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Abstract
Let V; be a driftless subordinator, and let denote mgl) > m,(f) > ...
its jump sequence on interval [0, ¢]. Put Vt(k) =V,- mgl) — = mgk)

for the k-trimmed subordinator. In this note we characterize under
what conditions the limiting distribution of the ratios V;(k) /mgkﬂ)

and mgkﬂ)/mgk) exist, as t L 0 or t — o0.
Keywords: Subordinator, Jump sequence, Lévy process, Regular vari-
ation, Tauberian theorem.
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Introduction and results

Let V4, t > 0, be a subordinator with Lévy measure A and drift O.

Laplace transform is given by

Ee MV = exp {—t /O h (1-e) A(dv)},

where the Lévy measure A satisfies

/OO min{1, z}A(dz) < oo.
0
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Put A(z) = A((z,00)). Then A(x) is nonincreasing and right continuous on
(0,00). When ¢ | 0 we also assume that A(0+) = oo, which is necessary and
sufficient to assure that there is an infinite number of jumps up to time t,
for any ¢t > 0.

Denote mgl) > mg) > ... the ordered jumps of V up to time ¢, and for
k > 0 consider the trimmed subordinator

k
Vt(k) =V, - ngj)
j=1

We investigate the asymptotic distribution of jump sizes as ¢t | 0 and ¢t — oo.
Specifically, we shall determine a necessary and sufficient condition in terms
of the Lévy measure A for the convergence in distribution of the ratios
Vt(k)/mgkﬂ) and mgkﬂ)/mgk). Observe in this notation that V;(O) =V is
the subordinator and mgl) is the largest jump.

An extended random variable W can take the value oo with positive
probability, in which case W has a defective distribution function F', meaning
that F'(00) < 1. We shall call an extended random variable proper, if it is
finite a.s. In this case its F' is a probability distribution, i.e. F/(c0) = 1.
Here we are using the language of the definition given on p. 127 of Feller [8].
Th 1. F hoi o V") /D :

eorem 1. For any choice of k > 0 the ratio V," /my converges in
distribution to an extended random variable Wy ast | 0 (t — o0) if and
only if one of the following holds:

(i) A is regularly varying at 0 (c0o) with parameter —a, o € (0,1), in
which case Wy, is a proper random variable with Laplace transform
oA
gr(A) = T (2)
1 - —a—1
[1+af0(1—e Y)y dy

(ii) A is slowly varying at 0 (00), in which case Wy =1 a.s.;
(iii) the condition

rA(z)

W—)O as x| 0 (x — 00) (3)

(k) /mngrl) P

holds, in which case V, — 00, that is Wi, = 00 a.s.



Note that Theorem 1 says that the situation 0 < P{W} = oo} < 1
cannot happen.

The corresponding problem for nonnegative i.i.d. random variables was
investigated by Darling [6] and Breiman [4], in the & = 0 case. In this case
Darling proved the sufficiency parts corresponding to (i) and (ii) (Theorem
5.1 and Theorem 3.2 in [6]), in particular the limit Wy has the same distri-
bution as given by Darling in his Theorem 5.1, while Breiman proved the
necessity parts corresponding to (i), (ii) and (iii) (Theorem 3 (p. 357), The-
orem 2 and Theorem 4 in [4]). A special case of Theorem 1 in Teugels [12]
gives the sufficiency analog of (i) in the case of i.i.d. nonnegative sums for
any k > 0.

The necessary and sufficient condition in the cases (ii) and (iii), stated
in the more general setup of Lévy processes without a normal component,
is given by Buchmann, Fan and Maller [5], see their Theorem 3.1 and 5.1.

