodide (Sigma, St Louis, 

USA), 1 mg/kg ip; haloperidol (G. Richter Budapest, Hungary) 10 µg/kg ip; naloxone 

hydrochloride (Endo Lab., New York, USA), 0.3 mg/kg ip; nitro-L-arginine (N-w-nitro-L-

arginine, N-NA, Sigma-Aldrich, Budapest, Hungary), 10 µg/2 µl icv; phenoxybenzamine 

hydrochloride (Smith, Klein and French, Herts, UK), 2 mg/kg ip and propranolol 

hydrochloride (ICI, Macclesfield, UK), 10 mg/kg ip. The doses of the receptor blockers were 

selected on the basis of our earlier experience as being effective when administered with other 

neuropeptides, but not affecting the paradigm per se [27, 36].

2.4. Behavioral testing 

2.4.1. Passive avoidance test 

One-trial learning, step-through passive avoidance behavior was measured according 

to Ader et al., 1972 [37]. The apparatus consists of two separate chambers connected through 

a guillotine door. One of the chambers was illuminated, while the other was dark. Rats were 

placed on the illuminated platform and allowed to enter the dark compartment. Since rats

prefer dark to light, they normally entered within 5 s. Two additional trials were delivered on 

the following day. After the second trial, unavoidable mild electric footshocks (0.75 mA, 2 s) 

were delivered through the grid floor. The guillotine door was closed immediately after the rat 

entered the dark chamber and the animals could not escape the footshock. After this single 

trial, the rats were immediately removed from the apparatus and were treated. The 

consolidation of passive avoidance behavior was tested 24 h later. When the action of the 

peptide was tested on acquisition processes, the animals were treated before the single trial. 

When the action of the peptide was tested on retrieval processes the animals were treated with 

the peptide 30 min before the 24 h testing. For consolidation, the animals were treated with 

the peptide following the learning trial or first with the receptor antagonist and 30 min later 

with the peptide for combined treatment. In the 24 h testing each rat was placed on the 

platform and the latency to enter the dark compartment was measured up to a maximum of 

300 s.

2.5. Statistical analysis 

Statistical analysis of the behavioral testing was performed by two-way analysis of 

variance (two-way ANOVA), which was followed by Tukey’s post hoc comparison test. Only 
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the mean percentages were plotted and the standard error of the mean (SEM) is given in the 

figure captions. The differences between groups were examined by Tukey’s post hoc 

comparison test, and a probability level of 0.05 or less was accepted as indicating a 

statistically significant difference.

3. Results

The action of orexin B on learning was studied when the peptide was administered 30 

min prior to the learning trial. Orexin B lengthened significantly the latency of the avoidance 

response in the dose of 1 µg, whereas the 0.5 µg dose was ineffective [F(2, 53) = 4.87]; p < 

0.05 (Fig. 1). Thus orexin B facilitated the learning and consolidation in a dose-dependent 

manner.

The effect of orexin B on consolidation of the passive avoidance response was 

investigated when the peptide was given immediately following the learning trial. Orexin B 

lengthened significantly the latency of the passive avoidance response in the dose of 1 µg, 

while the dose of 0.5 µg was not effective [F(2, 88) = 6.03]; p < 0.01 (Fig. 2). Therefore 

orexin B facilitated the consolidation of the passive avoidance response in a dose-dependent 

manner.

EMPA alone in a dose of 2.0, 4.0, 8.0 µg did not change the passive avoidance 

learning, however in combination with orexin B (1 µg) blocked fully the orexin B-induced 

facilitation in consolidation of passive avoidance learning [F(5,54) = 4.84]; p < 0.05 (Fig. 3).

The action of orexin B on retrieval of passive avoidance learning was investigated 

when the peptide was administered 30 min before the 24-h test. Orexin B lengthened 

significantly the latency of the passive avoidance response in the dose of 1 µg, whereas the 

dose of 0.5 µg was ineffective [F(2, 39) = 4.08]; p < 0.05 (Fig. 4). Thus orexin B facilitated 

the retrieval of passive avoidance learning in a dose-dependent manner.

In the bicuculline-treated group, orexin B (1 µg/2 µl i.c.v.) facilitated the consolidation 

of passive avoidance learning [F(3,92) = 6.29]; p < 0.01. Bicuculline (1 mg/kg i.p.) itself had 

no action, while bicuculline pretreatment fully blocked the action of orexin B on this 

consolidation (Fig. 5).

In the naloxon-pretreated group, orexin B (1 µg/2 µl i.c.v.) facilitated the 

consolidation of passive avoidance learning [F(3,42) = 4.39]; p < 0.01. Naloxon (0.3 mg/kg 

i.p.) itself had no effect and attenuated but did not fully block the action of orexin B (Fig. 6).

