The limit distribution of ratios of jumps and sums of jumps of subordinators

Péter Kevei

MTA-SZTE Analysis and Stochastics Research Group Bolyai Institute, Aradi vértanúk tere 1, 6720 Szeged, Hungary e-mail: kevei@math.u-szeged.hu

> David M. Mason Department of Applied Economics and Statistics University of Delaware 213 Townsend Hall, Newark, DE 19716, USA e-mail: davidm@udel.edu

> > December 2, 2014

Abstract

Let V_t be a driftless subordinator, and let denote $m_t^{(1)} \ge m_t^{(2)} \ge \dots$ its jump sequence on interval [0, t]. Put $V_t^{(k)} = V_t - m_t^{(1)} - \dots - m_t^{(k)}$ for the k-trimmed subordinator. In this note we characterize under what conditions the limiting distribution of the ratios $V_t^{(k)}/m_t^{(k+1)}$ and $m_t^{(k+1)}/m_t^{(k)}$ exist, as $t \downarrow 0$ or $t \to \infty$. *Keywords:* Subordinator, Jump sequence, Lévy process, Regular variation, Tauberian theorem.

MSC2010: 60G51, 60F05.

1 Introduction and results

Let V_t , $t \ge 0$, be a subordinator with Lévy measure Λ and drift 0. Its Laplace transform is given by

$$\mathbf{E}\mathrm{e}^{-\lambda V_t} = \exp\left\{-t\int_0^\infty \left(1-\mathrm{e}^{-\lambda v}\right)\Lambda(\mathrm{d}v)\right\},\,$$

where the Lévy measure Λ satisfies

$$\int_0^\infty \min\{1, x\} \Lambda(\mathrm{d}x) < \infty. \tag{1}$$

Put $\overline{\Lambda}(x) = \Lambda((x, \infty))$. Then $\overline{\Lambda}(x)$ is nonincreasing and right continuous on $(0, \infty)$. When $t \downarrow 0$ we also assume that $\overline{\Lambda}(0+) = \infty$, which is necessary and sufficient to assure that there is an infinite number of jumps up to time t, for any t > 0.

Denote $m_t^{(1)} \ge m_t^{(2)} \ge \ldots$ the ordered jumps of V_s up to time t, and for $k \ge 0$ consider the trimmed subordinator

$$V_t^{(k)} = V_t - \sum_{j=1}^k m_t^{(j)}.$$

We investigate the asymptotic distribution of jump sizes as $t \downarrow 0$ and $t \to \infty$. Specifically, we shall determine a necessary and sufficient condition in terms of the Lévy measure Λ for the convergence in distribution of the ratios $V_t^{(k)}/m_t^{(k+1)}$ and $m_t^{(k+1)}/m_t^{(k)}$. Observe in this notation that $V_t^{(0)} = V_t$ is the subordinator and $m_t^{(1)}$ is the largest jump.

An extended random variable W can take the value ∞ with positive probability, in which case W has a defective distribution function F, meaning that $F(\infty) < 1$. We shall call an extended random variable proper, if it is finite a.s. In this case its F is a probability distribution, i.e. $F(\infty) = 1$. Here we are using the language of the definition given on p. 127 of Feller [8].

Theorem 1. For any choice of $k \ge 0$ the ratio $V_t^{(k)}/m_t^{(k+1)}$ converges in distribution to an extended random variable W_k as $t \downarrow 0$ $(t \to \infty)$ if and only if one of the following holds:

(i) $\overline{\Lambda}$ is regularly varying at $0 \ (\infty)$ with parameter $-\alpha, \alpha \in (0,1)$, in which case W_k is a proper random variable with Laplace transform

$$g_k(\lambda) = \frac{e^{-\lambda}}{\left[1 + \alpha \int_0^1 (1 - e^{-\lambda y}) y^{-\alpha - 1} dy\right]^{k+1}};$$
 (2)

(ii) $\overline{\Lambda}$ is slowly varying at 0 (∞), in which case $W_k = 1$ a.s.;

(iii) the condition

$$\frac{x\overline{\Lambda}(x)}{\int_0^x u\Lambda(\mathrm{d}u)} \longrightarrow 0 \quad as \ x \downarrow 0 \ (x \to \infty) \tag{3}$$

holds, in which case $V_t^{(k)}/m_t^{(k+1)} \xrightarrow{\mathbf{P}} \infty$, that is $W_k = \infty$ a.s.

Note that Theorem 1 says that the situation $0 < \mathbf{P}\{W_k = \infty\} < 1$ cannot happen.

The corresponding problem for nonnegative i.i.d. random variables was investigated by Darling [6] and Breiman [4], in the k = 0 case. In this case Darling proved the sufficiency parts corresponding to (i) and (ii) (Theorem 5.1 and Theorem 3.2 in [6]), in particular the limit W_0 has the same distribution as given by Darling in his Theorem 5.1, while Breiman proved the necessity parts corresponding to (i), (ii) and (iii) (Theorem 3 (p. 357), Theorem 2 and Theorem 4 in [4]). A special case of Theorem 1 in Teugels [12] gives the sufficiency analog of (i) in the case of i.i.d. nonnegative sums for any $k \ge 0$.