Next we shall investigate the asymptotic distribution of the ratio of two
consecutive ordered jumps mgkﬂ)/ mgk), k > 1. We shall obtain the analog
for subordinators of a special case of a result that Bingham and Teugels [3]
established for i.i.d. nonnegative random variables. This will follow from a
general result on the asymptotic distribution of ratios of the form defined

for k> 1 by
S t
v (1) = ¥ (Sk+1/t)
Y (Sk/t)
where for each k > 1, S, = w1+ ...+ wg, with w1, wo, ... being i.i.d. mean 1

exponential random variables and 1) is the nonincreasing and right continu-
ous function defined for s > 0 by

Y(s) = sup{y : I(y) > s},

with II being a positive measure on (0,00) such that I(z) = I ((x,00))
— 0, as x — oco. Note that we do not require II to be a Lévy measure. Also
whenever we consider the asymptotic distribution of ri(t) as ¢ | 0 we shall
assume that TI(0+) = oo.

We call a function f rapidly varying at 0 with index —oo, f € RVy(—00),

,t>0,

if
0, for A>1,
_f(Ax) _
hﬁ)l @) - 1, for A=1,
oo, for A < 1.

Correspondingly, a function f is rapidly varying at oo with index —oo, f €
RV o (—00), if the same holds with z — oo.



Theorem 2. For any choice of k > 1 the ratio i (t) converges in distri-
bution ast | 0 (t — o0) to a random variable Yy, if and only if one of the
following holds:

(i) T is regularly varying at 0 (c0o) with parameter —a € (—o0,0), in
which case Yy has the Beta(ka, 1) distribution, i.e.

Gr(x) = P{Y, <z} =2, zel0,1]; (4)

(ii) TI is slowly varying at 0 (<), in which case Y3, = 0 a.s.

(iii) 10 is rapidly varying at 0 (0o0) with index —oo, in which case Yj, = 1
a.s.

Theorem 2 has some important applications to the asymptotic distribu-
tion of the ratio of two consecutive ordered jumps mgkﬂ) /m,gk)7 k>1, of
a Lévy process. Let Xi, t > 0, be a Lévy processes whose Lévy measure

A is concentrated on (0,00). Here in addition to A (z) — 0 as 2 — oo, we
require that

/000 min{1, z?}A(dz) < oco. (5)

In this setup one has the distributional representation for £ > 1

(™l ) 2 (@(Sk/1), (S /1), (6)
with ¢ defined for s > 0 to be

o(s) = sup{y : A(y) > s}. (7)

It is readily checked that ¢ is nonincreasing and right continuous. Moreover,
whenever A is the Lévy measure of a subordinator V;, condition (1) holds,
which is equivalent to

/ @(s)ds < oo, for any § > 0. (8)
0

The distributional representation in (6) follows from Proposition 1 in Kevei
and Mason [7], see the proof of Theorem 1 below. For general spectrally
positive Lévy processes it can be deduced using the same methods that
Maller and Mason [9] derived the distributional representation for a Lévy
process given in their Proposition 5.7.



When applying Theorem 2 to the asymptotic distribution of consecutive
ordered jumps at 0 or oo of a Lévy processes X; whose Lévy measure A is
concentrated on (0, 00), we have to keep in mind that (5) must always hold
and (1) must be satisfied whenever X is a subordinator. For instance in
the case of a subordinator V;, whenever mgkﬂ)/ mﬁk) converges in distribu-
tion to a random variable Y} as t | 0, Theorem 2 says that A is regularly
varying at 0. Further since (1) must hold, the parameter —a is necessarily
in [—1, 0], while there is no such restriction when considering convergence in
distribution as ¢t — oo. We note that in case of general Lévy processes for
k = 1 the sufficiency part corresponding to part (ii) in Theorem 2 is given
in Theorem 3.1 in [5].

In the special case when V; is an a-stable subordinator, « € (0,1), and
mM) > m® > s its jump sequence on [0,1], then (m®) /vy, m® /v, ...)
has the Poisson-Dirichlet law with parameter («,0) (PD(c,0)), see Bertoin
[1] p. 90. The ratio of the (k + 1)'" and k' element of a vector, which has
the PD(a, 0) law, has the Beta(ka, 1) distribution (Proposition 2.6 in [1]).

