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Abstract

Let Vt be a driftless subordinator, and let denote m
(1)
t ≥ m(2)

t ≥ . . .
its jump sequence on interval [0, t]. Put V

(k)
t = Vt −m(1)

t − . . .−m
(k)
t

for the k-trimmed subordinator. In this note we characterize under
what conditions the limiting distribution of the ratios V

(k)
t /m

(k+1)
t

and m
(k+1)
t /m

(k)
t exist, as t ↓ 0 or t→∞.

Keywords: Subordinator, Jump sequence, Lévy process, Regular vari-
ation, Tauberian theorem.
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1 Introduction and results

Let Vt, t ≥ 0, be a subordinator with Lévy measure Λ and drift 0. Its
Laplace transform is given by

Ee−λVt = exp

{
−t
∫ ∞

0

(
1− e−λv

)
Λ(dv)

}
,

where the Lévy measure Λ satisfies∫ ∞
0

min{1, x}Λ(dx) <∞. (1)
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Put Λ(x) = Λ((x,∞)). Then Λ(x) is nonincreasing and right continuous on
(0,∞). When t ↓ 0 we also assume that Λ(0+) =∞, which is necessary and
sufficient to assure that there is an infinite number of jumps up to time t,
for any t > 0.

Denote m
(1)
t ≥ m

(2)
t ≥ . . . the ordered jumps of Vs up to time t, and for

k ≥ 0 consider the trimmed subordinator

V
(k)
t = Vt −

k∑
j=1

m
(j)
t .

We investigate the asymptotic distribution of jump sizes as t ↓ 0 and t→∞.
Specifically, we shall determine a necessary and sufficient condition in terms
of the Lévy measure Λ for the convergence in distribution of the ratios

V
(k)
t /m

(k+1)
t and m

(k+1)
t /m

(k)
t . Observe in this notation that V

(0)
t = Vt is

the subordinator and m
(1)
t is the largest jump.

An extended random variable W can take the value ∞ with positive
probability, in which caseW has a defective distribution function F , meaning
that F (∞) < 1. We shall call an extended random variable proper, if it is
finite a.s. In this case its F is a probability distribution, i.e. F (∞) = 1.
Here we are using the language of the definition given on p. 127 of Feller [8].

Theorem 1. For any choice of k ≥ 0 the ratio V
(k)
t /m

(k+1)
t converges in

distribution to an extended random variable Wk as t ↓ 0 (t → ∞) if and
only if one of the following holds:

(i) Λ is regularly varying at 0 (∞) with parameter −α, α ∈ (0, 1), in
which case Wk is a proper random variable with Laplace transform

gk(λ) =
e−λ[

1 + α
∫ 1

0 (1− e−λy) y−α−1dy
]k+1

; (2)

(ii) Λ is slowly varying at 0 (∞), in which case Wk = 1 a.s.;

(iii) the condition

xΛ(x)∫ x
0 uΛ(du)

−→ 0 as x ↓ 0 (x→∞) (3)

holds, in which case V
(k)
t /m

(k+1)
t

P−→∞, that is Wk =∞ a.s.
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Note that Theorem 1 says that the situation 0 < P{Wk = ∞} < 1
cannot happen.

The corresponding problem for nonnegative i.i.d. random variables was
investigated by Darling [6] and Breiman [4], in the k = 0 case. In this case
Darling proved the sufficiency parts corresponding to (i) and (ii) (Theorem
5.1 and Theorem 3.2 in [6]), in particular the limit W0 has the same distri-
bution as given by Darling in his Theorem 5.1, while Breiman proved the
necessity parts corresponding to (i), (ii) and (iii) (Theorem 3 (p. 357), The-
orem 2 and Theorem 4 in [4]). A special case of Theorem 1 in Teugels [12]
gives the sufficiency analog of (i) in the case of i.i.d. nonnegative sums for
any k ≥ 0.

The necessary and sufficient condition in the cases (ii) and (iii), stated
in the more general setup of Lévy processes without a normal component,
is given by Buchmann, Fan and Maller [5], see their Theorem 3.1 and 5.1.

