The limit distribution of ratios of jumps and sums of jumps of subordinators

Péter Kevei
MTA-SZTE Analysis and Stochastics Research Group
Bolyai Institute, Aradi vértanúk tere 1, 6720 Szeged, Hungary
e-mail: kevei@math.u-szeged.hu
David M. Mason
Department of Applied Economics and Statistics
University of Delaware
213 Townsend Hall, Newark, DE 19716, USA
e-mail: davidm@udel.edu

December 2, 2014

Abstract

Let V_{t} be a driftless subordinator, and let denote $m_{t}^{(1)} \geq m_{t}^{(2)} \geq \ldots$ its jump sequence on interval $[0, t]$. Put $V_{t}^{(k)}=V_{t}-m_{t}^{(1)}-\ldots-m_{t}^{(k)}$ for the k-trimmed subordinator. In this note we characterize under what conditions the limiting distribution of the ratios $V_{t}^{(k)} / m_{t}^{(k+1)}$ and $m_{t}^{(k+1)} / m_{t}^{(k)}$ exist, as $t \downarrow 0$ or $t \rightarrow \infty$. Keywords: Subordinator, Jump sequence, Lévy process, Regular variation, Tauberian theorem. MSC2010: 60G51, 60F05.

1 Introduction and results

Let $V_{t}, t \geq 0$, be a subordinator with Lévy measure Λ and drift 0 . Its Laplace transform is given by

$$
\mathbf{E e}^{-\lambda V_{t}}=\exp \left\{-t \int_{0}^{\infty}\left(1-\mathrm{e}^{-\lambda v}\right) \Lambda(\mathrm{d} v)\right\}
$$

where the Lévy measure Λ satisfies

$$
\begin{equation*}
\int_{0}^{\infty} \min \{1, x\} \Lambda(\mathrm{d} x)<\infty . \tag{1}
\end{equation*}
$$

Put $\bar{\Lambda}(x)=\Lambda((x, \infty))$. Then $\bar{\Lambda}(x)$ is nonincreasing and right continuous on $(0, \infty)$. When $t \downarrow 0$ we also assume that $\bar{\Lambda}(0+)=\infty$, which is necessary and sufficient to assure that there is an infinite number of jumps up to time t, for any $t>0$.

Denote $m_{t}^{(1)} \geq m_{t}^{(2)} \geq \ldots$ the ordered jumps of V_{s} up to time t, and for $k \geq 0$ consider the trimmed subordinator

$$
V_{t}^{(k)}=V_{t}-\sum_{j=1}^{k} m_{t}^{(j)} .
$$

We investigate the asymptotic distribution of jump sizes as $t \downarrow 0$ and $t \rightarrow \infty$. Specifically, we shall determine a necessary and sufficient condition in terms of the Lévy measure Λ for the convergence in distribution of the ratios $V_{t}^{(k)} / m_{t}^{(k+1)}$ and $m_{t}^{(k+1)} / m_{t}^{(k)}$. Observe in this notation that $V_{t}^{(0)}=V_{t}$ is the subordinator and $m_{t}^{(1)}$ is the largest jump.

An extended random variable W can take the value ∞ with positive probability, in which case W has a defective distribution function F, meaning that $F(\infty)<1$. We shall call an extended random variable proper, if it is finite a.s. In this case its F is a probability distribution, i.e. $F(\infty)=1$. Here we are using the language of the definition given on p. 127 of Feller [8].

Theorem 1. For any choice of $k \geq 0$ the ratio $V_{t}^{(k)} / m_{t}^{(k+1)}$ converges in distribution to an extended random variable W_{k} as $t \downarrow 0(t \rightarrow \infty)$ if and only if one of the following holds:
(i) $\bar{\Lambda}$ is regularly varying at $0(\infty)$ with parameter $-\alpha, \alpha \in(0,1)$, in which case W_{k} is a proper random variable with Laplace transform

$$
\begin{equation*}
g_{k}(\lambda)=\frac{\mathrm{e}^{-\lambda}}{\left[1+\alpha \int_{0}^{1}\left(1-\mathrm{e}^{-\lambda y}\right) y^{-\alpha-1} \mathrm{~d} y\right]^{k+1}} \tag{2}
\end{equation*}
$$

(ii) $\bar{\Lambda}$ is slowly varying at $0(\infty)$, in which case $W_{k}=1$ a.s.;
(iii) the condition

$$
\begin{equation*}
\frac{x \bar{\Lambda}(x)}{\int_{0}^{x} u \Lambda(\mathrm{~d} u)} \longrightarrow 0 \quad \text { as } x \downarrow 0(x \rightarrow \infty) \tag{3}
\end{equation*}
$$

holds, in which case $V_{t}^{(k)} / m_{t}^{(k+1)} \xrightarrow{\mathbf{P}} \infty$, that is $W_{k}=\infty$ a.s.