The necessary and sufficient condition in the cases (ii) and (iii), stated in the more general setup of Lévy processes without a normal component, is given by Buchmann, Fan and Maller [5], see their Theorem 3.1 and 5.1.

Next we shall investigate the asymptotic distribution of the ratio of two consecutive ordered jumps $m_t^{(k+1)}/m_t^{(k)}$, $k \ge 1$. We shall obtain the analog for subordinators of a special case of a result that Bingham and Teugels [3] established for i.i.d. nonnegative random variables. This will follow from a general result on the asymptotic distribution of ratios of the form defined for $k \ge 1$ by

$$r_k(t) = \frac{\psi(S_{k+1}/t)}{\psi(S_k/t)}, t > 0,$$

where for each $k \ge 1$, $S_k = \omega_1 + \ldots + \omega_k$, with $\omega_1, \omega_2, \ldots$ being i.i.d. mean 1 exponential random variables and ψ is the nonincreasing and right continuous function defined for s > 0 by

$$\psi(s) = \sup\{y : \overline{\Pi}(y) > s\},\$$

with Π being a positive measure on $(0, \infty)$ such that $\overline{\Pi}(x) = \Pi((x, \infty)) \to 0$, as $x \to \infty$. Note that we do not require Π to be a Lévy measure. Also whenever we consider the asymptotic distribution of $r_k(t)$ as $t \downarrow 0$ we shall assume that $\overline{\Pi}(0+) = \infty$.

We call a function f rapidly varying at 0 with index $-\infty,\,f\in \mathrm{RV}_0(-\infty),$ if

$$\lim_{x \downarrow 0} \frac{f(\lambda x)}{f(x)} = \begin{cases} 0, & \text{for } \lambda > 1, \\ 1, & \text{for } \lambda = 1, \\ \infty, & \text{for } \lambda < 1. \end{cases}$$

Correspondingly, a function f is rapidly varying at ∞ with index $-\infty$, $f \in \mathrm{RV}_{\infty}(-\infty)$, if the same holds with $x \to \infty$.

Theorem 2. For any choice of $k \ge 1$ the ratio $r_k(t)$ converges in distribution as $t \downarrow 0$ $(t \to \infty)$ to a random variable Y_k if and only if one of the following holds:

(i) $\overline{\Pi}$ is regularly varying at $0 \ (\infty)$ with parameter $-\alpha \in (-\infty, 0)$, in which case Y_k has the Beta $(k\alpha, 1)$ distribution, i.e.

$$G_k(x) = \mathbf{P}\{Y_k \le x\} = x^{k\alpha}, \quad x \in [0, 1];$$
 (4)

- (ii) $\overline{\Pi}$ is slowly varying at 0 (∞), in which case $Y_k = 0$ a.s.
- (iii) $\overline{\Pi}$ is rapidly varying at 0 (∞) with index $-\infty$, in which case $Y_k = 1$ a.s.

Theorem 2 has some important applications to the asymptotic distribution of the ratio of two consecutive ordered jumps $m_t^{(k+1)}/m_t^{(k)}$, $k \ge 1$, of a Lévy process. Let X_t , $t \ge 0$, be a Lévy processes whose Lévy measure Λ is concentrated on $(0, \infty)$. Here in addition to $\overline{\Lambda}(x) \to 0$ as $x \to \infty$, we require that

$$\int_0^\infty \min\{1, x^2\} \Lambda(\mathrm{d}x) < \infty.$$
(5)

In this setup one has the distributional representation for $k \ge 1$

$$\left(m_t^{(k)}, m_t^{(k+1)}\right) \stackrel{\mathcal{D}}{=} \left(\varphi(S_k/t), \varphi(S_{k+1}/t)\right),\tag{6}$$

with φ defined for s > 0 to be

$$\varphi(s) = \sup\{y : \overline{\Lambda}(y) > s\}.$$
(7)

It is readily checked that φ is nonincreasing and right continuous. Moreover, whenever Λ is the Lévy measure of a subordinator V_t , condition (1) holds, which is equivalent to

$$\int_{\delta}^{\infty} \varphi(s) \mathrm{d}s < \infty, \text{ for any } \delta > 0.$$
(8)

The distributional representation in (6) follows from Proposition 1 in Kevei and Mason [7], see the proof of Theorem 1 below. For general spectrally positive Lévy processes it can be deduced using the same methods that Maller and Mason [9] derived the distributional representation for a Lévy process given in their Proposition 5.7. When applying Theorem 2 to the asymptotic distribution of consecutive ordered jumps at 0 or ∞ of a Lévy processes X_t whose Lévy measure Λ is concentrated on $(0, \infty)$, we have to keep in mind that (5) must always hold and (1) must be satisfied whenever X_t is a subordinator. For instance in the case of a subordinator V_t , whenever $m_t^{(k+1)}/m_t^{(k)}$ converges in distribution to a random variable Y_k as $t \downarrow 0$, Theorem 2 says that $\overline{\Lambda}$ is regularly varying at 0. Further since (1) must hold, the parameter $-\alpha$ is necessarily in [-1, 0], while there is no such restriction when considering convergence in distribution as $t \to \infty$. We note that in case of general Lévy processes for k = 1 the sufficiency part corresponding to part (ii) in Theorem 2 is given in Theorem 3.1 in [5].