Next we shall investigate the asymptotic distribution of the ratio of two

consecutive ordered jumps m
(k+1)
t /m

(k)
t , k ≥ 1. We shall obtain the analog

for subordinators of a special case of a result that Bingham and Teugels [3]
established for i.i.d. nonnegative random variables. This will follow from a
general result on the asymptotic distribution of ratios of the form defined
for k ≥ 1 by

rk (t) =
ψ (Sk+1/t)

ψ (Sk/t)
, t > 0,

where for each k ≥ 1, Sk = ω1 + . . .+ωk, with ω1, ω2, . . . being i.i.d. mean 1
exponential random variables and ψ is the nonincreasing and right continu-
ous function defined for s > 0 by

ψ(s) = sup{y : Π(y) > s},

with Π being a positive measure on (0,∞) such that Π(x) = Π ((x,∞))
→ 0, as x→∞. Note that we do not require Π to be a Lévy measure. Also
whenever we consider the asymptotic distribution of rk(t) as t ↓ 0 we shall
assume that Π(0+) =∞.

We call a function f rapidly varying at 0 with index −∞, f ∈ RV0(−∞),
if

lim
x↓0

f(λx)

f(x)
=


0, for λ > 1,

1, for λ = 1,

∞, for λ < 1.

Correspondingly, a function f is rapidly varying at ∞ with index −∞, f ∈
RV∞(−∞), if the same holds with x→∞.
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Theorem 2. For any choice of k ≥ 1 the ratio rk (t) converges in distri-
bution as t ↓ 0 (t → ∞) to a random variable Yk if and only if one of the
following holds:

(i) Π is regularly varying at 0 (∞) with parameter −α ∈ (−∞, 0), in
which case Yk has the Beta(kα, 1) distribution, i.e.

Gk(x) = P{Yk ≤ x} = xkα, x ∈ [0, 1]; (4)

(ii) Π is slowly varying at 0 (∞), in which case Yk = 0 a.s.

(iii) Π is rapidly varying at 0 (∞) with index −∞, in which case Yk = 1
a.s.

Theorem 2 has some important applications to the asymptotic distribu-

tion of the ratio of two consecutive ordered jumps m
(k+1)
t /m

(k)
t , k ≥ 1, of

a Lévy process. Let Xt, t ≥ 0, be a Lévy processes whose Lévy measure
Λ is concentrated on (0,∞). Here in addition to Λ (x) → 0 as x → ∞, we
require that ∫ ∞

0
min{1, x2}Λ(dx) <∞. (5)

In this setup one has the distributional representation for k ≥ 1(
m

(k)
t ,m

(k+1)
t

)
D
= (ϕ(Sk/t), ϕ(Sk+1/t)) , (6)

with ϕ defined for s > 0 to be

ϕ(s) = sup{y : Λ(y) > s}. (7)

It is readily checked that ϕ is nonincreasing and right continuous. Moreover,
whenever Λ is the Lévy measure of a subordinator Vt, condition (1) holds,
which is equivalent to∫ ∞

δ
ϕ(s)ds <∞, for any δ > 0. (8)

The distributional representation in (6) follows from Proposition 1 in Kevei
and Mason [7], see the proof of Theorem 1 below. For general spectrally
positive Lévy processes it can be deduced using the same methods that
Maller and Mason [9] derived the distributional representation for a Lévy
process given in their Proposition 5.7.
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When applying Theorem 2 to the asymptotic distribution of consecutive
ordered jumps at 0 or ∞ of a Lévy processes Xt whose Lévy measure Λ is
concentrated on (0,∞), we have to keep in mind that (5) must always hold
and (1) must be satisfied whenever Xt is a subordinator. For instance in

the case of a subordinator Vt, whenever m
(k+1)
t /m

(k)
t converges in distribu-

tion to a random variable Yk as t ↓ 0, Theorem 2 says that Λ is regularly
varying at 0. Further since (1) must hold, the parameter −α is necessarily
in [−1, 0], while there is no such restriction when considering convergence in
distribution as t → ∞. We note that in case of general Lévy processes for
k = 1 the sufficiency part corresponding to part (ii) in Theorem 2 is given
in Theorem 3.1 in [5].