Note that Theorem 1 says that the situation $0<\mathbf{P}\left\{W_{k}=\infty\right\}<1$ cannot happen.

The corresponding problem for nonnegative i.i.d. random variables was investigated by Darling [6] and Breiman [4], in the $k=0$ case. In this case Darling proved the sufficiency parts corresponding to (i) and (ii) (Theorem 5.1 and Theorem 3.2 in [6]), in particular the limit W_{0} has the same distribution as given by Darling in his Theorem 5.1, while Breiman proved the necessity parts corresponding to (i), (ii) and (iii) (Theorem 3 (p. 357), Theorem 2 and Theorem 4 in [4]). A special case of Theorem 1 in Teugels [12] gives the sufficiency analog of (i) in the case of i.i.d. nonnegative sums for any $k \geq 0$.

The necessary and sufficient condition in the cases (ii) and (iii), stated in the more general setup of Lévy processes without a normal component, is given by Buchmann, Fan and Maller [5], see their Theorem 3.1 and 5.1.

Next we shall investigate the asymptotic distribution of the ratio of two consecutive ordered jumps $m_{t}^{(k+1)} / m_{t}^{(k)}, k \geq 1$. We shall obtain the analog for subordinators of a special case of a result that Bingham and Teugels [3] established for i.i.d. nonnegative random variables. This will follow from a general result on the asymptotic distribution of ratios of the form defined for $k \geq 1$ by

$$
r_{k}(t)=\frac{\psi\left(S_{k+1} / t\right)}{\psi\left(S_{k} / t\right)}, t>0,
$$

where for each $k \geq 1, S_{k}=\omega_{1}+\ldots+\omega_{k}$, with $\omega_{1}, \omega_{2}, \ldots$ being i.i.d. mean 1 exponential random variables and ψ is the nonincreasing and right continuous function defined for $s>0$ by

$$
\psi(s)=\sup \{y: \bar{\Pi}(y)>s\},
$$

with Π being a positive measure on $(0, \infty)$ such that $\bar{\Pi}(x)=\Pi((x, \infty))$ $\rightarrow 0$, as $x \rightarrow \infty$. Note that we do not require Π to be a Lévy measure. Also whenever we consider the asymptotic distribution of $r_{k}(t)$ as $t \downarrow 0$ we shall assume that $\bar{\Pi}(0+)=\infty$.

We call a function f rapidly varying at 0 with index $-\infty, f \in \mathrm{RV}_{0}(-\infty)$, if

$$
\lim _{x \downarrow 0} \frac{f(\lambda x)}{f(x)}= \begin{cases}0, & \text { for } \lambda>1 \\ 1, & \text { for } \lambda=1 \\ \infty, & \text { for } \lambda<1\end{cases}
$$

Correspondingly, a function f is rapidly varying at ∞ with index $-\infty, f \in$ $\mathrm{RV}_{\infty}(-\infty)$, if the same holds with $x \rightarrow \infty$.

Theorem 2. For any choice of $k \geq 1$ the ratio $r_{k}(t)$ converges in distribution as $t \downarrow 0(t \rightarrow \infty)$ to a random variable Y_{k} if and only if one of the following holds:
(i) $\bar{\Pi}$ is regularly varying at $0(\infty)$ with parameter $-\alpha \in(-\infty, 0)$, in which case Y_{k} has the $\operatorname{Beta}(k \alpha, 1)$ distribution, i.e.

$$
\begin{equation*}
G_{k}(x)=\mathbf{P}\left\{Y_{k} \leq x\right\}=x^{k \alpha}, \quad x \in[0,1] \tag{4}
\end{equation*}
$$

(ii) $\bar{\Pi}$ is slowly varying at $0(\infty)$, in which case $Y_{k}=0$ a.s.
(iii) $\bar{\Pi}$ is rapidly varying at $0(\infty)$ with index $-\infty$, in which case $Y_{k}=1$ a.s.