In the special case when V_t is an α -stable subordinator, $\alpha \in (0, 1)$, and $m^{(1)} > m^{(2)} > \ldots$ is its jump sequence on [0, 1], then $(m^{(1)}/V_1, m^{(2)}/V_1, \ldots)$ has the Poisson–Dirichlet law with parameter $(\alpha, 0)$ (PD $(\alpha, 0)$), see Bertoin [1] p. 90. The ratio of the (k + 1)th and kth element of a vector, which has the PD $(\alpha, 0)$ law, has the Beta $(k\alpha, 1)$ distribution (Proposition 2.6 in [1]).

2 Proofs

In the proofs we only consider the case when $t \downarrow 0$, as the $t \to \infty$ case is nearly identical.

2.1 Proof of Theorem 1

First we calculate the Laplace exponent of the ratio using the notation φ defined in (7). We see by the nonincreasing version of the change of variables formula stated in (4.9) Proposition of Revuz and Yor [10], which is given in Lemma 1 in [7],

$$\mathbf{E}\mathrm{e}^{-\lambda V_t} = \exp\left\{-t \int_0^\infty \left(1 - \mathrm{e}^{-\lambda v}\right) \Lambda(\mathrm{d}v)\right\}$$
$$= \exp\left\{-t \int_0^\infty \left(1 - \mathrm{e}^{-\lambda \varphi(x)}\right) \mathrm{d}x\right\}.$$

The key ingredient of our proofs is a distributional representation of the subordinator V_t given in Kevei and Mason (Proposition 1 in [7]), which follows from a general representation by Rosiński [11]. It states that for t > 0

$$V_t \stackrel{\mathcal{D}}{=} \sum_{i=1}^{\infty} \varphi\left(\frac{S_i}{t}\right). \tag{9}$$

From the proof of this result it is clear that $\varphi(S_i/t)$ corresponds to $m_t^{(i)}$, for $i \ge 1$. Therefore

$$\frac{V_t^{(k)}}{m_t^{(k+1)}} \stackrel{\mathcal{D}}{=} \frac{\sum_{i=k+1}^{\infty} \varphi(S_i/t)}{\varphi(S_{k+1}/t)}.$$

Conditioning on $S_{k+1} = s$ and using the independence we can write

$$\sum_{i=k+2}^{\infty} \varphi(S_i/t) = \sum_{i=k+2}^{\infty} \varphi\left(\frac{s}{t} + \frac{S_i - s}{t}\right)$$
$$\stackrel{\mathcal{D}}{=} \sum_{i=1}^{\infty} \varphi\left(\frac{s}{t} + \frac{S_i}{t}\right)$$
$$= \sum_{i=1}^{\infty} \varphi_{s/t}\left(S_i/t\right),$$

where $\varphi_y(x) = \varphi(y+x)$. Note that the latter sum has the same form as in (9), therefore it is equal in distribution to a subordinator $V^{(s/t)}(t)$ with Laplace transform

$$\mathbf{E} e^{-\lambda V_t^{(s/t)}} = \exp\left\{-t \int_0^\infty \left(1 - e^{-\lambda \varphi_{s/t}(x)}\right) dx\right\}$$
$$= \exp\left\{-t \int_{s/t}^\infty (1 - e^{-\lambda \varphi(x)}) dx\right\}.$$
(10)

Now we can compute the Laplace transform of the ratio $V_t^{(k)}/m_t^{(k+1)}$. Since S_{k+1} has Gamma(k+1,1) distribution, the law of total probability and (10) give

$$\begin{aligned} \mathbf{E} \exp\left\{-\lambda \frac{V_t^{(k)}}{m_t^{(k+1)}}\right\} &= \mathbf{E} \exp\left\{-\lambda \frac{\sum_{i=k+1}^{\infty} \varphi(S_i/t)}{\varphi(S_{k+1}/t)}\right\} \\ &= \int_0^\infty \frac{s^k}{k!} \mathrm{e}^{-s} \left[\mathrm{e}^{-\lambda} \mathbf{E} \exp\left\{-\frac{\lambda}{\varphi(s/t)} \sum_{i=1}^\infty \varphi_{s/t}(S_i/t)\right\}\right] \mathrm{d}s \\ &= \mathrm{e}^{-\lambda} \int_0^\infty \frac{s^k}{k!} \mathrm{e}^{-s} \exp\left\{-t \int_{s/t}^\infty \left[1 - \mathrm{e}^{-\frac{\lambda}{\varphi(s/t)}\varphi(x)}\right] \mathrm{d}x\right\} \mathrm{d}s \end{aligned} \tag{11} \\ &= \frac{t^{k+1}}{k!} \mathrm{e}^{-\lambda} \int_0^\infty u^k \exp\left\{-t \left(u + \int_u^\infty \left[1 - \mathrm{e}^{-\lambda \frac{\varphi(x)}{\varphi(u)}}\right] \mathrm{d}x\right)\right\} \mathrm{d}u \\ &= \frac{t^{k+1}}{k!} \mathrm{e}^{-\lambda} \int_0^\infty u^k \mathrm{e}^{-t\Psi(u,\lambda)} \mathrm{d}u, \end{aligned}$$

where

$$\Psi(u,\lambda) = u + \int_{u}^{\infty} \left[1 - e^{-\lambda \frac{\varphi(x)}{\varphi(u)}} \right] dx.$$
(12)

