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Abstract 

As a consequence of an ischaemic episode, the energy production is disturbed, leading to 

neuronal cell death. Despite intensive research, the quest for promising neuroprotective drugs 

has largely failed, not only because of ineffectiveness, but also because of serious side-effects 

and dosing difficulties. Acetyl-L-carnitine (ALC) is an essential nutrient which plays a key 

role in the energy metabolism by transporting fatty acids into the mitochondria for β-

oxidation. It is an endogenous compound and can be used at high dose without toxicity in 

research into ischaemia. Its neuroprotective properties have been reported in many studies, 

but its potential action on long-term potentiation (LTP) and dendritic spine density has not 

been described to date. The aim of the present study was an evaluation of the possible 

protective effect of ALC after the ischaemic insult inflicted on the hippocampal synaptic 

plasticity in a 2-vessel occlusion (2VO) model in rat. For electrophysiological measurements, 

LTP was tested on hippocampal slices. The Golgi-Cox staining technique was used to 

determine the spine density. 2VO resulted in a decreased, unstable LTP and a significant loss 

of dendritic spines. ALC administered after 2VO was not protective, but as pretreatment prior 

to 2VO it restored the LTP nearly to the control level. This finding paralleled the histological 

analysis: ALC pretreatment resulted in the reappearance of dendritic spines on the CA1 

pyramidal cells. Our data demonstrate that ALC administration can restore the hippocampal 

function and the spine density. ALC probably acts by enhancing the aerobic metabolic 

pathway, which is inhibited during and following the ischaemic attack. 

Keywords: brain ischaemia, hippocampus, acetyl-L-carnitine, LTP, dendritic spine 
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1. Introduction 

Although ischaemic stroke is a leading cause of death (Lozano et al., 2012), there is at present 

hardly any effective therapy for the patients. The application of intravenous recombinant 

tissue plasminogen activator, which is the only neuroprotective intervention against stroke 

(Adams et al., 2007), is limited because victims do not meet the entry criteria of pivotal 

clinical trials (because of severe hypertension, an age above 80, a history of previous stroke, 

etc.) or they often reach the Emergency Department too late (Alderazi et al., 2012). Ischaemic 

stroke also results in lifelong disability. which is due to the neuronal cell death, a consequence 

of the excitotoxicity, the mitochondrial dysfunction and the disturbed energy production 

(Beal, 1992). 

The quest for neuroprotective drugs for humans has largely been a failure, not only because of 

ineffectiveness, but also because of the severe side-effects or the dosing difficulties. 

Researchers have therefore started to focus on human endogenous compounds which can be 

administered at higher doses without toxicity. 

L-Carnitine (trimethylamino-β-hydroxybutyrate), an essential nutrient in all mammalian 

species, exists either as free carnitine or as acylcarnitines. The acyl groups can vary 

considerably in length, as illustrated by the shorter acyl chain in acetyl-L-carnitine (ALC) and 

the longer chain in palmitoylcarnitine. The primary function of carnitine and ALC is the 

transportation of long- and medium-chain fatty acids into the mitochondria for β-oxidation 

(Virmani and Binienda, 2004). Exogenous carnitine derivatives contribute to the modulation 

of cholinergic neurotransmission and the nerve growth factor, to the improvement of the 

mitochondrial energetics and antioxidant activity, and to the modulation of protein and gene 

expression (reviewed by Jones et al., 2010). ALC can be synthesized in the brain by 

carnitineacetyltransferase (Bird et al., 1985), and can readily cross the blood-brain barrier in a 
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Na+-dependent manner through the organic cation/carnitine transporter (Inano et al., 2003), 

which offer promising therapeutic applications. 

ALC has been shown to exhibit neuroprotective effects after cerebral ischaemia in animal 

models, and also in cultured neurones and on brain slice preparations. ALC treatment prior to 

transient forebrain ischaemia prevented neuronal damage in the cortex, hippocampus and 

striatum of gerbils (Shuaib et al., 1995). ALC pretreatment was also found to reduce the 

infarct size significantly after middle cerebral artery occlusion in rats (Jalal et al., 2010). In an 

electrophysiological study, ALC proved to protect striatal neurones against in vitro ischaemia 

involving oxygen-glucose deprivation (Picconi et al., 2006). 