2 Proofs

In the proofs we only consider the case when t | 0, as the t — oo case is
nearly identical.

2.1 Proof of Theorem 1

First we calculate the Laplace exponent of the ratio using the notation ¢
defined in (7). We see by the nonincreasing version of the change of variables
formula stated in (4.9) Proposition of Revuz and Yor [10], which is given in
Lemma 1 in [7],

Ee " = exp {—t /0 h (1 - e_)‘”) A(dv)}
— exp {—t/ooo (1 _ e—*%’(”)) dx} .

The key ingredient of our proofs is a distributional representation of
the subordinator V; given in Kevei and Mason (Proposition 1 in [7]), which
follows from a general representation by Rosinski [11]. It states that for

t>0 -
vy e (). )



From the proof of this result it is clear that ¢(S;/t) corresponds to mgi), for

1 > 1. Therefore
VP b S e(Si/1)
I )

Conditioning on Sk4+1 = s and using the independence we can write

> > s S;—s
> esn=Y e (t 50 )
i=k+2 i=k+2

D s 5

P (;+7)

= Z@S/t (S’L/t) )
=1

where ¢, (z) = ¢(y + ). Note that the latter sum has the same form as
in (9), therefore it is equal in distribution to a subordinator V (/%) (t) with
Laplace transform

Ee WY = exp {—t/ (1 — e*)‘g"s/f(@> dx}
0
= exp {—t/ (1-— e_’\‘p(x))dx} .
s/t

Now we can compute the Laplace transform of the ratio V;(k) /m.
Since Si4+1 has Gamma(k + 1, 1) distribution, the law of total probability
and (10) give

(k) 0o ‘
Eexp {—)\V} = Eexp {_)\Zi:k—i-l ©(Si/t) }

t
D (S /1)

A A - ' .
e Eexp{ o578 ;gos/t(SZ/t)}] d

oo Lk o
e / %e_s exp {—t/ [1 —e w(sA/O “D(x)} dx} ds (11)
0 : s/t
tht1 00 o0 (@)
=7 e’\/ ukexp{—t <u+/ [1—e Ai(@]dﬂ:)}du
: 0 u

(10)

(k+1)
: .




where

\I/(u,A):u—i-/

u

o _>\<P(Z)
1—e "¢ | dx. (12)

Since ¢ is right continuous on (0,00), ¥(-,\) is also right continuous on
(0,00). Further a short calculation shows that this function is strictly in-
creasing for any A > 0, moreover for u; > us

Wlug, \) — U(ug, \) > e Mup — ug).
Clearly ¥(o0o,\) = oo and therefore
Uy(u, ) = U (((k: + 1))V D), A)
has a right continuous increasing inverse function given by
Qx(s) = inf {v: ¥y (v, ) > s}, for s >0,

such that Q»(0) = 0 and lim,_,o @x(x) = co. (For the right continuity part
see (4.8) Lemma in Revuz and Yor [10].)

Necessity. Assuming that Vt(k)/ mikﬂ) converges in distribution as £ — 0

to some extended random variable Wy, we can apply Theorem 2a on p. 210
of Feller [8] to conclude that its Laplace transform also converges, i.e.

/ uket\II(u,/\)du:/ o 1TE (1) gy
0 0

00 A
B 4 ergr(M\)K!
_/0 e de,\(y)withrl ,ast — 0,

where g(\) = Ee =Wk, and W}, can possibly have a defective distribution,
i.e. possibly P {WW}, = oo} > 0. (Here we used the change of variables formula
given in (4.9) Proposition in Revuz and Yor [10].) By Karamata’s Tauberian
theorem (Theorem 1.7.1 in [2])

k+1

T 16)‘gk()\), as y — 00,

Qr(y) ~

and thus by Theorem 1.5.12 in [2]