Since φ is right continuous on $(0, \infty)$, $\Psi(\cdot, \lambda)$ is also right continuous on $(0, \infty)$. Further a short calculation shows that this function is strictly increasing for any $\lambda > 0$, moreover for $u_1 > u_2$

$$\Psi(u_1,\lambda) - \Psi(u_2,\lambda) \ge e^{-\lambda}(u_1 - u_2).$$

Clearly $\Psi(\infty, \lambda) = \infty$ and therefore

$$\Psi_k(u,\lambda) := \Psi\left(((k+1)u)^{1/(k+1)},\lambda\right)$$

has a right continuous increasing inverse function given by

$$Q_{\lambda}(s) = \inf \left\{ v : \Psi_k \left(v, \lambda \right) > s \right\}, \text{ for } s \ge 0,$$

such that $Q_{\lambda}(0) = 0$ and $\lim_{x\to\infty} Q_{\lambda}(x) = \infty$. (For the right continuity part see (4.8) Lemma in Revuz and Yor [10].)

Necessity. Assuming that $V_t^{(k)}/m_t^{(k+1)}$ converges in distribution as $t \to 0$ to some extended random variable W_k , we can apply Theorem 2a on p. 210 of Feller [8] to conclude that its Laplace transform also converges, i.e.

$$\int_0^\infty u^k \mathrm{e}^{-t\Psi(u,\lambda)} \mathrm{d}u = \int_0^\infty \mathrm{e}^{-t\Psi_k(v,\lambda)} \mathrm{d}v$$
$$= \int_0^\infty \mathrm{e}^{-ty} \mathrm{d}Q_\lambda(y) \sim \frac{\mathrm{e}^\lambda g_k(\lambda)k!}{t^{k+1}}, \text{ as } t \to 0,$$

where $g_k(\lambda) = \mathbf{E}e^{-\lambda W_k}$, and W_k can possibly have a defective distribution, i.e. possibly $\mathbf{P} \{W_k = \infty\} > 0$. (Here we used the change of variables formula given in (4.9) Proposition in Revuz and Yor [10].) By Karamata's Tauberian theorem (Theorem 1.7.1 in [2])

$$Q_{\lambda}(y) \sim \frac{y^{k+1}}{k+1} e^{\lambda} g_k(\lambda), \quad \text{as } y \to \infty,$$

and thus by Theorem 1.5.12 in [2]

$$\Psi_k\left(v,\lambda\right) \sim \left(\frac{(k+1)v}{\mathrm{e}^{\lambda}g_k(\lambda)}\right)^{1/(k+1)}, \quad \text{as } v \to \infty,$$

and hence

$$\Psi(u,\lambda) \sim u \left[e^{\lambda} g_k(\lambda) \right]^{-\frac{1}{k+1}}, \text{ as } u \to \infty.$$

Substituting back into (12) we obtain for any $\lambda > 0$

$$\lim_{u \to \infty} \frac{1}{u} \int_{u}^{\infty} \left(1 - e^{-\lambda \frac{\varphi(x)}{\varphi(u)}} \right) dx = \left[e^{\lambda} g_k(\lambda) \right]^{-\frac{1}{k+1}} - 1.$$
(13)

Note that the limit W_k is ≥ 1 , with probability 1, and so $g_k(\lambda) \leq e^{-\lambda}$. Thus for any λ

$$\left[\mathrm{e}^{\lambda}g_k(\lambda)\right]^{-\frac{1}{k+1}} - 1 \ge 0.$$

For any $x \ge 0$ we have $1 - e^{-x} \le x$. Therefore by (13) we obtain for any $\lambda > 0$

$$\liminf_{u \to \infty} \frac{1}{u\varphi(u)} \int_{u}^{\infty} \varphi(x) \mathrm{d}x \ge \frac{1}{\lambda} \left(\left[\mathrm{e}^{\lambda} g_{k}(\lambda) \right]^{-\frac{1}{k+1}} - 1 \right).$$
(14)

On the other hand, by monotonicity $\varphi(x)/\varphi(u) \leq 1$ for $u \leq x$. Therefore for any $0 < \varepsilon < 1$ there exists a $\lambda_{\varepsilon} > 0$, such that for all $0 < \lambda < \lambda_{\varepsilon}$

$$1 - e^{-\lambda \frac{\varphi(x)}{\varphi(u)}} \ge (1 - \varepsilon) \frac{\lambda \varphi(x)}{\varphi(u)}, \text{ for } x \ge u.$$

Using again (13) and keeping (8) in mind, this implies that for such λ

$$\limsup_{u \to \infty} \frac{1}{u\varphi(u)} \int_{u}^{\infty} \varphi(x) \mathrm{d}x \le \frac{1}{1-\varepsilon} \frac{1}{\lambda} \left(\left[\mathrm{e}^{\lambda} g_{k}(\lambda) \right]^{-\frac{1}{k+1}} - 1 \right).$$
(15)

In particular, we obtain that, whenever $g_k(\lambda) \neq 0$ (i.e. $\mathbf{P}\{W_k < \infty\} > 0$)

$$0 \leq \liminf_{u \to \infty} \frac{1}{u\varphi(u)} \int_u^\infty \varphi(x) \mathrm{d}x \leq \limsup_{u \to \infty} \frac{1}{u\varphi(u)} \int_u^\infty \varphi(x) \mathrm{d}x < \infty.$$