Clinical studies have demonstrated the positive effects of ALC too. It enhanced the cerebral 

blood flow (Postiglione et al., 1991), and improved the energy levels, general functioning and 

well-being of patients (Malaguarnera et al., 2011). 

The effects of ALC administration on focal in vivo and global in vivo and in vitro models have 

been investigated (Rosenthal et al., 1992, Shuaib et al., 1995, Picconi et al., 2006, Jalal et al., 

2010, Zhang et al., 2012), but there have not yet been any reports of its effects on 

hippocampal long-term potentiation (LTP). We recently demonstrated a severe consequence 

of global hypoperfusion on the hippocampal LTP function, which can be detected by means 

of electrophysiological measurements and Golgi-Cox staining (Nagy et al., 2011). These 

methods are suitable for the investigation of the effects of potential neuroprotective agents on 

synaptic plasticity. We set out to determine whether ALC has a neuroprotective effect on 

synaptic plasticity after global hypoperfusion, and whether it influences dendritic spine 

genesis in the CA1 subfield of the hippocampus.  

2. Experimental procedures 

2.1 Animals and housing conditions 
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Male Wistar rats weighing 220±20 g (N=45) supplied by Charles River Laboratories, were 

kept under constant environmental conditions (23 °C; humidity 55±5%; 12-h/12-h light/dark 

cycle) and were housed individually in standard plastic cages. Before and after all 

experimental procedures, all animals had free access to food and water. Every effort was 

made to minimize the number of animals used and their suffering. The principles of animal 

care (NIH publication No. 85-23), and the protocol for animal care approved both by the 

Hungarian Health Committee (1998) and by the European Communities Council Directive 

(86/609/EEC) were followed. Before the experimental procedures, all the rats were in normal 

health and had no neurogical deficits. The animals were randomly divided into 6 groups, as 

follows: sham-operated controls (N=9); animals that underwent 2-vessel occlusion (2VO) 

(N=10); a 2VO+ALC post-treatment group (N=10); an ALC pretreatment+2VO group 

(N=10); an ALC pretreatment sham-operated group (N=3); and a sham-operated ALC post-

treatment group (N=3).  

2.2 Transient 2-vessel occlusion 

Transient global hypoperfusion was effected by 2VO, described previously (Marosi et al., 

2009). Anaesthesia was induced with sodium pentobarbital (60 mg/ml; i.p.), and the body 

temperature of the animals was maintained at 37±0.5 °C by means of an automatic heat 

controller (Supertech TMP-5a, Hungary). Through a midline neck incision, the common 

carotid arteries (CCAs) were dissected and exposed. To induce transient forebrain ischaemia, 

the CCAs were clamped for 30-min with non-traumatic clips (Aesculap, B. Braun Medical 

Ltd, Hungary). After the 30 min period, the clips were released from the CCAs and the blood 

flow was restarted. In the sham-operated groups, the CCAs were exposed without clamping. 

2.3 Drug administration in the experimental groups 

The effects of ALC (Sigma, Germany) on 2VO-operated and on sham-operated animals were 

measured in pretreatment and post-treatment. ALC was dissolved in 0.9% saline (total volume 
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1 ml) and was administered i.p. The animals received the treatment once a day for 5 days 

either before (pretreatment) or after (post-treatment) the 2VO/sham operation. The animals in 

the pretreated and pretreated sham-operated groups received the last ALC injection 1 day 

before the 2VO or sham operation. The first ALC treatment was applied 1 h after the surgical 

intervention in the post-treated and post-treated sham-operated groups. 

2.3 In vitro electrophysiology 

The animals were decapitated 5 days after the ischaemic insult. The middle parts of the 

hippocampi were placed in ice-cold artificial cerebrospinal fluid (aCSF) composed of (in 

mM): 130 NaCl, 3.5 KCl, 1 NaH2PO4, 24 NaHCO3, 1 CaCl2, 3 MgSO4 and 10 D-glucose (all 

from Sigma, Germany), saturated with 95% O2 + 5% CO2. Coronal hippocampal slices (350 

µm) were prepared with a vibratome (Campden Instruments, UK), transferred to a Haas 

recording chamber and incubated at room temperature for 1 h to allow the slices to recover in 

the solution used for recording (differing only in that it contained 3 mM CaCl2 and 1.5 mM 

MgSO4). The flow rate of the recording solution was 1.5–2 ml×min−1 and the experiments 

were performed at a controlled chamber temperature of 34 °C.  

