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Abstract: The pathomechanism of neurodegenerative disorders still poses a challenge to 
neuroscientists, and continuous research is under way with the aim of attaining an 
understanding of the exact background of these devastating diseases. The pathomechanism of 
Alzheimer’s disease (AD) is associated with characteristic neuropathological features such as 
extracellular amyloid-β and intracellular tau deposition. Glutamate excitotoxicity and 
neuroinflammation are also factors that are known to contribute to the neurodegenerative 
process, but a cerebrovascular dysfunction has recently also been implicated in AD. Current 
therapeutic tools offer moderate symptomatic treatment, but fail to reduce disease 
progression. The kynurenine pathway (KP) has been implicated in the development of 
neurodegenerative processes, and alterations in the KP have been demonstrated in both acute 
and chronic neurological disorders. Kynurenines have been suggested to be involved in the 
regulation of neurotransmission and in immunological processes. Targeting the KP therefore 
offers a valuable strategic option for the attenuation of glutamatergic excitotoxicity, and for 
neuroprotection.
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Introduction

Chronic progressive neurodegenerative diseases, such as AD and Parkinson’s disease (PD) 
display an increasing prevalence in parallel with the aging of the population, and have 
therefore generated considerable recent research interest. Despite extensive studies on the 
background of neurodegenerative processes, the exact molecular basis remains still to be 
clarified. Although these devastating diseases have a serious impact on the quality of life of 
the patients, their management is often challenging. Current therapies offer mostly only 
symptomatic relief and no neuroprotective therapy is available. The pathomechanisms of 
different neurodegenerative disorders share a number of common features. Excitotoxicity, 
neuroinflammation, a mitochondrial disturbance and oxidative stress have been implicated in 
both acute and chronic neurological disorders(Zadori et al. 2012). Of these, excitotoxicity is 
of outstanding importance, as glutamate and N-methyl-D-aspartate (NMDA) receptors play a 
pivotal role in physiological processes in the human brain. This review sets out to discuss the 
importance of glutamate excitotoxicity in neurological disorders, with particular focus on AD.
The role of the KP in AD and other neurological diseases, and its modulation as a potential 
therapeutic strategy are also presented.

Glutamate excitotoxicity in the pathomechanism of AD and other neurological disorders

Neurodegenerative processes share some common features, which are not disease-specific. 
While there are still a number of details that await elucidation, there are several common 
mechanisms that are widely accepted; the role of mitochondrial disturbances, excitotoxicity, 
neuroinflammation and oxidative stress appear evident(Sas et al. 2007; Zadori et al. 2012) 
(Fig.1.). Glutamate is of outstanding importance in the normal brain function, but the 
excessive stimulation of excitatory receptors may induce a vicious cascade that finally results 
in neuronal damage; this process is called glutamate excitotoxicity. Glutamate excitotoxicity 
has been implicated in the pathomechanisms of ischaemic stroke, traumatic brain injury, and 
various neurodegenerative disorders (Palmer et al. 1993; Zadori et al. 2012). The extent of 
excitotoxic processes in the pathomechanism of these disorders contuse to be a topic of 
debate, but the beneficial effect of blood glutamate scavenging supports the paradigm that 
excitotoxic injuries contribute at least partly to the neuronal damage. Oxaloacetate, a blood 
glutamate scavenger, has been found to exert beneficial effects in ischaemic conditions 
(Marosi et al. 2009; Nagy et al. 2009; Nagy et al. 2010).

One of the most prevalent neurodegenerative disorders is AD, the most common type of 
dementia (Nestor et al. 2004). The characteristic neuropathological features of AD are the 
extracellular deposition of amyloid-β protein (Aβ) and the intracellular deposition of 
tau(Yankner 1996; Selkoe and Schenk 2003). AD was earlier thought to involve a distinct 
pathology which can be clearly distinguished from vascular dementia (VD). However, in 
recent years the role of a cerebrovascular dysfunction has been linked to the 
neurodegenerative process of AD, and vascular risk factors have attracted growing attention in
connection with AD development and progression. Overlaps between VD and AD have long 
been recognized, but in recent years a complete paradigm shift has begun, and AD has been 
suggested to be a primarily vascular disease (de la Torre 2002). Only a small proportion of 