Theorem 2 has some important applications to the asymptotic distribution of the ratio of two consecutive ordered jumps $m_{t}^{(k+1)} / m_{t}^{(k)}, k \geq 1$, of a Lévy process. Let $X_{t}, t \geq 0$, be a Lévy processes whose Lévy measure Λ is concentrated on $(0, \infty)$. Here in addition to $\bar{\Lambda}(x) \rightarrow 0$ as $x \rightarrow \infty$, we require that

$$
\begin{equation*}
\int_{0}^{\infty} \min \left\{1, x^{2}\right\} \Lambda(\mathrm{d} x)<\infty \tag{5}
\end{equation*}
$$

In this setup one has the distributional representation for $k \geq 1$

$$
\begin{equation*}
\left(m_{t}^{(k)}, m_{t}^{(k+1)}\right) \stackrel{\mathcal{D}}{=}\left(\varphi\left(S_{k} / t\right), \varphi\left(S_{k+1} / t\right)\right) \tag{6}
\end{equation*}
$$

with φ defined for $s>0$ to be

$$
\begin{equation*}
\varphi(s)=\sup \{y: \bar{\Lambda}(y)>s\} \tag{7}
\end{equation*}
$$

It is readily checked that φ is nonincreasing and right continuous. Moreover, whenever Λ is the Lévy measure of a subordinator V_{t}, condition (1) holds, which is equivalent to

$$
\begin{equation*}
\int_{\delta}^{\infty} \varphi(s) \mathrm{d} s<\infty, \text { for any } \delta>0 \tag{8}
\end{equation*}
$$

The distributional representation in (6) follows from Proposition 1 in Kevei and Mason [7], see the proof of Theorem 1 below. For general spectrally positive Lévy processes it can be deduced using the same methods that Maller and Mason [9] derived the distributional representation for a Lévy process given in their Proposition 5.7.

When applying Theorem 2 to the asymptotic distribution of consecutive ordered jumps at 0 or ∞ of a Lévy processes X_{t} whose Lévy measure Λ is concentrated on $(0, \infty)$, we have to keep in mind that (5) must always hold and (1) must be satisfied whenever X_{t} is a subordinator. For instance in the case of a subordinator V_{t}, whenever $m_{t}^{(k+1)} / m_{t}^{(k)}$ converges in distribution to a random variable Y_{k} as $t \downarrow 0$, Theorem 2 says that $\bar{\Lambda}$ is regularly varying at 0 . Further since (1) must hold, the parameter $-\alpha$ is necessarily in $[-1,0]$, while there is no such restriction when considering convergence in distribution as $t \rightarrow \infty$. We note that in case of general Lévy processes for $k=1$ the sufficiency part corresponding to part (ii) in Theorem 2 is given in Theorem 3.1 in [5].

In the special case when V_{t} is an α-stable subordinator, $\alpha \in(0,1)$, and $m^{(1)}>m^{(2)}>\ldots$ is its jump sequence on $[0,1]$, then $\left(m^{(1)} / V_{1}, m^{(2)} / V_{1}, \ldots\right)$ has the Poisson-Dirichlet law with parameter $(\alpha, 0)(\operatorname{PD}(\alpha, 0))$, see Bertoin [1] p. 90. The ratio of the $(k+1)^{\text {th }}$ and $k^{\text {th }}$ element of a vector, which has the $\operatorname{PD}(\alpha, 0)$ law, has the $\operatorname{Beta}(k \alpha, 1)$ distribution (Proposition 2.6 in [1]).

2 Proofs

In the proofs we only consider the case when $t \downarrow 0$, as the $t \rightarrow \infty$ case is nearly identical.

2.1 Proof of Theorem 1

First we calculate the Laplace exponent of the ratio using the notation φ defined in (7). We see by the nonincreasing version of the change of variables formula stated in (4.9) Proposition of Revuz and Yor [10], which is given in Lemma 1 in [7],

$$
\begin{aligned}
\mathbf{E e}^{-\lambda V_{t}} & =\exp \left\{-t \int_{0}^{\infty}\left(1-\mathrm{e}^{-\lambda v}\right) \Lambda(\mathrm{d} v)\right\} \\
& =\exp \left\{-t \int_{0}^{\infty}\left(1-\mathrm{e}^{-\lambda \varphi(x)}\right) \mathrm{d} x\right\} .
\end{aligned}
$$

The key ingredient of our proofs is a distributional representation of the subordinator V_{t} given in Kevei and Mason (Proposition 1 in [7]), which follows from a general representation by Rosiński [11]. It states that for $t>0$

$$
\begin{equation*}
V_{t} \stackrel{\mathcal{D}}{=} \sum_{i=1}^{\infty} \varphi\left(\frac{S_{i}}{t}\right) . \tag{9}
\end{equation*}
$$