Note that in (14) the greatest lower bound is 0 for all $\lambda > 0$ if and only if $g_k(\lambda) = e^{-\lambda}$, in which case $W_k = 1$. Then the upper bound for the limsup in (15) is 0, thus

$$\lim_{u \to \infty} \frac{1}{u\varphi(u)} \int_u^\infty \varphi(x) \mathrm{d}x = 0,$$

which by Proposition 2.6.10 in [2] applied to the function $f(x) = x\varphi(x)$ implies that $\varphi \in \mathrm{RV}_{\infty}(-\infty)$, and so, by Theorem 2.4.7 in [2], $\overline{\Lambda}$ is slowly varying at 0. We have proved that $W_k = 1$ if and only if $\overline{\Lambda}$ is slowly varying at 0. In the following we assume that $\mathbf{P} \{W_k > 1\} > 0$, therefore the limit in (14) is strictly positive. Let

$$a = \liminf_{\lambda \downarrow 0} \frac{1}{\lambda} \left(\left[e^{\lambda} g_k(\lambda) \right]^{-\frac{1}{k+1}} - 1 \right) \le \limsup_{\lambda \downarrow 0} \frac{1}{\lambda} \left(\left[e^{\lambda} g_k(\lambda) \right]^{-\frac{1}{k+1}} - 1 \right) = b.$$

By (15) and (14), a > 0 and $b < \infty$. Moreover

$$b \leq \liminf_{u \to \infty} \frac{1}{u\varphi(u)} \int_{u}^{\infty} \varphi(x) \mathrm{d}x \leq \limsup_{u \to \infty} \frac{1}{u\varphi(u)} \int_{u}^{\infty} \varphi(x) \mathrm{d}x \leq a,$$

which forces

$$a = b = \lim_{u \to \infty} \frac{1}{u\varphi(u)} \int_{u}^{\infty} \varphi(x) dx = \lim_{\lambda \downarrow 0} \frac{1}{\lambda} \left(\left[e^{\lambda} g_k(\lambda) \right]^{-\frac{1}{k+1}} - 1 \right).$$

By Karamata's theorem (Theorem 1.6.1 (ii) in [2]) we obtain that φ is regularly varying at infinity with parameter $-a^{-1} - 1 =: -\alpha^{-1}$, so Λ is regularly varying with parameter $-\alpha$ at zero with $\alpha \in (0, 1)$.

Let us consider the case when $W_k = \infty$ a.s., that is $V_t^{(k)}/m_t^{(k+1)} \xrightarrow{\mathbf{P}} \infty$. All the previous computations are valid, with $g_k(\lambda) = \mathbf{E} e^{-\lambda \infty} \equiv 0$. Thus, from (14) we have

$$\lim_{u \to \infty} \frac{1}{u\varphi(u)} \int_u^\infty \varphi(x) \mathrm{d}x = \infty.$$

From this, through the change of variables formula we obtain (3).

Sufficiency and the limit. Consider first the special case when $\varphi(x) = x^{-\frac{1}{\alpha}}$, $\alpha \in (0, 1)$. Then a quick calculation gives

$$\frac{1}{u} \int_{u}^{\infty} \left(1 - e^{-\lambda \frac{\varphi(x)}{\varphi(u)}} \right) dx = \alpha \int_{0}^{1} \left(1 - e^{-\lambda y} \right) y^{-\alpha - 1} dy.$$

By formula (13) for the Laplace transform of the limit we obtain (2).

The sufficiency can be proved by standard arguments for regularly varying functions. Using Potter bounds (Theorem 1.5.6 in [2]) one can show that for $\alpha \in (0, 1)$

$$\lim_{u \to \infty} \frac{1}{u} \Psi(u, \lambda) = 1 + \alpha \int_0^1 \left(1 - e^{-\lambda y} \right) y^{-\alpha - 1} dy,$$

from which, through formula (11), the convergence readily follows. As already mentioned, cases (ii) and (iii) are treated in [5].

2.2 Proof of Theorem 2

Using that $\psi(y) \leq x$ if and only if $\overline{\Pi}(x) \leq y$, for the distribution function of the ratio we have for $x \in (0, 1)$

$$\mathbf{P}\left\{r_{k}(t) \leq x\right\} = \mathbf{P}\left\{\frac{\psi(S_{k+1}/t)}{\psi(S_{k}/t)} \leq x\right\}$$

$$= \int_{0}^{\infty} \frac{s^{k-1}}{(k-1)!} e^{-s} \mathbf{P}\left\{\psi\left(\frac{s+S_{1}}{t}\right) \leq x\psi\left(\frac{s}{t}\right)\right\} ds$$

$$= \int_{0}^{\infty} \frac{s^{k-1}}{(k-1)!} e^{-s} e^{-[t\overline{\Pi}(x\psi(s/t))-s]} ds$$

$$= \frac{t^{k}}{(k-1)!} \int_{0}^{\infty} u^{k-1} e^{-t\overline{\Pi}(x\psi(u))} du.$$
(16)

