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Abstract. The impairment of glutamatergic neurotransmission plays an important role in the development of Alzheimer’s
disease (AD). The pathological process, which involves the production of amyloid-� peptides and hyperphosphorylated tau
proteins, spreads over well-delineated neuroanatomical circuits. The gradual deterioration of proper synaptic functioning (via
GluN2A-containing N-methyl-D-aspartate receptors, NMDARs) and the development of excitotoxicity (via GluN2B-containing
NMDARs) in these structures both accompany the disease pathogenesis. Although one of the most important therapeutic targets
would be glutamate excitotoxicity, the application of conventional anti-glutamatergic agents could result in further deterioration
of synaptic transmission and intolerable side-effects. With regard to NMDAR antagonists with tolerable side-effects, ion channel
blockers with low affinity, glycine site agents, and specific antagonists of polyamine site and GluN2B subunit may come into play.
However, in the mirror of experimental data, only the application of ion channel blockers with pronounced voltage dependency,
low affinity, and rapid unblocking kinetics (e.g., memantine) and specific antagonists of the GluN2B subunit (e.g., ifenprodil and
certain kynurenic acid amides) resulted in desirable symptom amelioration. Therefore we propose that these kinds of chemical
agents may have therapeutic potential for present and future drug development.
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INTRODUCTION25

Alzheimer’s disease (AD) is a progressive neurode-26

generative disorder, the main clinical feature of which27

is dementia [1, 2]. Indeed, AD is the most common28

type among dementia syndromes [3] and is responsible29

for 60–80% of the cases [4], leading to a considerable30
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socioeconomic burden. Although clinical diagnosis 31

can be determined during the disease course in most 32

cases, currently autopsy is necessary for a definite diag- 33

nosis. The main pathological hallmark of AD is the 34

presence of neurofibrillary tangles (NFTs) and senile 35

plaques in specific brain areas [5]. With regard to 36

the involvement of dysfunctional neurotransmission 37

in disease pathogenesis, certain cholinergic and glu- 38

tamatergic systems are the most affected [6, 7]. 39

The aim of this short review is to highlight aspects of 40

glutamatergic dysfunction in AD and to discuss some 41

possibilities of pharmaceutical interventions by target- 42

ing the glutamatergic system.
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ALTERATIONS IN GLUTAMATERGIC43