From the proof of this result it is clear that $\varphi\left(S_{i} / t\right)$ corresponds to $m_{t}^{(i)}$, for $i \geq 1$. Therefore

$$
\frac{V_{t}^{(k)}}{m_{t}^{(k+1)}} \stackrel{\mathcal{D}}{=} \frac{\sum_{i=k+1}^{\infty} \varphi\left(S_{i} / t\right)}{\varphi\left(S_{k+1} / t\right)}
$$

Conditioning on $S_{k+1}=s$ and using the independence we can write

$$
\begin{aligned}
\sum_{i=k+2}^{\infty} \varphi\left(S_{i} / t\right) & =\sum_{i=k+2}^{\infty} \varphi\left(\frac{s}{t}+\frac{S_{i}-s}{t}\right) \\
& \stackrel{\mathcal{D}}{=} \sum_{i=1}^{\infty} \varphi\left(\frac{s}{t}+\frac{S_{i}}{t}\right) \\
& =\sum_{i=1}^{\infty} \varphi_{s / t}\left(S_{i} / t\right),
\end{aligned}
$$

where $\varphi_{y}(x)=\varphi(y+x)$. Note that the latter sum has the same form as in (9), therefore it is equal in distribution to a subordinator $V^{(s / t)}(t)$ with Laplace transform

$$
\begin{align*}
\mathbf{E e}^{-\lambda V_{t}^{(s / t)}} & =\exp \left\{-t \int_{0}^{\infty}\left(1-\mathrm{e}^{-\lambda \varphi_{s / t}(x)}\right) \mathrm{d} x\right\} \\
& =\exp \left\{-t \int_{s / t}^{\infty}\left(1-\mathrm{e}^{-\lambda \varphi(x)}\right) \mathrm{d} x\right\} . \tag{10}
\end{align*}
$$

Now we can compute the Laplace transform of the ratio $V_{t}^{(k)} / m_{t}^{(k+1)}$. Since S_{k+1} has $\operatorname{Gamma}(k+1,1)$ distribution, the law of total probability and (10) give

$$
\begin{align*}
& \mathbf{E} \exp \left\{-\lambda \frac{V_{t}^{(k)}}{m_{t}^{(k+1)}}\right\}=\mathbf{E} \exp \left\{-\lambda \frac{\sum_{i=k+1}^{\infty} \varphi\left(S_{i} / t\right)}{\varphi\left(S_{k+1} / t\right)}\right\} \\
& =\int_{0}^{\infty} \frac{s^{k}}{k!} \mathrm{e}^{-s}\left[\mathrm{e}^{-\lambda} \mathbf{E} \exp \left\{-\frac{\lambda}{\varphi(s / t)} \sum_{i=1}^{\infty} \varphi_{s / t}\left(S_{i} / t\right)\right\}\right] \mathrm{d} s \\
& =\mathrm{e}^{-\lambda} \int_{0}^{\infty} \frac{s^{k}}{k!} \mathrm{e}^{-s} \exp \left\{-t \int_{s / t}^{\infty}\left[1-\mathrm{e}^{-\frac{\lambda}{\varphi(s / t)} \varphi(x)}\right] \mathrm{d} x\right\} \mathrm{d} s \tag{11}\\
& =\frac{t^{k+1}}{k!} \mathrm{e}^{-\lambda} \int_{0}^{\infty} u^{k} \exp \left\{-t\left(u+\int_{u}^{\infty}\left[1-\mathrm{e}^{-\lambda \frac{\varphi(x)}{\varphi(u)}}\right] \mathrm{d} x\right)\right\} \mathrm{d} u \\
& =\frac{t^{k+1}}{k!} \mathrm{e}^{-\lambda} \int_{0}^{\infty} u^{k} \mathrm{e}^{-t \Psi(u, \lambda)} \mathrm{d} u,
\end{align*}
$$

where

$$
\begin{equation*}
\Psi(u, \lambda)=u+\int_{u}^{\infty}\left[1-\mathrm{e}^{-\lambda \frac{\varphi(x)}{\varphi(u)}}\right] \mathrm{d} x . \tag{12}
\end{equation*}
$$