Necessity. Assume that the limit distribution function G_k exists. Write

$$\frac{t^k}{(k-1)!} \int_0^\infty u^{k-1} e^{-t\overline{\Pi}(x\psi(u))} du = \frac{t^k}{(k-1)!} \int_0^\infty e^{-t\Phi_k(v,x)} dv, \qquad (17)$$

where $\Phi_k(v, x) = \overline{\Pi} \left(x \psi((kv)^{1/k}) \right)$. Note that for each $x \in (0, 1)$ the function $\Phi_k(\cdot, x)$ is monotone nondecreasing, since $\overline{\Pi}$ and ψ are both monotone nonincreasing. Let

$$\mathcal{G}_k = \{x : x \text{ is a continuity point of } G_k \text{ in } (0,1) \text{ such that } G_k(x) > 0\}.$$

First assume that $\mathbf{P}\{Y_k < 1\} > 0$. Clearly we can now proceed as in the proof of Theorem 1 to apply Karamata's Tauberian theorem (Theorem 1.7.1 in [2]) to give that for any $x \in \mathcal{G}_k$,

$$\lim_{u \to \infty} \frac{\Pi(x\psi(u))}{u} = [G_k(x)]^{-\frac{1}{k}}.$$
(18)

In fact, there is a small difference here compared to the proof of Theorem 1. We have to be more cautious, as $\Phi_k(v, x)$ is not necessarily rightcontinuous as a function of v > 0. To use the machinery from the proof of Theorem 1 we need to consider the right-continuous version $\widetilde{\Phi}_k(v, x) :=$ $\Phi_k(v+, x)$. Since, in (17) we integrate with respect to the Lebesgue measure and Φ_k and $\widetilde{\Phi}_k$ are equal almost everywhere, substituting Φ_k with $\widetilde{\Phi}_k$ leaves the integral unchanged. Therefore, proceeding as before we obtain that

$$\widetilde{\Phi}_k(v,x) \sim \left(\frac{kv}{G_k(x)}\right)^{1/k}, \text{ as } v \to \infty,$$

and since the right-hand function is continuous, we also get that

$$\Phi_k(v,x) \sim \left(\frac{kv}{G_k(x)}\right)^{1/k}, \quad \text{as } v \to \infty,$$

form which now (18) does indeed follow.

We claim that (18) implies the regular variation of $\overline{\Pi}$. When $\overline{\Pi}$ is continuous and strictly decreasing we get by changing variables to $\psi(u) = t$, $u = \overline{\Pi}(t)$, that we have for any $x \in \mathcal{G}_k$

$$\lim_{t \downarrow 0} \frac{\Pi(tx)}{\overline{\Pi}(t)} = [G_k(x)]^{-\frac{1}{k}},$$

which by an easy application of Proposition 1.10.5 in [2] implies that $\overline{\Pi}$ is regularly varying.

Note that the jumps of $\overline{\Pi}$ correspond to constant parts of ψ , and vice versa. Put $\mathcal{J} = \{z : \overline{\Pi}(z-) > \overline{\Pi}(z)\}$ for the jump points of $\overline{\Pi}$. For $z \in \mathcal{J}$ and $y \in [\overline{\Pi}(z), \overline{\Pi}(z-))$ we have $\psi(y) = z$. Substituting into (18) we have

$$\lim_{z \downarrow 0, z \in \mathcal{J}} \frac{\Pi(xz)}{\overline{\Pi}(z)} = [G_k(x)]^{-\frac{1}{k}}, \text{ and } \lim_{z \downarrow 0, z \in \mathcal{J}} \frac{\Pi(xz)}{\overline{\Pi}(z-)} = [G_k(x)]^{-\frac{1}{k}}.$$
 (19)

To see how the second limit holds in (19) note that for any $0 < \varepsilon < 1$ and $z \in \mathcal{J}$, we have $\psi\left(\varepsilon \overline{\Pi}(z) + (1-\varepsilon) \overline{\Pi}(z-)\right) = z$ and thus

$$\lim_{z \downarrow 0, z \in \mathcal{J}} \frac{\Pi(xz)}{\varepsilon \overline{\Pi}(z) + (1-\varepsilon) \overline{\Pi}(z-)} = [G_k(x)]^{-\frac{1}{k}}.$$

Since $0 < \varepsilon < 1$ can be chosen arbitrarily close to 0 this implies the validity of the second limit in (19). Therefore by choosing any $x \in \mathcal{G}_k$ we get

$$\lim_{z \downarrow 0} \frac{\overline{\Pi}(z-)}{\overline{\Pi}(z)} = 1.$$
(20)

Let

$$\mathcal{A} = \{ z > 0 : \overline{\Pi}(z - \varepsilon) > \overline{\Pi}(z) \text{ for all } z > \varepsilon > 0 \}.$$

This set contains exactly those points z for which $\psi(\overline{\Pi}(z)) = z$. With this notation formula (18) can be written as

$$\lim_{z \downarrow 0, z \in \mathcal{A}} \frac{\Pi(xz)}{\overline{\Pi}(z)} = [G_k(x)]^{-\frac{1}{k}}, \text{ for } x \in \mathcal{G}_k.$$
(21)

This together with (20) will allow us to apply Proposition 1.10.5 in [2] to conclude that $\overline{\Pi}$ is regularly varying. We shall need the following technical lemma.