For the electrophysiological experiments, a bipolar concentric stainless steel electrode 

(Neuronelektrod Ltd, Hungary) was placed in the stratum radiatum between the CA1 and 

CA2 regions of the hippocampal slices. The stimulus intensity was adjusted to between 30 

and 60 µA (constant current, 0.2-ms pulses delivered at 0.05 Hz) to evoke the half-maximum 

response. Field excitatory postsynaptic potentials (fEPSPs) were recorded with a 1.5-2 MΩ 

resistance glass micropipette filled with aCSF. The recordings were amplified with a 

neutralized, high input-impedance preamplifier and filtered (1 Hz-3 kHz). The fEPSPs were 

digitized (AIF-03, Experimetria Ltd. Hungary), acquired at a sampling rate of 10 kHz, saved 

to a PC and analysed off-line with Origin 6.0 software (OriginLab Corporation, USA). The 

fEPSPs were monitored until the amplitudes were generally stable, and a 10-min-long 
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baseline was then recorded. For LTP measurements, theta burst stimulation (TBS) was 

applied (bursts of 4 impulses at 100 Hz with a burst interval of 350 ms). After the TBS, 

changes in fEPSP amplitudes were recorded for a further 60 min. 

2.4 Golgi-Cox staining technique 

In order to determine the number of apical dendritic spines of the CA1 pyramidal cells, the 

Golgi-Cox staining method was used. The details of the preparation and staining of the 

hippocampal slices have been described previously (Nagy et al., 2011). The rats were 

decapitated and a coronal block containing the whole hippocampus was placed into Golgi-

Cox solution and held in the dark at room temperature (22-23 °C) for 10 days. Golgi-Cox 

solution is prepared from three stock solutions: a solution of 5% potassium dichromate, a 5% 

solution of potassium chromate, and a 5% solution of mercuric chloride, all in distilled water 

(all from Sigma, Germany). The parts were diluted and mixed as described previously by 

Glaser and Van der Loos (1981). The blocks were repeatedly replaced in fresh solution every 

2-3 days. After the 10-day impregnation period, the blocks were placed into 30% sucrose at 4 

°C for at least 4 days. 100-µm coronal slices from the hippocampus were cut in 6% sucrose, 

using a vibratome (Leica VT1000S, Leica Biosystems Nussloch GmbH, Germany). Sections 

were collected and mounted on gelatinized (2%) glass slides, and were stored in a humidity 

chamber overnight at room temperature. The slides were placed in a glass staining tray and 

then processed as described by Gibb and Kolb (1998). After staining and dehydration, the 

slides were coverslipped with Fluoromount.  

2.5 Quantitative analysis of the dendritic spines 

The Golgi-Cox-stained hippocampal slices were studied by light microscopic stereology with 

the help of oil immersion objectives. The numbers of dendritic spines were measured in the 

control, 2VO, ALC-pretreated and ALC-post-treated groups (4 animals from each group). For 

the spine number analysis, a specified, 100-µm-long apical dendritic section of 15 randomly 
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selected pyramidal cells was examined in the hippocampal CA1 subfield (Fig. 1). This region, 

which is 100-200 µm from the soma, receives the most excitatory innervations from the 

Schaffer collaterals of the CA3 subfield (Amaral and Witter, 1989). 

The apical dendrites were selected with the aid of a 100x oil-immersion lens and the images 

(600X) were captured through a DP70 camera connected to a light microscope (BX51, 

Olympus, Tokyo, Japan) and a computer. In order to achieve the whole examined area in 

focus, serial photomicrographs were made. The images then were stacked into one file and 

were studied with ImageJ 1.42q software (National Institutes of Health, USA). The numbers 

of spines on the 100-µm-long captured sections were counted visually and separately by three 

experimenters blind to the analysis. 

2.6 Statistical analysis 

In LTP measurements, the fEPSP amplitudes were expressed as a percentage of the 10-min 

baseline value before the TBS. The one-way ANOVA Tukey post hoc test was chosen for the 

statistical analysis of the LTP data in Fig. 2. In the course of the data analysis relating to Fig. 

3, the Mann-Whitney U-test was used. For analysis of the spine density data, one-way 

ANOVA with the Tukey post hoc test was used (Fig. 4). SPSS10.0 for Windows software 

(SPSS Inc., Chicago, IL, USA) was utilized. A P value of ≤ 0.05 was considered significant in 

each analysis. 