In the special case when Vt is an α-stable subordinator, α ∈ (0, 1), and
m(1) > m(2) > . . . is its jump sequence on [0, 1], then (m(1)/V1,m

(2)/V1, . . .)
has the Poisson–Dirichlet law with parameter (α, 0) (PD(α, 0)), see Bertoin
[1] p. 90. The ratio of the (k + 1)th and kth element of a vector, which has
the PD(α, 0) law, has the Beta(kα, 1) distribution (Proposition 2.6 in [1]).

2 Proofs

In the proofs we only consider the case when t ↓ 0, as the t → ∞ case is
nearly identical.

2.1 Proof of Theorem 1

First we calculate the Laplace exponent of the ratio using the notation ϕ
defined in (7). We see by the nonincreasing version of the change of variables
formula stated in (4.9) Proposition of Revuz and Yor [10], which is given in
Lemma 1 in [7],

Ee−λVt = exp

{
−t
∫ ∞

0

(
1− e−λv

)
Λ(dv)

}
= exp

{
−t
∫ ∞

0

(
1− e−λϕ(x)

)
dx

}
.

The key ingredient of our proofs is a distributional representation of
the subordinator Vt given in Kevei and Mason (Proposition 1 in [7]), which
follows from a general representation by Rosiński [11]. It states that for
t > 0

Vt
D
=
∞∑
i=1

ϕ

(
Si
t

)
. (9)
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From the proof of this result it is clear that ϕ(Si/t) corresponds to m
(i)
t , for

i ≥ 1. Therefore

V
(k)
t

m
(k+1)
t

D
=

∑∞
i=k+1 ϕ(Si/t)

ϕ(Sk+1/t)
.

Conditioning on Sk+1 = s and using the independence we can write

∞∑
i=k+2

ϕ(Si/t) =

∞∑
i=k+2

ϕ

(
s

t
+
Si − s
t

)
D
=

∞∑
i=1

ϕ

(
s

t
+
Si
t

)

=

∞∑
i=1

ϕs/t (Si/t) ,

where ϕy(x) = ϕ(y + x). Note that the latter sum has the same form as
in (9), therefore it is equal in distribution to a subordinator V (s/t)(t) with
Laplace transform

Ee−λV
(s/t)
t = exp

{
−t
∫ ∞

0

(
1− e−λϕs/t(x)

)
dx

}
= exp

{
−t
∫ ∞
s/t

(1− e−λϕ(x))dx

}
.

(10)

Now we can compute the Laplace transform of the ratio V
(k)
t /m

(k+1)
t .

Since Sk+1 has Gamma(k + 1, 1) distribution, the law of total probability
and (10) give

E exp

{
−λ V

(k)
t

m
(k+1)
t

}
= E exp

{
−λ
∑∞

i=k+1 ϕ(Si/t)

ϕ(Sk+1/t)

}

=

∫ ∞
0

sk

k!
e−s

[
e−λ E exp

{
− λ

ϕ(s/t)

∞∑
i=1

ϕs/t(Si/t)

}]
ds

= e−λ
∫ ∞

0

sk

k!
e−s exp

{
−t
∫ ∞
s/t

[
1− e

− λ
ϕ(s/t)

ϕ(x)
]

dx

}
ds

=
tk+1

k!
e−λ

∫ ∞
0

uk exp

{
−t
(
u+

∫ ∞
u

[
1− e

−λϕ(x)
ϕ(u)

]
dx

)}
du

=
tk+1

k!
e−λ

∫ ∞
0

uke−tΨ(u,λ)du,

(11)
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where

Ψ(u, λ) = u+

∫ ∞
u

[
1− e

−λϕ(x)
ϕ(u)

]
dx. (12)

Since ϕ is right continuous on (0,∞), Ψ(·, λ) is also right continuous on
(0,∞). Further a short calculation shows that this function is strictly in-
creasing for any λ > 0, moreover for u1 > u2

Ψ(u1, λ)−Ψ(u2, λ) ≥ e−λ(u1 − u2).