SIGNALING IN ALZHEIMER’S DISEASE:44

PATHOLOGICAL BASIS45

With regard to the sensitivity and specificity for the46

diagnosis of AD, the Braak staging system [5] gives47

the best accuracy (79%) among the neuropatholog-48

ical criteria systems [8]. This system classifies AD49

into stages mainly by the temporal evolution of NFTs50

(composed of intracellular aggregates of hyperphos-51

phorylated tau protein), but it also takes into account52

the loci of extracellular amyloid-� (A�) deposits in the53

brain. The system distinguishes between the following54

stages: transentorhinal/entorhinal (stage I, II), limbic55

(stage III, IV), and neocortical (stage V, VI). This clas-56

sification shows a good correlation with the severity of57

dementia [9], though originally the pathological stages58

were established by Braak irrespective of the clini-59

cal stage of the dementia. Certain neuropathological60

investigations have special significance in the assess-61

ment of early stages of AD [10]. The most important62

ones include the assessment of NFTs in the neurons of63

the second layer of the entorhinal cortex in the slices64

of the inferior temporal lobe. The entorhinal cortex65

receives converging polysynaptic glutamatergic inputs66

from the multimodal association cortices and limbic67

areas including the hippocampal formation, while it68

projects into the hippocampal formation and back to69

the association cortices [11–13]. One of the main effer-70

ent glutamatergic projections of the entorhinal cortex71

is the perforant pathway, which predominantly orig-72

inates from the second layer and serves as the main73

excitatory input of the hippocampal formation. The74

fourth layer of the entorhinal cortex in turn receives75

excitatory input from the hippocampal formation. A76

significant decrease was observed in the neuronal num-77

ber of the fourth and especially the second layers78

of the entorhinal cortex in clinically very mild AD79

[14]. Another study likewise demonstrated a consid-80

erable decrease in neuronal number and volume of81

the entorhinal cortex (especially the second layer) and82

those of the cornu ammonis (CA)1 region of the hip-83

pocampus in preclinical AD cases [15]. It is important84

to mention that the presence of NFTs can also be85

observed in these early stages in the CA1-subiculum86

part of the hippocampal formation and in the perirhinal87

cortex, inferior temporal gyrus, amygdala, posterior88

part of the parahippocampal gyrus, the cholinergic89

basal forebrain and in the dorsal raphe nuclei, but in90

a lesser extent compared to the second layer of the91

entorhinal cortex [16]. In the next stages, almost all92

the limbic structures, notably the hippocampal forma-93

tion (consisting of the dentate gyrus, the hippocampus 94

proper, and the subiculum) and the amygdala become 95

considerably damaged [17] in addition to the more 96

expressed involvement of the previously described 97

brain structures. As partially mentioned above, the 98

main glutamatergic input of the hippocampal forma- 99

tion comes from the second (toward the dentate gyrus) 100

and the third (toward the subiculum and CA1 sector 101

of the hippocampus proper) layers of the entorhinal 102

cortex via the perforant and temporo-alvear pathways 103

[18]. Scheff et al. [19] hypothesized that synaptic loss 104

in the outer molecular layer (OML) of the dentate 105

gyrus would be responsible for the transition from 106

mild cognitive impairment to early AD. Total synaptic 107

counts in the OML had a significant negative cor- 108

relation with NFT density in the entorhinal cortex. 109

Although there was a negative correlation between 110

the individual’s Braak score and total synaptic num- 111

ber in the OML, this association was not significant 112

and furthermore, this study did not find significant cor- 113

relation of Braak staging with the scores of any of 114

the applied psychometric tests. However, a high pos- 115

itive correlation of total synaptic number in the OML 116

with the values of tests of cognitive functions such 117

as the Mini-Mental State Examination and delayed 118

memory recall (one of the most sensitive measures of 119

hippocampal function) was demonstrated, which sug- 120

gests that synaptic loss would be one of the strongest 121

predictive factors for cognitive decline. As a part of 122

the trisynaptic circuit, the information is transmitted 123

further from the dentate gyrus via intrahippocampal 124

association pathways (via mossy fibers toward the CA3 125

sector of the hippocampus, and then via Schaffer col- 126

laterals toward the CA1 sector) [20]. The synaptic 127

loss can also be observed in the CA1 sector of the 128

hippocampus in mild AD cases [21]. The pyramidal 129

cells of the CA1 sector predominantly innervate the 130

subiculum, which projects to the pre/parasubiculum 131

(parts of the subicular complex which also receives 132

neocortical inputs likewise the entorhinal cortex), the 133

amygdala, the fourth layer of the entorhinal cortex, 134

the anterior and midline thalamic and mammillary 135

nuclei (via the fornix) [22]. Regarding further parts of 136

the Papez circuit, the information processes from the 137

mammillary nuclei to the anterior thalamic nuclei (via 138

the mammilothalamic tract) and further to the cingu- 139

lated gyrus (via the anterior thalamic radiation) and to 140

the presubiculum (via the cingulum), which projects 141

to the fourth layer of the entorhinal cortex [23]. The 142

pre/parasubiculum also send minor projections to the 143

dentate gyrus [24]. It is important to mention that parts 144

of the hippocampal formation in the two hemispheres 145
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are strongly interconnected via commissural fibers.146