Lemma 1. Whenever (20) holds, there exists a strictly decreasing sequence $z_n \in \mathcal{A}$ such that $z_n \to 0$ and

$$\lim_{n \to \infty} \frac{\overline{\Pi}(z_{n+1})}{\overline{\Pi}(z_n)} = 1.$$
 (22)

Proof. Choose $z_1 \in \mathcal{A}$ such that $\overline{\Pi}(z_1) > 0$, and define for each $n \geq 1$

$$z_{n+1} = \sup\left\{z > 0 : \overline{\Pi}(z) > \left(1 + \frac{1}{n}\right)\overline{\Pi}(z_n -)\right\}.$$

Notice that the sequence $\{z_n\}$ is well-defined, since $\overline{\Pi}(0+) = \infty$ and it is decreasing. Further we have

$$\overline{\Pi}(z_{n+1}-) \ge \left(1+\frac{1}{n}\right) \overline{\Pi}(z_n-) \text{ and } \overline{\Pi}(z_{n+1}) \le \left(1+\frac{1}{n}\right) \overline{\Pi}(z_n-),$$

where the second inequality follows by right continuity of $\overline{\Pi}$. Also note that $z_{n+1} < z_n$, since otherwise if $z_{n+1} = z_n$, then

$$\overline{\Pi}(z_{n+1}-) = \overline{\Pi}(z_n-) \ge \left(1+\frac{1}{n}\right)\overline{\Pi}(z_n-).$$

which is impossible. Observe that each z_{n+1} is in \mathcal{A} since by the definition of z_{n+1} for all $0 < \varepsilon < z_{n+1}$

$$\overline{\Pi}(z_{n+1}-\varepsilon) > \left(1+\frac{1}{n}\right)\overline{\Pi}(z_n-) \ge \overline{\Pi}(z_{n+1}).$$

Clearly since $\{z_n\}$ is a decreasing and positive sequence, $\lim_{n\to\infty} z_n = z^*$ exists and is ≥ 0 . By construction

$$\overline{\Pi}(z_{n+1}-) \ge \left(1+\frac{1}{n}\right)\overline{\Pi}(z_n-) \ge \prod_{k=1}^n \left(1+\frac{1}{k}\right)\overline{\Pi}(z_1-).$$

The infinite product $\prod_{n=1}^{\infty} (1+1/n) = \infty$ forces $z^* = 0$. Also by construction we have

$$1 \le \frac{\overline{\Pi}(z_{n+1})}{\overline{\Pi}(z_n-)} = \frac{\overline{\Pi}(z_{n+1})}{\overline{\Pi}(z_n)} \left(\frac{\overline{\Pi}(z_n)}{\overline{\Pi}(z_n-)}\right) \le 1 + \frac{1}{n}.$$

By (20) we have

$$\lim_{n \to \infty} \frac{\Pi(z_n)}{\overline{\Pi}(z_n-)} = 1.$$

Therefore we get (22). \Box

According to Proposition 1.10.5 in [2] to establish that $\overline{\Pi}$ is regularly varying at zero it suffices to produce λ_1 and λ_2 in (0, 1) such that for i = 1, 2

$$\frac{\overline{\Pi}(\lambda_i z_n)}{\overline{\Pi}(z_n)} \to d_i \in (0,\infty), \text{ as } n \to \infty,$$

where $(\log \lambda_1) / (\log \lambda_2)$ is finite and irrational. This can clearly be done using (21) and $\mathbf{P}\{Y_k < 1\} > 0$. Necessarily $\overline{\Pi}$ has index of regular variation parameter $-\alpha \in (-\infty, 0]$. For $\alpha \in (0, \infty)$ the limiting distribution function has the form (4). In the case $\alpha = 0$, $\overline{\Pi}$ is slowly varying at 0 and we get that $G_k(x) = 1$ for $x \in (0, 1)$, i.e. $Y_k = 0$ a.s.

Now consider the case when $\mathbf{P}\{Y_k = 1\} = 1$, i.e. $G_k(x) = 0$ for any $x \in (0, 1)$. We once more use Theorem 1.7.1 in [2], with c = 0 this time, and as an analog of (18) we obtain

$$\lim_{u \to \infty} \frac{\Pi(x\psi(u))}{u} = \infty.$$

This readily implies that

$$\lim_{z \downarrow 0, z \in \mathcal{A}} \frac{\overline{\Pi}(xz)}{\overline{\Pi}(z)} = \infty.$$

Moreover, the analogs of formula (19) also hold, i.e.

$$\lim_{z \downarrow 0, z \in \mathcal{J}} \frac{\overline{\Pi}(xz)}{\overline{\Pi}(z)} = \infty, \quad \text{and} \ \lim_{z \downarrow 0, z \in \mathcal{J}} \frac{\overline{\Pi}(xz)}{\overline{\Pi}(z-)} = \infty.$$