(k + 1)) /*+D
> ,  as v — 00,

\I/k (’U, )\) ~ ( e)\gk()\)



and hence L
— L

U(u, \) ~u [e)‘gk()\)} T asu— oo,

Substituting back into (12) we obtain for any A > 0

1 [ _\e@) -0
lim / <1 —e Aiw) d = [e/\gk()\)} oL (13)

u—00 U,

Note that the limit W} is > 1, with probability 1, and so gi(\) < e
Thus for any A

1

[eAgk(A)} BT 10
For any > 0 we have 1 —e™® < z. Therefore by (13) we obtain for any
A>0

lim inf

00 Wl(u) /uoo p(a)de > % ([eAgk(A)]_’“il — 1) : (14)

On the other hand, by monotonicity ¢(z)/¢(u) < 1 for u < x. Therefore
for any 0 < € < 1 there exists a A. > 0, such that for all 0 < A < A,

a2 _ ()
v 20w

1—e , for z > .

Using again (13) and keeping (8) in mind, this implies that for such A

lig:sgp ucpl(u) /uoo p(r)der < i% <[e)‘gk()\)} B — 1> . (15)

In particular, we obtain that, whenever gi(\) Z 0 (i.e. P{W} < o0} > 0)

0 < lim inf

im in ugo(u)/u o(z)dx < limsup

u—oo  up(u)

/uoo p(zr)dr < oco.

Note that in (14) the greatest lower bound is 0 for all A > 0 if and only if
gr(\) = e, in which case W} = 1. Then the upper bound for the limsup

in (15) is 0, thus
/ o(z)dz =0,

which by Proposition 2.6.10 in [2] applied to the function f(z) = z¢(x)
implies that ¢ € RV (—00), and so, by Theorem 2.4.7 in [2], A is slowly
varying at 0. We have proved that W}, = 1 if and only if A is slowly varying
at 0.

wmrse up(u)



In the following we assume that P {W}; > 1} > 0, therefore the liminf in
(14) is strictly positive. Let

1

T 1 A 7%+1 . 1 A T R+L o
a= hmmfx <[e gk(A)} - 1> < hmsupx ([e gk()\)] - 1> =b.

AL0 A0

By (15) and (14), a > 0 and b < co. Moreover

b < liminf

oo 1 o0
m in ugo(u)/u o(z)dz < limsup L o(x)dz < a,

u—oco ()

which forces

a=>b= lim ! /00 (az)daz—liml {e’\ ()\)]k}rll
0w up(u) S, 7 A0 Tk '

By Karamata’s theorem (Theorem 1.6.1 (ii) in [2]) we obtain that ¢ is
regularly varying at infinity with parameter —a=! — 1 =: —a™!, so A is
regularly varying with parameter —« at zero with « € (0, 1).

Let us consider the case when W), = oo a.s., that is Vf“/mikﬂ) NS
All the previous computations are valid, with gi(\) = Ee™** = 0. Thus,
from (14) we have

w3 up(a)

/uoo o(x)dz = oco.

From this, through the change of variables formula we obtain (3).

Sufficiency and the limit. Consider first the special case when ¢(z) =
xfé, a € (0,1). Then a quick calculation gives

1 o0 _ (z) 1
/ (1 e Aiw)) da = a/ (1 - e‘Ay) y~ldy.
U Sy 0

By formula (13) for the Laplace transform of the limit we obtain (2).

The sufficiency can be proved by standard arguments for regularly vary-
ing functions. Using Potter bounds (Theorem 1.5.6 in [2]) one can show
that for o € (0,1)

u—00 1,

1 1
lim —U(u,\) =1+ a/ (1 — e*)‘y> y~dy,
0

from which, through formula (11), the convergence readily follows. As al-
ready mentioned, cases (ii) and (iii) are treated in [5].