The amygdaloid complex, which consists of distinct147

nuclei, receives inputs from multiple brain regions148

via several kinds of transmitter systems, including149

glutamatergic pathways [25]. The major sources of150

sensory and polymodal information to the amygdala151

are certain parts of the cerebral cortex, including the152

association and prefrontal cortices [26]. The amyg-153

dala also forms reciprocal and strong connections with154

areas related to long-term declarative memory system,155

including the perirhinal and entorhinal cortices and the156

hippocampal formation [27]. Furthermore, the amyg-157

daloid complex has widespread projections to certain158

cortical, subcortical, and brainstem structures [25]. The159

key feature of advanced stages of AD (stage V-VI)160

is the occurrence of severe destruction of neocortical161

association areas [28, 29]. Although NFT pathology162

only becomes expressed in advanced stages of AD in163

neocortical areas, the alteration in the level of some164

molecular markers of synaptic dysfunctioning can be165

observed even in early stages of AD. Accordingly,166

vesicular glutamate transporter (VGLUT)1 expression167

is found to be decreased in the prefrontal, parietal168

and occipital and inferior temporal cortices, while it169

was unaltered in the lateral temporal cortex [30–32].170

With regard to the murine models of AD, a signif-171

icant reduction of VGLUT1 was observed in both172

the frontal cortex and the hippocampus [33, 34]. The173

expression of VGLUT2 and synaptophysin was altered174

only in the prefrontal cortex in human AD cases [30].175

Loss of VGLUT1 and VGLUT2 in the prefrontal176

cortex correlated with cognitive status even at early177

phases of cognitive decline [30]. Although the typi-178

cal spreading of neuropathological alterations over the179

above-mentioned glutamatergic structures with strong180

connections (Fig. 1) can be well observed in most181

cases, limbic-predominant and hippocampal-sparing182

subtypes of AD cases were also reported [35].183

ALTERATIONS IN GLUTAMATERGIC184

SIGNALING IN ALZHEIMER’S DISEASE:185

MOLECULAR BASIS186

The main culprits responsible for the discon-187

nection of the previously delineated glutamatergic188

networks would be the A� peptide and the tau pro-189

tein [36]. A�1-42 aggregates are capable of inducing190

tau hyperphosphorylation [36] and promote in vitro191

tau aggregation in a dose-dependent manner [37].192

In addition to NFTs, soluble tau also would have193

neurotoxic properties [38]. A� can influence gluta-194

matergic neurotransmission in several ways. Although 195

under physiological concentrations, endogenous A� 196

is necessary for proper neurotransmitter release [39], 197

in excess it weakens synaptic transmission affecting 198

the synaptic vesicle pools [40]. Accordingly, A� is 199

co-localized in glutamatergic boutons immunoreac- 200

tive for VGLUT1 and VGLUT2 in postmortem AD 201

brains [41]. Furthermore, soluble A� oligomers induce 202

the disruption of dendritic spines, resulting in severe 203

neuropil damage [42]. The degeneration of synapses 204

and dendritic spines is one of the earliest feature of 205

AD [43]. Glutamatergic synapses contain �-amino- 206

3-hydroxy-5-methyl-4-isoxazolepropionic acid recep- 207

tors (AMPARs) and N-methyl-D-aspartate receptors 208

(NMDARs) localized on dendritic spines. The basal 209

synaptic transmission is mainly mediated by AMPARs. 210

However, in view of receptor dysfunction in AD, 211

the NMDAR would be the major site of A� action, 212

and in turn, NMDAR activation enhances A� pro- 213

duction [44]. A conventional NMDAR is composed 214

of two glycine or D-serine-binding GluN1 and 2 215

glutamate-binding GluN2 (A-D) subunits, forming 216

a heterotetramer. The GluN1 subunits form the ion 217

channel, while the GluN2 subunits have more of a 218

regulatory and refining role. It has been shown that 219

the GluN2B subunit-containing NMDARs predomi- 220

nate at the extrasynaptic site [45], which preferential 221

localization becomes more predominant by the phos- 222

phorylation at Tyr1336 [46]. Oligomeric A� promotes 223

Fyn kinase activation via binding to the post-synaptic 224

prion protein (PrPC), resulting in the increased phos- 225

phorylation of the GluN2B subunits at Tyr1472 [47]. 226

This activation induces altered NMDAR localiza- 227

tion with destabilization of dendritic spines and the 228

loss of surface NMDARs. It is important to mention 229

that several other receptors are regulated by PrPC, 230

including metabotropic glutamate receptor (mGluR) 231

1 and 5 [48]. The available data suggest that the 232

activation of NMDARs at the synaptic site promotes 233

neuronal survival, while activation at the extrasynap- 234

tic site mediates neurotoxic effects [49]. However, 235

some recent findings suggest that the simultaneous 236

activation of synaptic NMDARs are also necessary 237

for the initiation of cell death program [50]. So 238

in brief, the inactivation of glutamatergic synap- 239

tic transmission and the activation of that at the 240

extrasynaptic sites would both accompany the path- 241

omechanism of AD. Oligomeric A� impairs long-term 242

potentiation (LTP; a form of synaptic strengthening 243

following brief, high frequency stimulation [51]) and 244

enhances long-term depression (LTD; a form of synap- 245

tic weakening following low frequency stimulation 246
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Fig. 1. The schematic depiction of the predominant connections between the affected glutamatergic brain areas in Alzheimer’s disease. (CA,
cornu ammonis).