(Note, however, that this does not imply (20).) Let $z \notin \mathcal{A}$, and define $z' = \inf\{v : v \in \mathcal{A}, v > z\}$. Clearly, $z' \downarrow 0$ as $z \downarrow 0$. If $z' \in \mathcal{A}$ then necessarily it is a jump point, $z' \in \mathcal{J}$, and $\overline{\Pi}(z'-) = \overline{\Pi}(z)$. Then

$$\frac{\overline{\Pi}(xz)}{\overline{\Pi}(z)} = \frac{\overline{\Pi}(xz)}{\overline{\Pi}(z'-)} \ge \frac{\overline{\Pi}(xz')}{\overline{\Pi}(z'-)},$$

and the latter tends to ∞ as $z \downarrow 0$. On the other hand, when $z' \notin \mathcal{A}$ it is simple to see that $\overline{\Pi}(z') = \overline{\Pi}(z)$ and $\overline{\Pi}(z' + \varepsilon) < \overline{\Pi}(z')$ for any $\varepsilon > 0$. Moreover, we can find $z < z'' \in \mathcal{A}$, such that $\overline{\Pi}(z) \leq \overline{\Pi}(z'') + 1 \leq 2\overline{\Pi}(z'')$ (we tacitly assumed that z is small enough). Thus

$$\frac{\overline{\Pi}(xz)}{\overline{\Pi}(z)} \ge \frac{\overline{\Pi}(xz)}{\overline{\Pi}(z'') + 1} \ge \frac{\overline{\Pi}(xz'')}{2\overline{\Pi}(z'')},$$

and the lower bound goes to ∞ as $z \downarrow 0$. Summarizing, we have proved that

$$\lim_{z \downarrow 0} \frac{\Pi(xz)}{\overline{\Pi}(z)} = \infty,$$

for any $x \in (0, 1)$, that is, $\overline{\Pi}$ is rapidly varying at 0 with index $-\infty$. **Sufficiency.** Assume that $\overline{\Pi}$ is regularly varying at 0 with index $-\alpha \in (-\infty, 0)$. Then its asymptotic inverse function ψ is regularly varying at ∞ with index $-1/\alpha$, therefore simply

$$r_k(t) = \frac{\psi(S_{k+1}/t)}{\psi(S_k/t)} \to \left(\frac{S_k}{S_{k+1}}\right)^{1/\alpha} \quad \text{a.s., as } t \downarrow 0,$$

which has the distribution G_k in (4). Assume now that $\overline{\Pi}$ is slowly varying at 0. Then $\psi \in \mathrm{RV}_{\infty}(-\infty)$, therefore

$$r_k(t) = \frac{\psi(S_{k+1}/t)}{\psi(S_k/t)} \to 0 \quad \text{a.s., as } t \downarrow 0.$$

Finally, if $\overline{\Pi} \in \mathrm{RV}_0(-\infty)$ then ψ is slowly varying at infinity, so

$$r_k(t) = \frac{\psi(S_{k+1}/t)}{\psi(S_k/t)} \to 1 \quad \text{a.s., as } t \downarrow 0,$$

and the theorem is completely proved.

Acknowledgement. PK was supported by the Hungarian Scientific Research Fund OTKA PD106181 and by the European Union and co-funded by the European Social Fund under the project 'Telemedicine-focused research activities on the field of Mathematics, Informatics and Medical sciences' of project number TÁMOP-4.2.2.A-11/1/KONV-2012-0073. DM thanks the Bolyai Institute for their hospitality while this paper was being written. The authors thank the referee for the useful comments and suggestions.

References

- J. Bertoin. Random Fragmentation and Coagulation Processes. Cambridge University Press (2006).
- [2] N.H. Bingham, C.M. Goldie, J.L. Teugels. *Regular Variation*. Encyclopedia of Mathematics and its Applications, 27, Cambridge University Press, Cambridge (1987).

- [3] N.H. Bingham, J.L. Teugels. Conditions implying domains of attraction. Proceedings of the Sixth Conference on Probability Theory (Braşov, 1979), pp. 23–34, Ed. Acad. R.S. România, Bucharest (1981).
- [4] L. Breiman. On some limit theorems similar to the arc-sin law. Teor. Verojatnost. i Primenen. 10, 351–360 (1965).
- [5] B. Buchmann, Y. Fan, R. Maller. Distributional representations and dominance of a Lévy process over its maximal jump processes. Available on arXiv: http://arxiv.org/abs/1409.4050.
- [6] D.A. Darling. The influence of the maximum term in the addition of independent random variables. *Trans. Amer. Math. Soc.* 73, 95–107 (1952).
- [7] P. Kevei, D.M. Mason. Randomly Weighted Self-normalized Lévy Processes. Stochastic Processes and their Applications 123 (2), 490–522 (2013).
- [8] W. Feller. An Introduction to Probability Theory and Its Applications Vol. II, John Wiley and Sons, Inc., New York–London–Sydney (1966).
- [9] R.A. Maller, D.M. Mason. Small-time compactness and convergence behavior of deterministically and self-normalised Lévy processes. *Trans. Amer. Math. Soc.* 362, 2205-2248 (2010).
- [10] D. Revuz, M. Yor. Continuous Martingales and Brownian Motion. Springer Verlag, Berlin (1991).
- [11] J. Rosiński. Series representation of Lévy processes from the perspective of point processes, in: O.E. Barndorff-Nielsen, T. Mikosch and S.I. Resnick (Eds), Lévy Processes — Theory and Applications, Birkhauser, Boston, 401–415 (2001).
- [12] J.L. Teugels. Limit theorems on order statistics. Ann. Probab. 9, no. 5, 868–880 (1981).