In the nitro-L-arginine-treated group, orexin B (1 µg/2 µl i.c.v.) facilitated the 

consolidation of passive avoidance learning [F(3,81) = 4.19]; p < 0.01. Nitro-L-arginine (10 
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µg/2 µl i.c.v.) itself had no effect and attenuated but did not fully block the action of orexin B 

(Fig. 7).

In the phenoxybenzamine-treated group, orexin B (1 µg/2 µl i.c.v.) facilitated the 

consolidation of passive avoidance learning [F(3,41) = 4.56]; p < 0.01. Phenoxybenzamine (2 

mg/kg i.p.) itself had no effect and attenuated but did not fully block the action of orexin B 

(Fig. 8).

In the propranolol-pretreated group, orexin B (1 µg/2 µl i.c.v.) facilitated the 

consolidation of passive avoidance learning [F(3,64) = 5.44]; p < 0.01. Propranolol (10 mg/kg 

i.p.) itself had no effect and attenuated but did not fully block the action of orexin B (Fig. 9).

In the haloperidol-pretreated group, orexin B (1 µg/2 µl i.c.v.) facilitated the 

consolidation of passive avoidance learning [F(3,43) = 8.08]; p < 0.01. Haloperidol (10 µg/kg 

i.p.) itself had no effect and did not block the action of orexin B significantly (Fig. 10).

4. Discussion

Orexin A and orexin B are proteolytic derivates of a common precursor polypeptide 

(preproorexin) and activate 2 distinct G-protein coupled receptors (OX1R and OX2R). 

Orexin-producing neurons and orexin receptors are widely distributed in the entire neuraxis 

and involved in several physiological functions of the CNS, including learning and memory

[1-6]. Our previous study showed that orexin A is able to improve learning, consolidation of 

memory and retrieval processes in a passive avoidance paradigm in rats [27]. Other studies 

provided further evidence that orexin A can induce long-term potentiation (LTP) in the 

dentate gyrus in anesthetized rats [38] and could enhance memory in the mouse model of 

Alzheimer’s disease [28]. It has also been reported that OX1R play a prominent role in spatial 

learning and memory by using a selective OX1R antagonist (SB-334867-A) in rats [39]. The 

present study demonstrates for the first time that orexin B also can improve learning, 

consolidation of memory and retrieval in a passive avoidance paradigm in rats. This action is 

mediated through OX2R, since the selective OX2R antagonist EMPA reversed completely the 

orexin A-induced memory consolidation. EMPA alone in the doses used showed only a 

tendency to change the baseline learning, which may indicate that the endogenous orexin B is 

not involved prominently in the action described. The results of our previous study suggested 

that α- and β-adrenergic, dopaminergic, GABA-A-ergic, opioid receptors and nitrogen-

monoxide (NO) play role in the action of orexin A on consolidation of memory [27]. The 

results of the current study show that α- and β-adrenergic, GABA-A-ergic, opioid receptors 

and nitric oxide (NO) are involved in the effect of orexin B on consolidation of memory.
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The neurotransmitter γ-aminobutyric acid (GABA) plays a prominent role in the 

mediation of physiologic memory processes [40] and in the pathogenesis of neurologic 

disorders, such as schizophrenia [41]. Several prior behavioral and biochemical studies 

revealed correlations between the GABA-ergic and the orexigenic systems. We have

demonstrated previously that GABA is involved in the mediation of the orexin A-induced 

memory consolidation in a passive avoidance test in rats [27]. Electrophysiological and 

histological investigations showed that orexigenic neurons of the LHA activate the GABA-

ergic neurons of the medial septum/diagonal band of Broca (MSDB) and increase the release 

of GABA locally via OXR2 [42]. MSDB, through its GABAergic and cholinergic projections 

to the hippocampus, modulates the hippocampal theta rhythm and associated learning and 

memory functions during exploratory behavior and REM sleep [42-44]. Additionally, intra-

CA1 infusion of orexin A increased the GABA and glutamate release in the hippocampus

[45]. On the other hand, optogenetic activation of GABA-ergic neurons in hypothalamic

preoptic area (POA) resulted in rapid inhibition of the orexigenic neurons of the LHA [46].

Our present study demonstrates for the first time that GABA-ergic neurotransmission is 

involved in the action of orexin B on memory consolidation since the selective GABA-A 

receptor antagonist, bicuculline blocked fully the foregoing consolidation. 