Since φ is right continuous on $(0, \infty), \Psi(\cdot, \lambda)$ is also right continuous on $(0, \infty)$. Further a short calculation shows that this function is strictly increasing for any $\lambda>0$, moreover for $u_{1}>u_{2}$

$$
\Psi\left(u_{1}, \lambda\right)-\Psi\left(u_{2}, \lambda\right) \geq \mathrm{e}^{-\lambda}\left(u_{1}-u_{2}\right)
$$

Clearly $\Psi(\infty, \lambda)=\infty$ and therefore

$$
\Psi_{k}(u, \lambda):=\Psi\left(((k+1) u)^{1 /(k+1)}, \lambda\right)
$$

has a right continuous increasing inverse function given by

$$
Q_{\lambda}(s)=\inf \left\{v: \Psi_{k}(v, \lambda)>s\right\}, \text { for } s \geq 0
$$

such that $Q_{\lambda}(0)=0$ and $\lim _{x \rightarrow \infty} Q_{\lambda}(x)=\infty$. (For the right continuity part see (4.8) Lemma in Revuz and Yor [10].)
Necessity. Assuming that $V_{t}^{(k)} / m_{t}^{(k+1)}$ converges in distribution as $t \rightarrow 0$ to some extended random variable W_{k}, we can apply Theorem 2a on p. 210 of Feller [8] to conclude that its Laplace transform also converges, i.e.

$$
\begin{aligned}
& \int_{0}^{\infty} u^{k} \mathrm{e}^{-t \Psi(u, \lambda)} \mathrm{d} u=\int_{0}^{\infty} \mathrm{e}^{-t \Psi_{k}(v, \lambda)} \mathrm{d} v \\
= & \int_{0}^{\infty} \mathrm{e}^{-t y} \mathrm{~d} Q_{\lambda}(y) \sim \frac{\mathrm{e}^{\lambda} g_{k}(\lambda) k!}{t^{k+1}}, \text { as } t \rightarrow 0,
\end{aligned}
$$

where $g_{k}(\lambda)=\mathbf{E e}^{-\lambda W_{k}}$, and W_{k} can possibly have a defective distribution, i.e. possibly $\mathbf{P}\left\{W_{k}=\infty\right\}>0$. (Here we used the change of variables formula given in (4.9) Proposition in Revuz and Yor [10].) By Karamata's Tauberian theorem (Theorem 1.7.1 in [2])

$$
Q_{\lambda}(y) \sim \frac{y^{k+1}}{k+1} \mathrm{e}^{\lambda} g_{k}(\lambda), \quad \text { as } y \rightarrow \infty,
$$

and thus by Theorem 1.5.12 in [2]

$$
\Psi_{k}(v, \lambda) \sim\left(\frac{(k+1) v}{\mathrm{e}^{\lambda} g_{k}(\lambda)}\right)^{1 /(k+1)}, \quad \text { as } v \rightarrow \infty
$$

and hence

$$
\Psi(u, \lambda) \sim u\left[\mathrm{e}^{\lambda} g_{k}(\lambda)\right]^{-\frac{1}{k+1}}, \quad \text { as } u \rightarrow \infty
$$

Substituting back into (12) we obtain for any $\lambda>0$

$$
\begin{equation*}
\lim _{u \rightarrow \infty} \frac{1}{u} \int_{u}^{\infty}\left(1-\mathrm{e}^{-\lambda \frac{\varphi(x)}{\varphi(u)}}\right) \mathrm{d} x=\left[\mathrm{e}^{\lambda} g_{k}(\lambda)\right]^{-\frac{1}{k+1}}-1 \tag{13}
\end{equation*}
$$

Note that the limit W_{k} is ≥ 1, with probability 1 , and so $g_{k}(\lambda) \leq \mathrm{e}^{-\lambda}$. Thus for any λ

$$
\left[\mathrm{e}^{\lambda} g_{k}(\lambda)\right]^{-\frac{1}{k+1}}-1 \geq 0
$$

For any $x \geq 0$ we have $1-\mathrm{e}^{-x} \leq x$. Therefore by (13) we obtain for any $\lambda>0$

$$
\begin{equation*}
\liminf _{u \rightarrow \infty} \frac{1}{u \varphi(u)} \int_{u}^{\infty} \varphi(x) \mathrm{d} x \geq \frac{1}{\lambda}\left(\left[\mathrm{e}^{\lambda} g_{k}(\lambda)\right]^{-\frac{1}{k+1}}-1\right) \tag{14}
\end{equation*}
$$