or synaptic inactivity [52]) and the depotentiation247

of LTP, thereby causing synaptic dysfunctioning248

[53, 54]. Oligomeric A�-induced internalization of249

synaptic AMPARs and NMDARs [55, 56] and non-250

apoptotic caspase activation [57] both accompany LTD251

enhancement. Although several forms of synaptic plas-252

ticity depend on NMDAR-driven calcium flux [58],253

some recent data indicate that A�-mediated synap-254

tic AMPAR depression requires NMDAR activation255

in a metabotropic manner, i.e., without ion flow via256

the NMDAR [59]. NMDARs also have an important257

role in spontaneous glutamate release-induced depres-258

sion of evoked neurotransmission, thereby influencing259

synaptic efficacy as well [60]. In addition to the demon-260

strated alteration of glutamatergic neurotransmission261

via postsynaptic and extrasynaptic NMDARs in AD,262

recent experimental data provide increasing evidence263

of the involvement of presynaptic NMDARs in the264

enhancement of timing-dependent LTD, resulting in265

impaired memory functions, which phenomenon may266

have implications in the development of cognitive267

decrement in AD [61–63]. With regard to caspase-268

3 activation, the increased activity of the pyramidal269

neurons of the entorhinal cortex, the subiculum, and270

the CA1-3 sector of the hippocampus was found in271

early stages of AD [64]. The second layer of the272

entorhinal cortex showed the highest activity. A� accu-273

mulation activates NMDARs at early stages of AD274

[65], and in vitro studies suggest that this activation275

might be mediated by GluN2B-containing NMDARs276

[66]. It has been also demonstrated that NMDARs 277

are connected to neuronal nitric oxide synthase by a 278

scaffolding protein PSD-95 (postsynaptic density pro- 279

tein of molecular weight 95 kDa), which binds to the 280

GluN2B subunit of the NMDAR [67]. Thus, PSD- 281

95 would have an important role in the evocation of 282

downstream excitotoxic events mediated by GluN2B 283

subunit-containing NMDARs via the production of 284

nitric oxide in an excessive amount [68]. Recent data 285

indicate that the activation of NMDARs by A�1-42 may 286

be secondary to its binding to postsynaptic anchoring 287

proteins such as PSD-95 [42]. Extrasynatptic NMDAR 288

activation triggers the increased production of A� due 289

to the shift of amyloid �-protein precursor (A�PP) pro- 290

duction from A�PP695 to Kunitz protease inhibitory 291

domain-containing isoforms with higher amyloido- 292

genic potential [69]. This kind of positive feedback 293

leads to the formation of a vicious circle [70]. GluN2B- 294

mediated neurotransmission also seems to be involved 295

in tau-induced neurotoxicity [71]. Tau phosphorylation 296

causes tau mislocalization and subsequent synaptic 297

impairment as phosphorylated tau can accumulate in 298

dendritic spines, where it may affect the synaptic traf- 299

ficking and/or anchoring of glutamate receptors [72]. 300

The interaction of tau with fyn targets fyn to dendritic 301

spines, where it can exert the above-mentioned phos- 302

phorylation of GluN2B subunit of NMDAR, thereby 303

enhancing the excitotoxic process [73]. In addition to 304

its neuronal effects, A� also downregulates glutamate 305

uptake capacity of astrocytes and thereby induces a 306
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dysfunctional extracellular glutamate clearance [74].307