The adrenergic system is also important in memory functions. The primary source of 

forebrain norepinephrine (NE) is the LC, which is known to be implicated in attention and 

memory [47]. The highest density of orexin-fiber projections and OX1R are also found in 

noradrenergic neurons of the LC [5, 48]. An in vitro study showed that orexin B can increase 

the frequency of action potentials in rat and monkey brain slices containing the LC [34]. The 

hippocampus is one target of LC projections and also involved in learning and memory. It has 

been shown that adrenergic system can modulate different forms of synaptic plasticity in the 

hippocampus [49]. Though the hippocampus has a significant noradrenergic innervation, 

particularly in the dentate gyrus [50], it has only a modest orexigenic input [4, 6] and orexin 

receptor density [11]. In vitro studies revealed that intra-LC infusion of orexin A can produce 

NE-LTP in the dentate gyrus and NE release in the hippocampus in anesthetized rats [29]. 

Amygdala is implicated in the formation of emotional memory and represents another target 

of LC projections, along with a prominent orexigenic innervation and OX1R expression [32]. 

A recently published study demonstrated that the orexin fibers originating in the perifornical 

region of the hypothalamus directly depolarize LC neurons through rapid corelease of orexin 

and glutamate. The orexin activity in the LC, likely via OX1R, can drive NE signaling 

through β-adrenergic receptors in the lateral nucleus of the amygdala to enhance threat 
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memory formation [51]. Our present study demonstrates for the first time that both α- and β-

adrenergic neurotransmission is involved in the action of orexin B on memory consolidation 

since both the non-selective α-adrenergic receptor antagonist, phenoxybenzamine and the 

non-selective β-adrenergic receptor antagonist, propranolol attenuated this consolidation. 

The opioid system is also involved in memory as well as in reward and addiction [52]. 

Previous studies using OX1R and OX2R antagonists revealed that the orexigenic system is 

implicated in morphine withdrawal [53, 54]. On the other hand, investigations with opioid 

receptor antagonists showed that the action of orexin A on memory consolidation [27] or 

feeding [55] is mediated through opioid receptors. Our present study demonstrates for the first 

time that opioid neurotransmission is also involved in the action of orexin B on memory 

consolidation since both the µ and to a lesser extent δ and κ receptor antagonist naloxone 

attenuated this consolidation.

NO is another type of neurotransmitter which is associated with synaptic plasticity, 

learning and memory [56]. There is morphological evidence that NO interferes with orexins. 

NO and orexin-coexpressing neurons were identified in several nuclei of the hypothalamus, 

such as the arcuate, the dorsomedial, the ventromedial and the perifornical nuclei [57]. A prior 

study using nitro-L-arginine, a non-specific nitric oxide synthase (NOS) inhibitor revealed 

that NO participates in mediation of vasopressor/vasodepressor effects of orexin A and orexin 

B [58]. In addition, our previous study showed that NO plays role in the action of orexin A on 

memory consolidation as well [27]. Our present study demonstrates for the first time that 

nitrergic neurotransmission is also involved in the action of orexin B on memory 

consolidation since nitro-L-arginine attenuated the foregoing consolidation.

The mesolimbic dopaminergic system plays role in reward, drug addiction and 

memory [59]. It has been shown that dopaminergic and GABA-ergic neurons of the ventral 

tegmental area (VTA) receives orexigenic afferents from the LHA [60]. In vitro studies 

revealed that dopaminergic neurons of the VTA can be activated by both orexin A and B [61]. 

In vivo studies showed that intra-VTA administration of orexin A or orexin B enhances the 

release of dopamine in the nucleus accumbens (NAc) [62]. Our previous study showed that 

dopamine is involved in the mediation of the orexin A-induced memory consolidation in a 

passive avoidance test in rats [27]. Our present study demonstrates that dopaminergic 

neurotransmission may not be involved in the orexin B-induced consolidation of memory, as 

the D2, D3, D4 dopamine receptor antagonist, haloperidol did not block this consolidation. 

This observation can be interpreted by the differences between orexin A and orexin B in terms 

of mechanism of action in the VTA. On one hand, orexin A can increase the firing rate of 
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VTA GABA-ergic neurons, which may dampen the effect on dopaminergic neurons [63]. On

the other hand, the effect of orexin B is seems to be secondary to a direct control of the local 

glutamatergic neurotransmission in the VTA [64]. 

5. Conclusion

The present study demonstrates that orexin B can improve learning, consolidation of 

memory and retrieval in a passive avoidance paradigm in rats. Our results also show that α-

and β-adrenergic, GABA-ergic, nitrergic, and opiate neurotransmissions are involved in the 

orexin B-induced improvement in memory consolidation. 
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Figure legends

Fig. 1. The effects of different doses of orexin B on passive avoidance learning. The peptide 

was given 30 min before the learning trial. Orexin B (0.5 µg/2 µl, icv), orexin B (1.0 µg/2 µl, 

icv) *p < 0.05 vs. control. The mean and S.E. are shown. Numbers in brackets denote the 

numbers of animals used.