Clearly Ψ(∞, λ) =∞ and therefore

Ψk(u, λ) := Ψ
(

((k + 1)u)1/(k+1), λ
)

has a right continuous increasing inverse function given by

Qλ(s) = inf {v : Ψk (v, λ) > s} , for s ≥ 0,

such that Qλ(0) = 0 and limx→∞Qλ(x) =∞. (For the right continuity part
see (4.8) Lemma in Revuz and Yor [10].)

Necessity. Assuming that V
(k)
t /m

(k+1)
t converges in distribution as t → 0

to some extended random variable Wk, we can apply Theorem 2a on p. 210
of Feller [8] to conclude that its Laplace transform also converges, i.e.∫ ∞

0
uke−tΨ(u,λ)du =

∫ ∞
0

e−tΨk(v,λ)dv

=

∫ ∞
0

e−tydQλ (y) ∼ eλgk(λ)k!

tk+1
, as t→ 0,

where gk(λ) = Ee−λWk , and Wk can possibly have a defective distribution,
i.e. possibly P {Wk =∞} > 0. (Here we used the change of variables formula
given in (4.9) Proposition in Revuz and Yor [10].) By Karamata’s Tauberian
theorem (Theorem 1.7.1 in [2])

Qλ(y) ∼ yk+1

k + 1
eλgk(λ), as y →∞,

and thus by Theorem 1.5.12 in [2]

Ψk (v, λ) ∼
(

(k + 1)v

eλgk(λ)

)1/(k+1)

, as v →∞,
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and hence

Ψ(u, λ) ∼ u
[
eλgk(λ)

]− 1
k+1

, as u→∞.

Substituting back into (12) we obtain for any λ > 0

lim
u→∞

1

u

∫ ∞
u

(
1− e

−λϕ(x)
ϕ(u)

)
dx =

[
eλgk(λ)

]− 1
k+1 − 1. (13)

Note that the limit Wk is ≥ 1, with probability 1, and so gk(λ) ≤ e−λ.
Thus for any λ [

eλgk(λ)
]− 1

k+1 − 1 ≥ 0.

For any x ≥ 0 we have 1− e−x ≤ x. Therefore by (13) we obtain for any
λ > 0

lim inf
u→∞

1

uϕ(u)

∫ ∞
u

ϕ(x)dx ≥ 1

λ

([
eλgk(λ)

]− 1
k+1 − 1

)
. (14)

On the other hand, by monotonicity ϕ(x)/ϕ(u) ≤ 1 for u ≤ x. Therefore
for any 0 < ε < 1 there exists a λε > 0, such that for all 0 < λ < λε

1− e
−λϕ(x)

ϕ(u) ≥ (1− ε)λϕ(x)

ϕ(u)
, for x ≥ u.

Using again (13) and keeping (8) in mind, this implies that for such λ

lim sup
u→∞

1

uϕ(u)

∫ ∞
u

ϕ(x)dx ≤ 1

1− ε
1

λ

([
eλgk(λ)

]− 1
k+1 − 1

)
. (15)

In particular, we obtain that, whenever gk(λ) 6≡ 0 (i.e. P{Wk <∞} > 0)

0 ≤ lim inf
u→∞

1

uϕ(u)

∫ ∞
u

ϕ(x)dx ≤ lim sup
u→∞

1

uϕ(u)

∫ ∞
u

ϕ(x)dx <∞.