Besides the elevated levels of glutamate in the extra-308

cellular space, the presence of an energy impairment,309

as a consequence of mitochondrial dysfunction and310

oxidative stress, would be another causative factor in311

glutamate excitotoxicity, which leads to a partial mem-312

brane depolarization resulting in relief of the Mg2+
313

blockade of the NMDAR channel and calcium over-314

load [75].315

THERAPEUTIC APPROACHES316

TARGETING THE GLUTAMATERGIC317

NEUROTRANSMISSION SYSTEM WITH A318

SPECIAL VIEW OF NMDA RECEPTORS IN319

ALZHEIMER’S DISEASE: PITFALLS AND320

POSSIBILITIES321

The application of agents that completely block322

NMDAR activity has limited usefulness due to severe323

clinical side-effects such as hallucinations, agitation,324

memory impairment, catatonia, nausea, vomiting, a325

peripheral sensory disturbance, and sympathomimetic326

effects such as increased blood pressure [76, 77].327

In order to achieve neuroprotection by targeting the328

NMDARs in AD, the best therapeutic strategy could329

be the normalization of synaptic GluN1/GluN2A activ-330

ity and the abolishment of excitotoxicity mediated331

by extrasynaptic GluN1/GluN2B subunits. In view of332

NMDAR antagonists with tolerable side-effects, ion333

channel blockers with lower affinity, glycine site agents334

as well as specific antagonists of the polyamine site335

or the GluN2B subunit may come into play (Fig. 2)336

[78]. Memantine (3,5-dimethyladamantan-1-amine) is337

a low affinity open channel blocker, which prefer-338

entially antagonizes excessively activated NMDARs339

without affecting physiological NMDAR activity [79].340

Accordingly, this substance has recently been demon-341

strated to selectively target mainly GluN2B-containing342

extrasynaptic NMDARs [80], i.e., it is three times343

more potent in the inhibition of calcium influx via344

GluN1/GluN2B than via GluN1/GluN2A subunit-345

containing NMDARs [81]. Furthermore, memantine346

concentration-dependently inhibited the expression of347

Kunitz protease inhibitory domain-containing A�PP348

isoforms as well as neuronal production and release349

of A� [69, 82]. Accordingly, memantine is a widely350

applied medicament in the treatment of moderate-351

advanced stages of AD with beneficial effects as352

regards language, memory, praxis, and communication353

dysfunction as well as the activities of daily living [83].354

Although memantine has some potential side-effects355

such as somnolence, weight gain, confusion, hyper- 356

tension, nervous system disorders, and falling [84], to 357

date this is the only commercially available NMDAR 358

antagonist in the treatment of AD. In summary, the 359

good effect/side-effect profile would be explained by 360

its pronounced voltage dependency, low affinity, and 361

rapid unblocking kinetics, properties which make the 362

restoration of the desired signal-to-noise ratio in glu- 363

tamatergic neurotransmission available [85]. 364

Kynurenic acid (KYNA; produced by kynurenine 365

aminotransferases, KATs), a side-product of the main 366

pathway of the tryptophan metabolism, can influ- 367

ence glutamatergic neurotransmission at several levels 368

[86], and exerted neuroprotective effects in several 369

paradigms [86–90]. On the one hand, KYNA can exert 370

wide-spectrum endogenous antagonism of ionotropic 371

excitatory amino acid receptors [91], mainly target- 372

ing the strychnine-insensitive glycine-binding site on 373

the GluN1 subunit of the NMDA receptor [92]. This 374

action requires relatively high (∼10–20 �M) concen- 375

trations of KYNA under physiological conditions [93]; 376

the basal extracellular concentration of KYNA in rats 377

(15–23 nM) [94, 95] is far below the required level 378

to directly interfere with glutamate receptor functions. 379

Accordingly, only excessive elevation of the KYNA 380

level could be accompanied by adverse effects in rats, 381

such as reduced exploratory activity, ataxia, stereotypy, 382

sleeping, and respiratory depression, while there was 383

only a slight effect on the learning ability [96]. How- 384

ever, human postmortem analyses revealed elevated 385

levels of KYNA in the striatum and hippocampus of 386

AD patients [97], alteration of which is suggested to 387

accompany to the cognitive dysfunction in AD rather 388

than to exert a compensatory protective role. Accord- 389

ingly, the achievement of lowering brain KYNA levels 390

by knocking out one of its producing enzyme (KAT 391

II) resulted in the improvement of cognitive functions 392

in mice [98]. With regard to the mechanisms of influ- 393

encing glutamatergic transmission, on the other hand, 394

KYNA non-competitively blocks the alpha7-nicotinic 395

acetylcholine receptors [99], thereby inhibiting glu- 396

tamate release at the presynatptic site [100]. This 397

blockade can be effective at high nanomolar con- 398

centrations (IC50 = ∼7 �M), and can also influence 399

hippocampus-dependent cognitive functions [101]. In 400

addition to the multiplex receptor antagonism, recent 401

studies showed that KYNA is capable of facilitating 402

AMPA receptor responses in nanomolar concentra- 403

tions [102, 103]. The significance of this phenomenon 404

is not really known yet. 405

The selective inhibition of GluN2B subunit- 406

containing NMDARs could be another successful 407
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Fig. 2. Some possibilities of influencing glutamatergic dysfunctioning in Alzheimer’s disease. (�7-nAChR, alpha7-nicotinic acetylcholine
receptors; KYNA, kynurenic acid; NMDAR, N-methyl-D-aspartate receptor; �, glutamate, the thickness of the lines represents the extent of
inhibition, while dashed lines refers to possible mechanism of action).