2.2 Proof of Theorem 2

Using that 1 (y) < z if and only if II(z) < y, for the distribution function of
the ratio we have for z € (0,1)

[e’e) k—1
_/ (1: 1>|e_sp{¢ <S+tSl> sy C)}ds
0 - .
/ s [T (/1))
= e Te  MWM)TEld g
o (k—=1)!
tk} (e} —
_ (k:l)'/ Yy o TI(@(u) gy
“)1

(16)

Necessity. Assume that the limit distribution function G} exists. Write

tk? o _ tk 00
(1) / Wl T = G, / o, ()
- +JO - +JO

where @ (v, z) = IT (m/)((kv)l/k)). Note that for each z € (0,1) the func-
tion ®g(-, ) is monotone nondecreasing, since II and 1) are both monotone
nonincreasing. Let

Gr = {x : x is a continuity point of G}, in (0, 1) such that Gi(z) > 0}.

First assume that P{Y; < 1} > 0. Clearly we can now proceed as in the
proof of Theorem 1 to apply Karamata’s Tauberian theorem (Theorem 1.7.1
in [2]) to give that for any x € G,

o T ()

U—00 u

=

— [Gr(@)] . (18)

In fact, there is a small difference here compared to the proof of The-
orem 1. We have to be more cautious, as @ (v, ) is not necessarily right-
continuous as a function of v > 0. To use the machinery from the proof
of Theorem 1 we need to consider the right-continuous version ® (v, z) 1=
Oy (v+,x). Since, in (17) we integrate with respect to the Lebesgue measure
and ¢, and &)k are equal almost everywhere, substituting ®; with :I;k leaves
the integral unchanged. Therefore, proceeding as before we obtain that

» kv 1/k
O (v, x) ~ <Gk(l')> , as v — 00,

10



and since the right-hand function is continuous, we also get that

kv 1/k
D (v, ) ~ <Gk($)> ,  as v — 0o,

form which now (18) does indeed follow.

We claim that (18) implies the regular variation of II. When II is con-
tinuous and strictly decreasing we get by changing variables to ¥ (u) = t,
u = II(t), that we have for any = € Gy,

II(tx)
1o TI(t)

= [Gr(a)] %,

which by an easy application of Proposition 1.10.5 in [2] implies that II is
regularly varying.

Note that the jumps of II correspond to constant parts of ¢, and vice
versa. Put J = {z : II(2—) > TI(2)} for the jump points of II. For z € J
and y € [II(2),II(z—)) we have ¢(y) = z. Substituting into (18) we have

I(xz) B 1 . T(xz) B _
210267 o(z) (Gr(@)]"%, and z¢%l,rzréj (z—) (Gr(@)]).

==

(19)

To see how the second limit holds in (19) note that for any 0 < € < 1 and
z € J, we have ¢ (ell(z) 4+ (1 — ) II(2—)) = z and thus

II
lim — @2) et
210,2e7 ell(z) + (1 — ) II(z—)
Since 0 < € < 1 can be chosen arbitrarily close to 0 this implies the validity
of the second limit in (19). Therefore by choosing any = € G, we get
TI(z—)

lziﬁ)l ) =1. (20)

=

Let
A={2>0:1(z —¢) >(z) forall z>e >0}

This set contains exactly those points z for which ¥(II(2)) = z. With this
notation formula (18) can be written as

lim II(z2)

o 4 ﬁ(z) = [Gk(.%')}fg, for z € Gy. (21)

This together with (20) will allow us to apply Proposition 1.10.5 in [2] to
conclude that II is regularly varying. We shall need the following technical
lemma.

11



Lemma 1. Whenever (20) holds, there exists a strictly decreasing sequence
zn € A such that z, — 0 and

Jim HT(IZ(Z)Q = 1. (22)

Proof. Choose 21 € A such that II(z1) > 0, and define for each n > 1
— 1 .
Zn+41 = Sup {z >0:1I(2) > <1 + n) H(Zn—)} )

Notice that the sequence {z,} is well-defined, since II(0+) = oo and it is
decreasing. Further we have

H(zn1—) > <1 + ;) TI(2z,—) and T(z,41) < (1 + ;) (20—,

where the second inequality follows by right continuity of II. Also note that
Zn+1 < Zn, since otherwise if 2,41 = 2z, then

n

(20 1-) = T(z0—) > (1 n 1) (20 ),

which is impossible. Observe that each z,4; is in A since by the definition
of zp41 for all 0 < e < zp41

(21— ) > <1 + :L) TH(2—) > T(211).