On the other hand, by monotonicity $\varphi(x) / \varphi(u) \leq 1$ for $u \leq x$. Therefore for any $0<\varepsilon<1$ there exists a $\lambda_{\varepsilon}>0$, such that for all $0<\lambda<\lambda_{\varepsilon}$

$$
1-\mathrm{e}^{-\lambda \frac{\varphi(x)}{\varphi(u)}} \geq(1-\varepsilon) \frac{\lambda \varphi(x)}{\varphi(u)}, \text { for } x \geq u
$$

Using again (13) and keeping (8) in mind, this implies that for such λ

$$
\begin{equation*}
\limsup _{u \rightarrow \infty} \frac{1}{u \varphi(u)} \int_{u}^{\infty} \varphi(x) \mathrm{d} x \leq \frac{1}{1-\varepsilon} \frac{1}{\lambda}\left(\left[\mathrm{e}^{\lambda} g_{k}(\lambda)\right]^{-\frac{1}{k+1}}-1\right) . \tag{15}
\end{equation*}
$$

In particular, we obtain that, whenever $g_{k}(\lambda) \not \equiv 0$ (i.e. $\mathbf{P}\left\{W_{k}<\infty\right\}>0$)

$$
0 \leq \liminf _{u \rightarrow \infty} \frac{1}{u \varphi(u)} \int_{u}^{\infty} \varphi(x) \mathrm{d} x \leq \limsup _{u \rightarrow \infty} \frac{1}{u \varphi(u)} \int_{u}^{\infty} \varphi(x) \mathrm{d} x<\infty
$$

Note that in (14) the greatest lower bound is 0 for all $\lambda>0$ if and only if $g_{k}(\lambda)=\mathrm{e}^{-\lambda}$, in which case $W_{k}=1$. Then the upper bound for the limsup in (15) is 0 , thus

$$
\lim _{u \rightarrow \infty} \frac{1}{u \varphi(u)} \int_{u}^{\infty} \varphi(x) \mathrm{d} x=0
$$

which by Proposition 2.6.10 in [2] applied to the function $f(x)=x \varphi(x)$ implies that $\varphi \in \operatorname{RV}_{\infty}(-\infty)$, and so, by Theorem 2.4.7 in [2], $\bar{\Lambda}$ is slowly varying at 0 . We have proved that $W_{k}=1$ if and only if $\bar{\Lambda}$ is slowly varying at 0 .

In the following we assume that $\mathbf{P}\left\{W_{k}>1\right\}>0$, therefore the liminf in (14) is strictly positive. Let

$$
a=\liminf _{\lambda \downarrow 0} \frac{1}{\lambda}\left(\left[\mathrm{e}^{\lambda} g_{k}(\lambda)\right]^{-\frac{1}{k+1}}-1\right) \leq \limsup _{\lambda \downarrow 0} \frac{1}{\lambda}\left(\left[\mathrm{e}^{\lambda} g_{k}(\lambda)\right]^{-\frac{1}{k+1}}-1\right)=b .
$$

By (15) and (14), $a>0$ and $b<\infty$. Moreover

$$
b \leq \liminf _{u \rightarrow \infty} \frac{1}{u \varphi(u)} \int_{u}^{\infty} \varphi(x) \mathrm{d} x \leq \limsup _{u \rightarrow \infty} \frac{1}{u \varphi(u)} \int_{u}^{\infty} \varphi(x) \mathrm{d} x \leq a,
$$

which forces

$$
a=b=\lim _{u \rightarrow \infty} \frac{1}{u \varphi(u)} \int_{u}^{\infty} \varphi(x) \mathrm{d} x=\lim _{\lambda \downarrow 0} \frac{1}{\lambda}\left(\left[\mathrm{e}^{\lambda} g_{k}(\lambda)\right]^{-\frac{1}{k+1}}-1\right) .
$$

By Karamata's theorem (Theorem 1.6.1 (ii) in [2]) we obtain that φ is regularly varying at infinity with parameter $-a^{-1}-1=:-\alpha^{-1}$, so Λ is regularly varying with parameter $-\alpha$ at zero with $\alpha \in(0,1)$.