3. Results 

3.1 In vitro electrophysiological recordings 

After recording of the 10-min, stable baseline, TBS induced in the CA2-CA1 stratum 

radiatum resulted in markedly increased fEPSP amplitudes in the control group (144.91 ± 

0.34%). This potentiation remained stable throughout the 1-h period of the observation. 

Recordings 5 days after the 30-min 2VO revealed a significant decay in LTP function, with an 

amplitude increase to only 118.15 ± 0.44%; it decayed over time and nearly reached the pre-
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TBS level. An fEPSP amplitude increase (134.30 ± 0.55%) was observed as a result of the 5-

day ALC post-treatment in the first 15 min after the TBS, but it did not reach the control 

level. This potentiation then slightly decayed and stabilized at 128.37 ± 0.45%. In contrast, 

ALC pretreatment started 5 days prior to induction of the ischaemic insult resulted in a 

significant improvement of the LTP function. The fESPS amplitude increase was nearly the 

same as in the control group (143.56 ± 0.35%) (Fig. 2). We also studied the incidental effects 

of ALC pre- or post-treatment per se on the LTP inducibility in the sham-operated control 

rats, but the increase in fEPSP amplitudes was unchanged by the treatment (142.03 ± 0.37% 

in the pretreated sham group  and 141.39 ± 0.37% in the post-treated sham group; data not 

shown). Figure 3 presents the LTP data recorded in the different experimental groups during 

the last 10 min of the 1-h testing following the TBS. In the control animals, TBS resulted in 

stable LTP, with the amplitudes remaining at 144.66 ± 0.88% at the end of the test period. In 

the 2VO group, a significantly weaker LTP was induced, which displayed a marked decay 

over time. The potentiation level decreased to 112.20 ± 0.86% by the end of the 1-h period. 

ALC post-treatment caused much more stable LTP, which was significantly higher (125.47 ± 

0.93%) than in the 2VO group, but it did not regain the control level. ALC pretreatment 

resulted in an LTP close to the control values, and the amplitudes remained at 141.31 ± 0.86% 

at the end of the recording period. 

3.2 Histology – Golgi-Cox impregnation 

Golgi-Cox staining labels a limited number of cells in a random manner. In the hippocampus, 

the neurones are clearly stained brown and black, and can be followed in the entire length. 

Fully impregnated CA1 pyramidal cells can be detected, and the spines of the apical dendrites 

can be studied under a light microscope. Only the density of the dendritic spines was 

determined in our study, even though different types of spines were always clearly seen (e.g. 

thin, mushroom or branched). In the control group, the spine density was 153.88 ± 0.79/100 
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µm. The effect of the global hypoperfusion after a 5-day survival period was reflected in the 

significant decrease in the apical dendritic spine number (70.58 ± 1.02/100 µm). ALC post-

treatment resulted in an increase in spine density (113.63 ± 0.73/100 µm) relative to the value 

for the 2VO group. A significant difference was observed between the ALC-pretreated group 

and the 2VO group, with the number of dendritic spines in the former group at almost the 

control level (143.75 ± 0.52/100 µm) (Fig. 4). These histological data point to the restoration 

or preservation of synaptic plasticity, which is in parallel with our electrophysiological 

results. 

4. Discussion 

ALC is the most widely distributed short-chain acylcarnitine in the human body (Virmani and 

Binienda, 2004). There are particularly high level of carnitines in the cerebellum and the 

hypothalamus, and lower amounts in the hippocampus and cerebral cortex (Bresolin et al., 

1982, Shug et al., 1982). Despite these regional differences, the whole metabolic pool 

participates in fatty acid oxidation. In consequence of the strong relationship between 

carnitines and bioenergetic processes, these compounds have a crucial role in diseases 

associated with a deficient metabolism. Although glucose is the major source of energy in the 

central nervous system, the participation of other fuels should not be ignored during metabolic 

stress, such as ischaemia or neurodegenerative diseases. These substrates are ketone bodies 

(Robinson and Williamson, 1980), lactate (Wyss et al., 2011) and fatty acids (Ebert et al., 

2003). As ALC takes part in the metabolism of the alternative energy source fatty acids, its 

therapeutic application could be promising.  