Fig. 2. The effects of different doses of orexin B on the consolidation of passive avoidance 

learning. The peptide was given immediately after the learning trial. Orexin B (0.5 µg/2 µl, 

icv), orexin B (1.0 µg/2 µl, icv) *p < 0.05 vs. control. The mean and S.E. are shown. Numbers 

in brackets denote the numbers of animals used.

Fig. 3. The effects of the selective OX2R antagonist, EMPA on orexin B-induced 

consolidation of passive avoidance learning. Orexin B (1.0 µg/2 µl, icv) *p < 0.05 vs. control, 

EMPA (2.0 µg/2 µl, icv), EMPA (4.0 µg/2 µl, icv), EMPA (8.0 µg/2 µl, icv), OreB 1.0 µg/2 

µl icv + EM 2.0 µg/2 µl icv. Abbreviations: OreB = orexin B, EM = EMPA. The mean and 

S.E. are shown. Numbers in brackets denote the numbers of animals used.

Fig. 4. The effects of different doses of orexin B on the retrieval of passive avoidance 

learning. The peptide was given 30 min before the 24-h testing. Orexin B (0.5 µg/2 µl, icv.), 

orexin B (1.0 µg/2 µl, icv) *p < 0.05 vs. control. The mean and S.E. are shown. Numbers in 

brackets denote the numbers of animals used.

Fig. 5. The effects of the γ-aminobutyric acid subunit A (GABA-A) receptor antagonist, 

bicuculline on orexin B-induced consolidation of passive avoidance learning. Orexin B (1.0 

µg/2 µl, icv) *p < 0.05 vs. control, bicuculline (1 mg/kg, ip), combined (bicuculline 1 mg/kg 

ip + orexin B 1.0 µg/2 µl, icv). The mean and S.E. are shown. Numbers in brackets denote the 

numbers of animals used.

Fig. 6. The effects of the nonselective opioid receptor antagonist, naloxone on orexin B-

induced consolidation of passive avoidance learning. Orexin B (1.0 µg/2 µl, icv) *p < 0.05 vs. 

control, naloxone (0.3 mg/kg, ip), combined (naloxone 0.3 mg/kg ip + orexin B 1.0 µg/2 µl, 

icv). The mean and S.E. are shown. Numbers in brackets denote the numbers of animals used.
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Fig. 7. The effects of the non-specific nitric oxide synthase (NOS) inhibitor, nitro-L-arginine 

on orexin B-induced consolidation of passive avoidance learning. Orexin B (1.0 µg/2 µl, 

i.c.v.) *p < 0.05 vs. control, nitro-L-arginine (10 µg/2 µl, icv), combined (nitro-L-arginine 10 

µg/2 µl icv + orexin B 1.0 µg/2 µl, icv). The mean and S.E. are shown. Numbers in brackets 

denote the numbers of animals used.

Fig. 8. The effects of the nonselective α-adrenergic receptor antagonist, phenoxybenzamine

on orexin B-induced consolidation of passive avoidance learning. Orexin B (1.0 µg/2 µl, 

i.c.v.) *p < 0.05 vs. control, phenoxybenzamine (2 mg/kg, ip), combined (phenoxybenzamine 

2 mg/kg, ip + orexin B 1.0 µg/2 µl, icv). The mean and S.E. are shown. Numbers in brackets 

denote the numbers of animals used.

Fig. 9. The effects of the β-adrenergic receptor antagonist, propranolol on orexin B-induced 

consolidation of passive avoidance learning. Orexin B (1.0 µg/2 µl, i.c.v.) *p < 0.05 vs. 

control, propranolol (10 mg/kg, ip), combined (propranolol 10 mg/kg, ip + orexin B 1.0 µg/2 

µl, icv). The mean and S.E. are shown. Numbers in brackets denote the numbers of animals 

used.

Fig. 10. The effects of the D2, D3, D4 dopamine receptor antagonist, haloperidol on orexin B-

induced consolidation of passive avoidance learning. Orexin B (1.0 µg/2 µl, i.c.v.) *p < 0.05 

vs. control, haloperidol (10 µg/kg, ip), combined (haloperidol 10 µg/kg, ip + orexin B 1.0 

µg/2 µl, icv). The mean and S.E. are shown. Numbers in brackets denote the numbers of 

animals used.