2



AD cases have a genetic origin; the majority are sporadic. The most important risk factor for 
the development of AD is advancing age, the prevalence and incidence data demonstrating an 
increasing tendency with rising age (Hofman et al. 1991; Katz et al. 2012). However, a 
number of vascular risk factors have been associated with AD, and cerebrovascular 
abnormalities have also been revealed. Vascular risk factors, which are wellknown to be 
associated with cerebrovascular diseases, have also been linked to AD in recent years. 
Hypertension has been associated with an increased risk of stroke, VD and AD (Ruitenberg et 
al. 2001; Haag et al. 2009; Stewart et al. 2009). Untreated hypertension exhibits a correlation 
with hippocampal atrophy and a more pronounced AD pathology (Petrovitch et al. 2000; Korf
et al. 2004). Diabetes, the most common metabolic disorder, poses an increased risk not only 
of stroke, but also of AD, especially in patients who are ApoE ε4 -positive (Ott et al. 1999; 
Peila et al. 2002). One possible mechanism might involve the impaired insulin-degrading 
enzyme activity, which is also a factor in Aβ degradation (Qiu and Folstein 2006).  AD has 
even been suggested to be “the brain type of diabetes mellitus”, as an insulin-resistant state of 
the brain has been demonstrated (Hoyer 1998, 2004). Antibodies to the α1 adrenergic 
receptors have been associated with hypertension and diabetes, and these antibodies have also
been detected in the serum of AD patients (Wenzel et al. 2008; Hempel et al. 2009; 
Karczewski et al. 2012a). The immunization of rats with these antibodies resulted in severe 
cerebrovascular impairments, which may explain the connections of these vascular risk 
factors with AD (Karczewski et al. 2012b).

Cerebral blood flow measurements in patients detected marked differences, which were 
predictive of AD even before the emergence of cognitive symptoms (Ishii et al. 2000; Varma 
et al. 2002). Multiple pathologies have also been detected at the level of the microvasculature 
(Farkas and Luiten 2001). Similarly, an impaired cerebral blood flow and autoregulation 
capacity has been observed in animal models of AD, this impairment proving to be associated 
with oxidative stress (Iadecola et al. 1999; Niwa et al. 2002b; Niwa et al. 2002a). These 
findings link the presence of Aβ to oxidative stress and neuroinflammation. On the other 
hand, focal cerebral hypoperfusion has been demonstrated to result in an altered expression of 
Aβ-degrading enzymes in parallel with enhanced Aβ formation (Hiltunen et al. 2009). These 
data also indicate the existence of chronic hypoperfusion in AD brains, accompanied by an 
elevated level of oxidative stress. Alterations in cerebral blood flow and Aβ synthesis 
conversely influence each other. In VD, neuroimaging and clinical signs of a cerebrovascular 
disease are more evident; a cognitive decline often develops after an acute ischaemic stroke or
after multiple cortical infarcts (Kling et al. 2013). 

As a consequence of a reduced blood flow, a hypoxic state arises in the neurones, and this 
could contribute to the development of an excitotoxic process. An energy impairment as a 
result of a mitochondrial dysfunction and the excessive activation of glutamate receptors 
together initiate downstream metabolic cascades, which finally converge in neuronal damage. 
In the event of an energy impairment, partial membrane depolarization may occur, and in this 
case even physiological glutamate concentrations may be capable of overstimulating the 
NMDA receptors, resulting in an excessive calcium influx into the cells and the production of 
free radicals (Novelli et al. 1988).
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Fig. 1 Converging pathways in neurodegenerative processes