The 2VO cerebral ischaemic model reduces the blood flow in the rat brain to one-third of its 

normal value (Farkas et al., 2007). The hippocampus, and particularly the CA1 area, is one of 

the brain regions most vulnerable to ischaemic insults (Pulsinelli et al., 1982). Our 

experiments have revealed that the damage caused by global hypoperfusion results in an 
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impaired LTP function 5 days after the 2VO surgery, which was accompanied by the 

significant decrease in the dendritic spines of the CA1 pyramidal cells. Extensive 

experimental data have demonstrated the neuroprotective effect of ALC against ischaemia. 

Nevertheless, there has been no previous study of the potential positive effect of ALC on the 

impaired LTP function caused by ischaemia. Our experiments have demonstrated that ALC 

administration prior to the ischaemic event can be neuroprotective, resulting in a significant 

improvement in the LTP, the fEPSP amplitude increase after TBS proving to be the same as 

in the control group. In parallel with these results, histological analysis demonstrated that the 

number of dendritic spines returned almost to the control level.  

The beneficial effect of ALC in different animal models of cerebral ischaemia has been 

ascribed to multiple mechanisms. One of the reported actions of this compound is protection 

against excitotoxicity, which appears as a result of ischaemia/reperfusion injury. Zanelli et al. 

demonstrated that ALC can prevent the significant cell death and can be protective in both the 

acute and the delayed phase of excitotoxicity. These findings can be explained by the 

modulation of glutamate receptors and gamma-aminobutyric acid receptors (Zanelli et al., 

2005).  

It has been reported that,  through its antioxidant properties, ALC can reverse the decrease of 

the hippocampal glutathione levels after transient forebrain ischaemia to the control values 

(Al-Majed et al., 2006). Moreover, ALC can prevent the malondialdehyde concentration 

increase and improve the superoxide dismutase activity after oxygen-glucose deprivation in 

cell cultures (Zhang et al., 2012), and can additionally protect against lipid hydroperoxidation 

(Yasui et al., 2002). The antioxidant activity of ALC presumably has a role in the mechanisms 

underlying our findings.  

Various animal experiments and clinical studies have demonstrated that disturbances in brain 

cholinergic transmission are associated with learning and memory dysfunctions (Yakel, 
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2013). Brain ischaemia also induces an impairment of the cholinergic system: it decreases the 

release of ACh and eliminates the choline acetyltransferase immunoreactivity in several parts 

of the brain, e.g. the hippocampus (Iwasaki et al., 1996). In the hippocampal CA1 region, the 

LTP requires the activation of NMDA receptors. Furthermore, it has been described that 

cholinergic activation enhances the LTP in this subfield (Blitzer et al., 1990). ALC has been 

stated to exert its neuroprotective behaviour against ischaemic injury through the activation of 

cholinergic synaptic transmission (Ando et al., 2001, Picconi et al., 2006). The enhanced 

cholinergic transmission resulting from the ALC pretreatment may also serve as an 

explanation of the restored LTP in our experiments. 

Another mechanism which possibly underlies the protective effect of ALC is the restoration 

of the energy status in the brain under the metabolically compromised circumstances. 

Molecular analysis has demonstrated that ALC treatment leads to decreases in lactate level 

and lactate/pyruvate ratio in the brain (Zanelli et al., 2005). The administration of ALC in 

supraphysiological concentration increases the intracellular level of this compound; thus, it 

can serve as an exogenous donor of acetyl groups and undergoes metabolization in the brain. 

The acetyl component of ALC enters the aerobic metabolism at a point just after the impaired 

reaction catalysed by pyruvate dehydrogenase. As a result, it can promote oxidative cerebral 

energy production and minimize anaerobic glycolysis and lactic acidosis (Zanelli et al., 2005). 

Previous studies indicate that ALC, by serving as an exogenous, alternative source of acetyl-

CoA, presumably promotes oxidative cerebral energy production in our experimental system. 

It could preserve therefore a nearly physiological metabolism of the pyramidal cells in the 

hippocampal CA1 subfield and inhibited the spine density decrease, or perhaps induced the 

reappearance of the spines.  