Clearly since {z,} is a decreasing and positive sequence, lim, ,~ 2, = z*
exists and is > 0. By construction

_ 1\ _ n 1\ _
(zps1—) > (1 + n) M(z—) =[] <1 + k) II(z—).
k=1
The infinite product [[77;(1+1/n) = oo forces z* = 0. Also by construction

we have _
o aes) =

1 < Wnpn) M
— 1(zp—) II(

By (20) we have -
11(zn)

n—00 H(Zn—)

12



Therefore we get (22). O

According to Proposition 1.10.5 in [2] to establish that II is regularly
varying at zero it suffices to produce A; and Mg in (0, 1) such that for i = 1,2

H()\zzn)
ﬁ(zn)

—d; € (0,00), as n — o0,

where (log A1)/ (log A2) is finite and irrational. This can clearly be done
using (21) and P{Y} < 1} > 0. Necessarily II has index of regular variation
parameter —a € (—00,0]. For a € (0,00) the limiting distribution function
has the form (4). In the case o = 0, II is slowly varying at 0 and we get
that Gi(z) =1 for z € (0,1), i.e. Y3 =0 a.s.

Now consider the case when P{Y;, = 1} = 1, i.e. Gx(z) = 0 for any
x € (0,1). We once more use Theorem 1.7.1 in [2], with ¢ = 0 this time, and
as an analog of (18) we obtain

I
lim 7(:01#(1;)) = 00.
U—00 u
This readily implies that
T(xz)

Iim — =00
210,z€ A H(z)

Moreover, the analogs of formula (19) also hold, i.e.

II(zz)
lm ————
210,2€J H(Z)

=o0, and lim E(mz) = Q.
210,2€J H(Z—)

(Note, however, that this does not imply (20).) Let z ¢ A, and define
7' =inf{v:ve A v >z} Clearly, 2’ | 0as z | 0. If 2 € A then necessarily
it is a jump point, 2’ € J, and II(z'—) = II(z). Then

O(zz)  I(xz) - TI(z2)

O(z)  I(z'-) ~ (')’

and the latter tends to oo as z | 0. On the other hand, when 2’ ¢ A it
is simple to see that II(z") = II(2) and II(2’ + ¢) < II(Z) for any £ > 0.
Moreover, we can find z < 2z € A, such that II(z) < TI(2") + 1 < 2TI(2")
(we tacitly assumed that z is small enough). Thus

7(:02)
I1(2)

I(xz) S I(xz")

> — —
ST + 1 2I(2)

?

13



and the lower bound goes to co as z | 0. Summarizing, we have proved that

i II(xz)
210 ﬁ(z)

)

for any = € (0, 1), that is, IT is rapidly varying at 0 with index —oc.
Sufficiency. Assume that II is regularly varying at 0 with index —a €

(—00,0). Then its asymptotic inverse function v is regularly varying at oo
with index —1/«, therefore simply

_ (Sks1/t) Sk
k(t) = Y(Sk/1) - <5k+1

which has the distribution G}, in (4). Assume now that II is slowly varying
at 0. Then ¢ € RV (—00), therefore

1/a
) a.s.,ast |0,

Y(Sk+1/1)
rp(t) = ———= — 0 a.s.,ast /0.
MO =05 '
Finally, if IT € RVg(—oc) then 4 is slowly varying at infinity, so
Y(Sk+1/1)
rg(t) = —————== — 1 as.,ast]0,
O =05 '

and the theorem is completely proved.
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