The kynurenine pathway

 Neuroactivekynurenine metabolites

The KP is  the  main  metabolic  route  of  tryptophan (TRP)  degradation  in  mammals;  it  is
responsible for more than 95% of the TRP catabolism in the human brain (Wolf 1974). The
metabolites produced in this metabolic cascade, collectively termed kynurenines, are involved
in a number of physiological processes, including neurotransmission and immune responses
(Nemeth et al. 2005; Vecsei et al. 2013). The KP also involves neurotoxic and neuroprotective
metabolites,  and  alterations  in  their  delicate  balance  have  been  demonstrated  in  multiple
pathological processes. The KP consists of a cascade of enzymatic steps which finally result
in the formation of the essential coenzymes nicotinamide adenine dinucleotide (NAD) and
NAD phosphate(Beadle et al. 1947). The first and rate-limiting step in this metabolic route is
the enzymatic degradation of TRP by either indoleamine 2,3-dioxygenase (IDO) or 

TRP 2,3-dioxygenase (TDO). The central intermediate of the KP is L-kynurenine (L-KYN),
where the metabolic pathway divides into two different branches. L-KYN is transformed to
either the neuroprotective kynurenic acid (KYNA) or 3-hydroxy-L-kynurenine (3-OH-KYN),
which is further metabolized in a sequence of enzymatic steps to yield finally NAD (Fig.2).
KYNA is  synthetized  in  response  to  the  action  of  kynurenine-aminotransferases  (KATs),
which have been identified as having 4 distinct isoforms, localized mainly in the astrocytes
(Okuno et al. 1991;  Guillemin et al. 2001;  Han and Li 2004;  Yu et al. 2006;  Guidetti et al.
2007;  Han  et  al.  2010).  KYNA is  a  broad-spectrum  endogenous  inhibitor  of  ionotropic
glutamate receptors, a non-competitive inhibitor of the α7 nicotinic acetylcholine receptor,
and (according to more recent data) also a ligand for the previously orphan G-protein-coupled
receptor GPR35(Perkins and Stone 1982; Hilmas et al. 2001; Wang et al. 2006). KYNA is a
competitive agonist at the strychnine-insensitive glycine-binding site of the NMDA receptors
(Kessler et al. 1989). Interestingly, on the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid (AMPA) receptors, KYNA exerts a dual action in a concentration-dependent manner: in
low  concentrations  it  can  facilitate,  while  in  higher  concentrations  it  antagonizes  these
receptors (Prescott et al. 2006;  Rozsa et al. 2008). The neuroprotective effect of KYNA is
mainly attributed  to  the  inhibition  of  the  NMDA receptors,  e.g.  by preventing  glutamate
excitotoxicity. However, inhibition of the α7 nicotinic acetylcholine receptors may contribute
to this effect, because these receptors are involved in the regulation of presynaptic glutamate
release (Marchi et al. 2002).

3-OH-KYN  is  produced  by  the  action  of  kynurenine-3-monooxygenase  (KMO).  The
downstream metabolic cascade includes other neuroactive metabolites, such as the free radical
generator 3-hydroxyanthranilic acid (3-HANA) and the NMDA receptor agonist quinolinic
acid (QUIN). 3-OH-KYN, QUIN and 3-HANA all act as potent free radical generators, while
QUIN also displays NMDA agonistic properties (Stone and Perkins 1981; de Carvalho et al.
1996).  Furthermore,  QUIN induces  lipid  peroxidation,  and results  in  an  elevation  of  the
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extracellular glutamate level, thereby enhancing the excitotoxic process (Connick and Stone
1988; Rios and Santamaria 1991; Tavares et al. 2002).

Fig. 2 The kynurenine pathway of the tryptophan metabolism

 The role of kynurenines in neurological disorders 

Alterations in the KP have been demonstrated in a number of neurological disorders; the most
important data are summarized in Table 1.  