Note that in (14) the greatest lower bound is 0 for all λ > 0 if and only if
gk(λ) = e−λ, in which case Wk = 1. Then the upper bound for the limsup
in (15) is 0, thus

lim
u→∞

1

uϕ(u)

∫ ∞
u

ϕ(x)dx = 0,

which by Proposition 2.6.10 in [2] applied to the function f(x) = xϕ(x)
implies that ϕ ∈ RV∞(−∞), and so, by Theorem 2.4.7 in [2], Λ is slowly
varying at 0. We have proved that Wk = 1 if and only if Λ is slowly varying
at 0.
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In the following we assume that P {Wk > 1} > 0, therefore the liminf in
(14) is strictly positive. Let

a = lim inf
λ↓0

1

λ

([
eλgk(λ)

]− 1
k+1 − 1

)
≤ lim sup

λ↓0

1

λ

([
eλgk(λ)

]− 1
k+1 − 1

)
= b.

By (15) and (14), a > 0 and b <∞. Moreover

b ≤ lim inf
u→∞

1

uϕ(u)

∫ ∞
u

ϕ(x)dx ≤ lim sup
u→∞

1

uϕ(u)

∫ ∞
u

ϕ(x)dx ≤ a,

which forces

a = b = lim
u→∞

1

uϕ(u)

∫ ∞
u

ϕ(x)dx = lim
λ↓0

1

λ

([
eλgk(λ)

]− 1
k+1 − 1

)
.

By Karamata’s theorem (Theorem 1.6.1 (ii) in [2]) we obtain that ϕ is
regularly varying at infinity with parameter −a−1 − 1 =: −α−1, so Λ is
regularly varying with parameter −α at zero with α ∈ (0, 1).

Let us consider the case when Wk =∞ a.s., that is V
(k)
t /m

(k+1)
t

P−→∞.
All the previous computations are valid, with gk(λ) = Ee−λ∞ ≡ 0. Thus,
from (14) we have

lim
u→∞

1

uϕ(u)

∫ ∞
u

ϕ(x)dx =∞.

From this, through the change of variables formula we obtain (3).

Sufficiency and the limit. Consider first the special case when ϕ(x) =

x−
1
α , α ∈ (0, 1). Then a quick calculation gives

1

u

∫ ∞
u

(
1− e

−λϕ(x)
ϕ(u)

)
dx = α

∫ 1

0

(
1− e−λy

)
y−α−1dy.

By formula (13) for the Laplace transform of the limit we obtain (2).
The sufficiency can be proved by standard arguments for regularly vary-

ing functions. Using Potter bounds (Theorem 1.5.6 in [2]) one can show
that for α ∈ (0, 1)

lim
u→∞

1

u
Ψ(u, λ) = 1 + α

∫ 1

0

(
1− e−λy

)
y−α−1dy,

from which, through formula (11), the convergence readily follows. As al-
ready mentioned, cases (ii) and (iii) are treated in [5].
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2.2 Proof of Theorem 2

Using that ψ(y) ≤ x if and only if Π(x) ≤ y, for the distribution function of
the ratio we have for x ∈ (0, 1)

P {rk(t) ≤ x} = P

{
ψ(Sk+1/t)

ψ(Sk/t)
≤ x

}
=

∫ ∞
0

sk−1

(k − 1)!
e−s P

{
ψ

(
s+ S1

t

)
≤ xψ

(s
t

)}
ds

=

∫ ∞
0

sk−1

(k − 1)!
e−s e−[tΠ(xψ(s/t))−s]ds

=
tk

(k − 1)!

∫ ∞
0

uk−1 e−tΠ(xψ(u))du.

(16)

Necessity. Assume that the limit distribution function Gk exists. Write

tk

(k − 1)!

∫ ∞
0

uk−1e−tΠ(xψ(u))du =
tk

(k − 1)!

∫ ∞
0

e−tΦk(v,x)dv, (17)

where Φk(v, x) = Π
(
xψ((kv)1/k)

)
. Note that for each x ∈ (0, 1) the func-

tion Φk(·, x) is monotone nondecreasing, since Π and ψ are both monotone
nonincreasing. Let

Gk = {x : x is a continuity point of Gk in (0, 1) such that Gk(x) > 0} .