Let us consider the case when $W_{k}=\infty$ a.s., that is $V_{t}^{(k)} / m_{t}^{(k+1)} \xrightarrow{\mathbf{P}} \infty$. All the previous computations are valid, with $g_{k}(\lambda)=\mathbf{E e}^{-\lambda \infty} \equiv 0$. Thus, from (14) we have

$$
\lim _{u \rightarrow \infty} \frac{1}{u \varphi(u)} \int_{u}^{\infty} \varphi(x) \mathrm{d} x=\infty
$$

From this, through the change of variables formula we obtain (3).
Sufficiency and the limit. Consider first the special case when $\varphi(x)=$ $x^{-\frac{1}{\alpha}}, \alpha \in(0,1)$. Then a quick calculation gives

$$
\frac{1}{u} \int_{u}^{\infty}\left(1-\mathrm{e}^{-\lambda \frac{\varphi(x)}{\varphi(u)}}\right) \mathrm{d} x=\alpha \int_{0}^{1}\left(1-\mathrm{e}^{-\lambda y}\right) y^{-\alpha-1} \mathrm{~d} y
$$

By formula (13) for the Laplace transform of the limit we obtain (2).
The sufficiency can be proved by standard arguments for regularly varying functions. Using Potter bounds (Theorem 1.5.6 in [2]) one can show that for $\alpha \in(0,1)$

$$
\lim _{u \rightarrow \infty} \frac{1}{u} \Psi(u, \lambda)=1+\alpha \int_{0}^{1}\left(1-\mathrm{e}^{-\lambda y}\right) y^{-\alpha-1} \mathrm{~d} y
$$

from which, through formula (11), the convergence readily follows. As already mentioned, cases (ii) and (iii) are treated in [5].

2.2 Proof of Theorem 2

Using that $\psi(y) \leq x$ if and only if $\bar{\Pi}(x) \leq y$, for the distribution function of the ratio we have for $x \in(0,1)$

$$
\begin{align*}
\mathbf{P}\left\{r_{k}(t) \leq x\right\} & =\mathbf{P}\left\{\frac{\psi\left(S_{k+1} / t\right)}{\psi\left(S_{k} / t\right)} \leq x\right\} \\
& =\int_{0}^{\infty} \frac{s^{k-1}}{(k-1)!} \mathrm{e}^{-s} \mathbf{P}\left\{\psi\left(\frac{s+S_{1}}{t}\right) \leq x \psi\left(\frac{s}{t}\right)\right\} \mathrm{d} s \tag{16}\\
& =\int_{0}^{\infty} \frac{s^{k-1}}{(k-1)!} \mathrm{e}^{-s} \mathrm{e}^{-[t \bar{\Pi}(x \psi(s / t))-s]} \mathrm{d} s \\
& =\frac{t^{k}}{(k-1)!} \int_{0}^{\infty} u^{k-1} \mathrm{e}^{-t \bar{\Pi}(x \psi(u))} \mathrm{d} u .
\end{align*}
$$

Necessity. Assume that the limit distribution function G_{k} exists. Write

$$
\begin{equation*}
\frac{t^{k}}{(k-1)!} \int_{0}^{\infty} u^{k-1} \mathrm{e}^{-t \bar{\Pi}(x \psi(u))} \mathrm{d} u=\frac{t^{k}}{(k-1)!} \int_{0}^{\infty} \mathrm{e}^{-t \Phi_{k}(v, x)} \mathrm{d} v, \tag{17}
\end{equation*}
$$

where $\Phi_{k}(v, x)=\bar{\Pi}\left(x \psi\left((k v)^{1 / k}\right)\right)$. Note that for each $x \in(0,1)$ the function $\Phi_{k}(\cdot, x)$ is monotone nondecreasing, since $\bar{\Pi}$ and ψ are both monotone nonincreasing. Let
$\mathcal{G}_{k}=\left\{x: x\right.$ is a continuity point of G_{k} in $(0,1)$ such that $\left.G_{k}(x)>0\right\}$.
First assume that $\mathbf{P}\left\{Y_{k}<1\right\}>0$. Clearly we can now proceed as in the proof of Theorem 1 to apply Karamata's Tauberian theorem (Theorem 1.7.1 in [2]) to give that for any $x \in \mathcal{G}_{k}$,

$$
\begin{equation*}
\lim _{u \rightarrow \infty} \frac{\bar{\Pi}(x \psi(u))}{u}=\left[G_{k}(x)\right]^{-\frac{1}{k}} . \tag{18}
\end{equation*}
$$