Table 1. Alterations in the kynurenine pathway in neurodegenerative disorders

Parkinson’s disease

 decreased KYNA and increased 3-
OH-KYN levels in the putamen and 
the substantianigra pars 
compacta(Ogawa et al. 1992)

 elevated IDO level in the serum and 
cerebrospinal fluid (CSF) (Widner et 
al. 2002)

 MPTP treatment decreases KAT-
expression in mice (Knyihar-Csillik 
et al. 2004)

Huntington’s disease

 elevated levels of  QUIN and 3-OH-
KYN in the striatum at early stages 
(Guidetti et al. 2004)

 increased 3-OH-KYN levels (Pearson
and Reynolds 1992)

 decreased level of KYNA in the 
striatum and cortex (Beal et al. 1990; 
Beal et al. 1992)

 decreased activity of KAT in the 
striatum (Beal et al. 1990; Beal et al. 
1992)

Amyotrophic lateral sclerosis

 elevated L-KYN and QUIN levels in 
the CSF and serum, increased IDO 
activity in the CSF (Chen et al. 2010)

 elevated level of KYNA in the CSF, 
decreased level of KYNA in the 
serum in advanced stage of the 
disease (Ilzecka et al. 2003)
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Imbalances in the KP have been demonstrated not only in AD, but also in other disorders in 
which there is a cognitive decline, and influencing this delicate balance may be of therapeutic 
value (Majlath et al. 2013). Changes in kynurenine metabolites have additionally been 
suggested to correlate with the infarct volume, the mortality of stroke patients and the post-
stroke cognitive impairment (Darlington et al. 2007; Gold et al. 2011). In another study, serum
kynurenine levels and inflammatory markers were measured in patients undergoing cardiac 
surgery; the results indicated an association of several kynurenine metabolite levels with the 
post-surgical cognitive performance (Forrest et al. 2011). KP metabolites have also been 
implicated in vascular cognitive impairment (Oxenkrug 2007). As concerns AD, a substantial 
amount of evidence demonstrates an altered TRP metabolism. In the brain of pathologically 
confirmed AD patients, decreased levels of L-KYN and 3-OH-KYN have been detected, 
while the level of KYNA in the striatum and caudate nucleus was significantly elevated. In 
parallel with the increased KYNA level, a higher KAT-I activity was measured (Baran et al. 
1999). From the aspect of the peripheral kynurenine metabolism, decreased KYNA levels 
were measured in the serum, red blood cells and CSF of AD patients, (Heyes et al. 1992; 
Hartai et al. 2007). Additionally, enhanced IDO activity was demonstrated in the serum of AD
patients, as reflected by an increased KYN/TRP ratio, this elevation exhibiting inverse 
correlation with the rate of cognitive decline (Widner et al. 1999, 2000). IDO activation was 
also correlated with several immune markers in the blood, thereby indicating an immune 
activation, which lends further support to the role of neuroinflammation in the 
pathomechanism of AD. An increased IDO activity was also confirmed by 
immunohistochemistry in the hippocampus of AD patients, together with an enhanced QUIN 
immunoreactivity(Guillemin et al. 2005). Interestingly, Aβ 1-42 induced IDO expression and 
QUIN production in human macrophages and microglia (Guillemin et al. 2003). A further 
finding confirming the role of QUIN in the pathomechanism of AD was the fact that QUIN 
was not only co-localized with hyperphosphorylated tau in the AD cortex, but also capable of 
inducing tau phosphorylation in primary neurone cultures (Rahman et al. 2009). 

Future neuroprotective strategies in neurodegenerative diseases by targeting the KP

Attenuation of glutamate excitototoxicity appears to be of  promise as a therapeutic 
intervention for various neurological disorders. However, one potential disadvantage of 
NMDA antagonists might be the development of intolerable side-effects as a result of 
complete glutamate antagonism. Several NMDA antagonists which had given promising 
preclinical results failed in clinical trials. Among the reasons for these failures were the 
presence of side-effects or the lack of efficacy. These results, however, promoted a better 
understanding of the importance of the NMDA receptors in the normal brain functioning. 
Glutamatergic neurotransmission is crucial in maintaining the physiological brain function, 
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and cognitive processes and memory are of outstanding importance among these functions. 
However, in pathological cases, where overactivation of excitatory receptors is present, 
NMDA antagonism may be beneficial by restoring the physiological glutamatergic balance, 
and preventing the excitotoxic neuronal damage without impairing the normal functions 
(Parsons et al. 2007). Memantine was the first NMDA antagonist drug authorized for the 
therapy of AD (Lipton 2004). At present, no other NMDA antagonist is available in clinical 
practice, although there is still a great need for effective neuroprotective therapies.