First assume that P{Yk < 1} > 0. Clearly we can now proceed as in the
proof of Theorem 1 to apply Karamata’s Tauberian theorem (Theorem 1.7.1
in [2]) to give that for any x ∈ Gk,

lim
u→∞

Π(xψ(u))

u
= [Gk(x)]−

1
k . (18)

In fact, there is a small difference here compared to the proof of The-
orem 1. We have to be more cautious, as Φk(v, x) is not necessarily right-
continuous as a function of v > 0. To use the machinery from the proof
of Theorem 1 we need to consider the right-continuous version Φ̃k(v, x) :=
Φk(v+, x). Since, in (17) we integrate with respect to the Lebesgue measure
and Φk and Φ̃k are equal almost everywhere, substituting Φk with Φ̃k leaves
the integral unchanged. Therefore, proceeding as before we obtain that

Φ̃k(v, x) ∼
(

kv

Gk(x)

)1/k

, as v →∞,
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and since the right-hand function is continuous, we also get that

Φk(v, x) ∼
(

kv

Gk(x)

)1/k

, as v →∞,

form which now (18) does indeed follow.
We claim that (18) implies the regular variation of Π. When Π is con-

tinuous and strictly decreasing we get by changing variables to ψ(u) = t,
u = Π(t), that we have for any x ∈ Gk

lim
t↓0

Π(tx)

Π(t)
= [Gk(x)]−

1
k ,

which by an easy application of Proposition 1.10.5 in [2] implies that Π is
regularly varying.

Note that the jumps of Π correspond to constant parts of ψ, and vice
versa. Put J = {z : Π(z−) > Π(z)} for the jump points of Π. For z ∈ J
and y ∈

[
Π(z),Π(z−)

)
we have ψ(y) = z. Substituting into (18) we have

lim
z↓0,z∈J

Π(xz)

Π(z)
= [Gk(x)]−

1
k , and lim

z↓0,z∈J

Π(xz)

Π(z−)
= [Gk(x)]−

1
k . (19)

To see how the second limit holds in (19) note that for any 0 < ε < 1 and
z ∈ J , we have ψ

(
εΠ(z) + (1− ε) Π(z−)

)
= z and thus

lim
z↓0,z∈J

Π(xz)

εΠ(z) + (1− ε) Π(z−)
= [Gk(x)]−

1
k .

Since 0 < ε < 1 can be chosen arbitrarily close to 0 this implies the validity
of the second limit in (19). Therefore by choosing any x ∈ Gk we get

lim
z↓0

Π(z−)

Π(z)
= 1. (20)

Let
A = {z > 0 : Π(z − ε) > Π(z) for all z > ε > 0}.

This set contains exactly those points z for which ψ(Π(z)) = z. With this
notation formula (18) can be written as

lim
z↓0,z∈A

Π(xz)

Π(z)
= [Gk(x)]−

1
k , for x ∈ Gk. (21)

This together with (20) will allow us to apply Proposition 1.10.5 in [2] to
conclude that Π is regularly varying. We shall need the following technical
lemma.
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Lemma 1. Whenever (20) holds, there exists a strictly decreasing sequence
zn ∈ A such that zn → 0 and

lim
n→∞

Π(zn+1)

Π(zn)
= 1. (22)

Proof. Choose z1 ∈ A such that Π(z1) > 0, and define for each n ≥ 1

zn+1 = sup

{
z > 0 : Π(z) >

(
1 +

1

n

)
Π(zn−)

}
.

Notice that the sequence {zn} is well-defined, since Π(0+) = ∞ and it is
decreasing. Further we have

Π(zn+1−) ≥
(

1 +
1

n

)
Π(zn−) and Π(zn+1) ≤

(
1 +

1

n

)
Π(zn−),

where the second inequality follows by right continuity of Π. Also note that
zn+1 < zn, since otherwise if zn+1 = zn, then

Π(zn+1−) = Π(zn−) ≥
(

1 +
1

n

)
Π(zn−),

which is impossible. Observe that each zn+1 is in A since by the definition
of zn+1 for all 0 < ε < zn+1

Π(zn+1 − ε) >
(

1 +
1

n

)
Π(zn−) ≥ Π(zn+1).