strategy in the amelioration of neurodegenerative408

processes [104]. Ifenprodil (�-(4-hydroxyphenyl)-�-409

methyl-4-benzyl-1-piperidineethanol) is a synthetic410

negative allosteric modulator of such of receptors,411

with relatively high affinity (IC50 = ∼150 nM) [105].412

Ifenprodil binding seems to interact with polyamine413

binding in a negative allosteric manner, i.e., it can414

inhibit the potentiation of NMDAR currents evoked415

by certain polyamines [106, 107]. It has a consid-416

erably good side-effect profile: only mouth dryness,417

nausea, headache, and palpitations were observed.418

Accordingly, several derivatives, including Ro 25-419

6981 ([R-(R∗,S∗)]-�-(4-hydroxyphenyl)-�-methyl-4-420

benzyl-1-piperidinepropanol), have been synthesized421

with the aim of presenting lead compounds in pharma-422

ceutical development in the field of neurodegenerative423

disorders [104]. With regard to AD, A�-induced endo-424

plasmic reticulum and oxidative stress was prevented425

by ifenprodil [108]. Furthermore, this substance and426

Ro 25-6981 also prevented the A�-mediated inhibi-427

tion of LTP in rodent hippocampal slices [109–112].428

Indeed, Ro 25-6981 abolished LTD enhancement and429

learning impairment in rats as well [113]. Evotect’s 430

EVT 101, another GluN2B antagonist which has been 431

shown to penetrate into the human brain, was well 432

tolerated in a double-blind, 4-week phase Ib study 433

(http://www.evotec.com). 434

A possible pharmaceutical modification of KYNA 435

is amidation at the carboxyl moiety [114, 115]. 436

The resulting KYNA amides may be of special 437

interest since they have been shown to preferen- 438

tially act on GluN2B subunit-containing extrasynaptic 439

NMDARs [116]. This feature may also offer the 440

opportunity to establish an extracellular concen- 441

tration that is capable of inhibiting the tonic 442

extrasynaptic NMDAR currents without impairing 443

synaptic glutamatergic neurotransmission. Accord- 444

ingly, one of the KYNA amide compounds synthesized 445

by our group, N-(2-N,N-dimethylaminoethyl)-4-oxo- 446

1H-quinoline-2-carboxamide hydrochloride exerted 447

protective effects both in the four-vessel occlu- 448

sion model of cerebral ischemia (rats; [117]) and 449

in the N171-82Q transgenic mouse model of HD 450

[118]. 451

http://www.evotec.com
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Finally, in addition to directly influencing452

NMDARs, it is important to mention that there453

are some indirect regulators of NMDAR function-454

ing, targeting of which can be used as alternative455

therapeutic approaches in the amelioration of gluta-456

matergic dysfunction in AD. These targets include457

some metabotropic glutamatergic receptors [119] and458

certain adenosine receptors [120, 121].459

CONCLUSION460

Although more and more details are being revealed461

regarding the pathomechanism of AD, the recent462

therapeutic strategies are restricted only to few463

pharmaceutical agents. The glutamatergic system is464

presumed to be the major altered neurotransmitter465

system in AD; therefore, there is a great need for466

the development of pharmakons targeting this system467

with acceptable side-effect profile. From this respect,468

ion channel blockers with lower affinity as well as469

GluN2B subunit specific antagonists might be the470

most promising candidates for future AD therapy.471

Although the present short review focused on the pos-472

sibilities of therapeutic amelioration via targeting the473

glutamatergic neurotransmission system with special474

attention to NMDARs, it should be noted that achiev-475

ing neuroprotection in AD—especially in terms of476

‘synaptoprotection’—is a complex issue, with phar-477

macological targets and approaches we could not detail478

here, but have already been comprehensively discussed479

by others [122, 123].480

ACKNOWLEDGMENTS481

This work was supported by the projects OTKA (K482

75628), KTIA NAP 13 – Hungarian National Brain483
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