The above experimental data suggest that interventions through the KP may offer novel 
therapeutic strategies with the aim of neuroprotection. Enhancement of the neuroprotective 
effects of KYNA or attenuation of the levels of neurotoxic metabolites might be a reasonable 
strategy. Unfortunately, KYNA crosses the blood-brain barrier (BBB) only poorly, and its 
systemic administration is therefore not feasible (Fukui et al. 1991). A possible approach may 
be the use of prodrugs which can penetrate the BBB or the application of synthetic KYNA 
analogues (Stone 2000). A third possible intervention might be modulation of the enzymatic 
machinery of the KP, to achieve a metabolic shift towards production of the neuroprotective 
KYNA and decreased synthesis of the neurotoxic metabolites. All these attempts have already
been tested in multiple preclinical models of different diseases, including PD, HD, cerebral 
ischaemia and migraine (reviewed by Vecsei et al. 2013) . There is evidence of the beneficial 
effects of these methods in AD.  L-KYN administered together with probenecid, an inhibitor 
of the transport of  KYNA in the brain, prevented the morphological alteration and cellular 
damage induced by soluble Aβ. Moreover, this treatment resulted in a significant 
improvement of the spatial memory (Carrillo-Mora et al. 2010). 4-Chlorokynurenine, a 
halogenated derivative of L-KYN, also prevented neuronal damage in a toxic animal model 
(Wu et al. 2000). A synthetic KMO inhibitor has been demonstrated to exert beneficial effects 
in animal models of AD and HD,  not only by preventing neuronal damage, but (in the AD 
model) also preventing spatial memory deficits (Zwilling et al. 2011). The favourable results 
in these studies can be attributed mainly to the prevention of glutamate excitotoxicity, but 
other possible mechanisms may also be involved. In an in vitro study, KYNA increased the 
neuronal cell survival; this effect was associated with the induction of the gene expression and
activity of neprilysin, an enzyme participating in the degradation of Aβ (Klein et al. 2013). 
These data suggest the possibility that KYNA may exert its neuroprotective effect, at least 
partly, by inducing amyloid degradation. 

A further important aspect of KP modulation that must be taken into consideration is the 
development of potential side-effects because of the NMDA antagonism. Another synthetic 
KYNA analogue, N-(2-N,N-dimethylaminoethyl)-4-oxo-1H-quinoline-2-carboxamide 
hydrochloride, whichexerted neuroprotective effects in animal models of both cerebral 
ischaemia and HD, was therefore tested in behavioural studies (Gellert et al. 2011; Zadori et 
al. 2011). The results clearly demonstrated, that in the dose in which it exerted its 
neuroprotective effect, this novel KYNA amide did not induce any significant systemic side-
effect (Nagy et al. 2011; Gellert et al. 2012). Furthermore, in the same dosage, KYNA and its 
derivative did not reduce, but rather increased the induceability of long-term potentiation. 
This result might indicate that KYNA and its derivative may exert their neuroprotective 
effects by preferentially inhibiting extrasynaptic NMDA and α7 nicotinic acetylcholine 
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receptors, while sparing the synaptic NMDA-mediated currents (Demeter et al. 2013). Further
investigations involving AD animal models are under way, but in the light of the results 
already available, further investigations are definitely justified.

Conclusion

Glutamate excitotoxicity mediated by NMDA receptors is one of the most important factors in
the development of neurodegenerative disorders, the pharmacological modulation of this 
process might therefore offer a valuable therapeutic strategy. Neuroprotective therapies are 
currently not available, and even the symptomatic treatment of these diseases is often 
challenging. Alterations of the KP have been clearly demonstrated in both acute and chronic 
neurological disorders, and imbalances between its neurotoxic and neuroprotective 
components may contribute to the pathomechanism of these diseases. Further investigations 
are needed in order to attain a better understanding of the possibilities of modulating the KP 
with the aim of developing novel therapeutic tools for neurodegenerative diseases. 
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