Clearly since {zn} is a decreasing and positive sequence, limn→∞ zn = z∗

exists and is ≥ 0. By construction

Π(zn+1−) ≥
(

1 +
1

n

)
Π(zn−) ≥

n∏
k=1

(
1 +

1

k

)
Π(z1−).

The infinite product
∏∞
n=1(1+1/n) =∞ forces z∗ = 0. Also by construction

we have

1 ≤ Π(zn+1)

Π(zn−)
=

Π(zn+1)

Π(zn)

(
Π(zn)

Π(zn−)

)
≤ 1 +

1

n
.

By (20) we have

lim
n→∞

Π(zn)

Π(zn−)
= 1.
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Therefore we get (22). tu

According to Proposition 1.10.5 in [2] to establish that Π is regularly
varying at zero it suffices to produce λ1 and λ2 in (0, 1) such that for i = 1, 2

Π(λizn)

Π(zn)
→ di ∈ (0,∞) , as n→∞,

where (log λ1) / (log λ2) is finite and irrational. This can clearly be done
using (21) and P{Yk < 1} > 0. Necessarily Π has index of regular variation
parameter −α ∈ (−∞, 0]. For α ∈ (0,∞) the limiting distribution function
has the form (4). In the case α = 0, Π is slowly varying at 0 and we get
that Gk(x) = 1 for x ∈ (0, 1), i.e. Yk = 0 a.s.

Now consider the case when P{Yk = 1} = 1, i.e. Gk(x) = 0 for any
x ∈ (0, 1). We once more use Theorem 1.7.1 in [2], with c = 0 this time, and
as an analog of (18) we obtain

lim
u→∞

Π(xψ(u))

u
=∞.

This readily implies that

lim
z↓0,z∈A

Π(xz)

Π(z)
=∞.

Moreover, the analogs of formula (19) also hold, i.e.

lim
z↓0,z∈J

Π(xz)

Π(z)
=∞, and lim

z↓0,z∈J

Π(xz)

Π(z−)
=∞.

(Note, however, that this does not imply (20).) Let z 6∈ A, and define
z′ = inf{v : v ∈ A, v > z}. Clearly, z′ ↓ 0 as z ↓ 0. If z′ ∈ A then necessarily
it is a jump point, z′ ∈ J , and Π(z′−) = Π(z). Then

Π(xz)

Π(z)
=

Π(xz)

Π(z′−)
≥ Π(xz′)

Π(z′−)
,

and the latter tends to ∞ as z ↓ 0. On the other hand, when z′ 6∈ A it
is simple to see that Π(z′) = Π(z) and Π(z′ + ε) < Π(z′) for any ε > 0.
Moreover, we can find z < z′′ ∈ A, such that Π(z) ≤ Π(z′′) + 1 ≤ 2Π(z′′)
(we tacitly assumed that z is small enough). Thus

Π(xz)

Π(z)
≥ Π(xz)

Π(z′′) + 1
≥ Π(xz′′)

2Π(z′′)
,

13



and the lower bound goes to∞ as z ↓ 0. Summarizing, we have proved that

lim
z↓0

Π(xz)

Π(z)
=∞,

for any x ∈ (0, 1), that is, Π is rapidly varying at 0 with index −∞.

Sufficiency. Assume that Π is regularly varying at 0 with index −α ∈
(−∞, 0). Then its asymptotic inverse function ψ is regularly varying at ∞
with index −1/α, therefore simply

rk(t) =
ψ(Sk+1/t)

ψ(Sk/t)
→
(

Sk
Sk+1

)1/α

a.s., as t ↓ 0,

which has the distribution Gk in (4). Assume now that Π is slowly varying
at 0. Then ψ ∈ RV∞(−∞), therefore

rk(t) =
ψ(Sk+1/t)

ψ(Sk/t)
→ 0 a.s., as t ↓ 0.

Finally, if Π ∈ RV0(−∞) then ψ is slowly varying at infinity, so

rk(t) =
ψ(Sk+1/t)

ψ(Sk/t)
→ 1 a.s., as t ↓ 0,

and the theorem is completely proved.
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