5. Conclusions 
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The present study provides the first report of the neuroprotective effect of ALC treatment on 

the LTP function impaiement caused by global hypoperfusion. It demonstrates a strict link 

between the LTP and dendritic spine density not only in the control, but also in the 2VO and 

the ALC-treated groups. In view of the literature findings, ALC can presumably exert its 

protective effect through different routes at the same time. These mechanisms may involve 

the antioxidant effect, modulation of the cholinergic transmission, protection against 

excitotoxicity and enhancement of the aerobic energy metabolism, whereby neurones can 

preserve their normal function. To clarify the exact mechanism of action of ALC on the LTP 

function and on the preservation or restoration of the density of dendritic spines, further 

experiments are needed. 
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Fig. 1: Illustration of the measured region on hippocampal slices after Golgi-Cox 

impregnation. The first photomicrograph reveals a coronal segment of the hippocampus and a 

representative pyramidal cell (enlarged section), with a small rectangle showing the examined 

apical dendritic region. The photomicrographs of the control, 2VO, ALC-post-treated and 

ALC-pretreated groups depict the site of spine density measurements. Note the fewer 

dendritic spines in the 2VO group relative either to the control or to the ALC-pretreated 

group. Scale bar: 500 µm, 100 µm and 10 µm, respectively. 

Fig. 2: Changes in fEPSP amplitudes after TBS (number of electrophysiological recordings: 

N=9 from the control, N=8 from the 2VO 5d, N=9 from the ALC post-treatment and N=9 

from the ALC pretreatment group). The global hypoperfusion resulted in significantly 

decreased fEPSP amplitudes after TBS relative to the control values (**P<0.01 for the period 

11-17 min, ***P<0.001 after 18 min until the end of the recording period). ALC administered 

for 5 days after 2VO did not completely prevent this decay. However, the data from this 

group were significantly different from those from the 2VO group from 30 min after the TBS 

(#P<0.05 for the period 29-40 min, ##P<0.01 for the period 41-49 min, ###P<0.001 after 50 

min), and the LTP function also differed markedly from that in the control group (**P<0.01 

for the period 24-37 min). ALC was protective against the ischaemic injury when it was 

administered for 5 days prior to the 2VO surgery. The increase in fESPS amplitudes was 

nearly as same as in the control group; the data did not show a significant difference between 

the two groups at any time point. The LTP in the pretreated group was significantly stronger 

and more stable than that in the 2VO group (###P<0.001 from 20 min after the TBS until the 

end of the recording period). Data points are means ± S.E.M. of normalized amplitudes of 

fEPSPs. Asterisks denote significant differences from the control, and # denotes significant 

differences from the data for the 2VO group (**P<0.01, ***P<0.001, #P<0.05, ##P<0.01, 

###P<0.001; one-way ANOVA Tukey post hoc test). 
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Fig. 3: The level of the LTP at the end of the recordings. The columns demonstrate the 

potentiation of fEPSP amplitudes recorded during the last 10 min (between 50 and 60 min) of 

the 1-h testing following the TBS. The marked LTP induced in the control group remained 

stable at the end of the measurements. The fEPSPs displayed decaying amplitudes over time 

in the 2VO group, and nearly reached the pre-TBS level in the last 10 min. Although a higher 

LTP was induced in the ALC post-treatment group, it also later stabilized at a lower level. 

ALC administration for 5 days before the ischaemic insult proved protective, since a 

significantly higher LTP was induced in this group relative to the 2VO group. The level of 

this potentiation was close to that for the control and remained stable throughout the recording 

period. Data points are means ± S.E.M. of normalized amplitudes of fEPSPs in the last 10 

min. Asterisks denote significant differences from the control, and # denotes significant 

differences from the 2VO group (*P<0.05, ***P<0.001, ###P<0.001; Mann-Whitney U-test). 

Fig. 4: Changes in spine density in the Golgi-Cox-stained hippocampal CA1 regions. 15 

apical dendritic sections were measured from each of 4 animals in each group. The analysis 

revealed that transient global hypoperfusion induced a significant reduction in spine density 5 

days after 2VO. ALC post-treatment caused a definitive increase in dendritic spine number 

relative to the 2VO group, but the number did not reach the control level. The protective 

effect of ALC pretreatment was revealed by histological analysis. As a result of ALC 

pretreatment, the dendritic spine density was found to be close to the control level. The 

histogram shows means ± S.E.M. of the dendritic spine numbers. There are significant 

differences between all of the examined groups at the P<0.001 level (one-way ANOVA, 

Tukey post hoc test). 
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