In fact, there is a small difference here compared to the proof of Theorem 1. We have to be more cautious, as $\Phi_{k}(v, x)$ is not necessarily rightcontinuous as a function of $v>0$. To use the machinery from the proof of Theorem 1 we need to consider the right-continuous version $\widetilde{\Phi}_{k}(v, x):=$ $\Phi_{k}(v+, x)$. Since, in (17) we integrate with respect to the Lebesgue measure and Φ_{k} and $\widetilde{\Phi}_{k}$ are equal almost everywhere, substituting Φ_{k} with $\widetilde{\Phi}_{k}$ leaves the integral unchanged. Therefore, proceeding as before we obtain that

$$
\widetilde{\Phi}_{k}(v, x) \sim\left(\frac{k v}{G_{k}(x)}\right)^{1 / k}, \quad \text { as } v \rightarrow \infty,
$$

and since the right-hand function is continuous, we also get that

$$
\Phi_{k}(v, x) \sim\left(\frac{k v}{G_{k}(x)}\right)^{1 / k}, \quad \text { as } v \rightarrow \infty
$$

form which now (18) does indeed follow.
We claim that (18) implies the regular variation of $\bar{\Pi}$. When $\bar{\Pi}$ is continuous and strictly decreasing we get by changing variables to $\psi(u)=t$, $u=\bar{\Pi}(t)$, that we have for any $x \in \mathcal{G}_{k}$

$$
\lim _{t \downarrow 0} \frac{\bar{\Pi}(t x)}{\bar{\Pi}(t)}=\left[G_{k}(x)\right]^{-\frac{1}{k}},
$$

which by an easy application of Proposition 1.10.5 in [2] implies that $\bar{\Pi}$ is regularly varying.

Note that the jumps of $\bar{\Pi}$ correspond to constant parts of ψ, and vice versa. Put $\mathcal{J}=\{z: \bar{\Pi}(z-)>\bar{\Pi}(z)\}$ for the jump points of $\bar{\Pi}$. For $z \in \mathcal{J}$ and $y \in[\bar{\Pi}(z), \bar{\Pi}(z-))$ we have $\psi(y)=z$. Substituting into (18) we have

$$
\begin{equation*}
\lim _{z \downarrow 0, z \in \mathcal{J}} \frac{\bar{\Pi}(x z)}{\bar{\Pi}(z)}=\left[G_{k}(x)\right]^{-\frac{1}{k}}, \quad \text { and } \lim _{z \downarrow 0, z \in \mathcal{J}} \frac{\bar{\Pi}(x z)}{\bar{\Pi}(z-)}=\left[G_{k}(x)\right]^{-\frac{1}{k}} . \tag{19}
\end{equation*}
$$

To see how the second limit holds in (19) note that for any $0<\varepsilon<1$ and $z \in \mathcal{J}$, we have $\psi(\varepsilon \bar{\Pi}(z)+(1-\varepsilon) \bar{\Pi}(z-))=z$ and thus

$$
\lim _{z \downarrow 0, z \in \mathcal{J}} \frac{\bar{\Pi}(x z)}{\varepsilon \bar{\Pi}(z)+(1-\varepsilon) \bar{\Pi}(z-)}=\left[G_{k}(x)\right]^{-\frac{1}{k}} .
$$

Since $0<\varepsilon<1$ can be chosen arbitrarily close to 0 this implies the validity of the second limit in (19). Therefore by choosing any $x \in \mathcal{G}_{k}$ we get

$$
\begin{equation*}
\lim _{z \downarrow 0} \frac{\bar{\Pi}(z-)}{\bar{\Pi}(z)}=1 . \tag{20}
\end{equation*}
$$

Let

$$
\mathcal{A}=\{z>0: \bar{\Pi}(z-\varepsilon)>\bar{\Pi}(z) \text { for all } z>\varepsilon>0\} .
$$

This set contains exactly those points z for which $\psi(\bar{\Pi}(z))=z$. With this notation formula (18) can be written as

$$
\begin{equation*}
\lim _{z \downarrow 0, z \in \mathcal{A}} \frac{\bar{\Pi}(x z)}{\bar{\Pi}(z)}=\left[G_{k}(x)\right]^{-\frac{1}{k}}, \text { for } x \in \mathcal{G}_{k} . \tag{21}
\end{equation*}
$$

This together with (20) will allow us to apply Proposition 1.10 .5 in [2] to conclude that $\bar{\Pi}$ is regularly varying. We shall need the following technical lemma.

Lemma 1. Whenever (20) holds, there exists a strictly decreasing sequence $z_{n} \in \mathcal{A}$ such that $z_{n} \rightarrow 0$ and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\bar{\Pi}\left(z_{n+1}\right)}{\bar{\Pi}\left(z_{n}\right)}=1 . \tag{22}
\end{equation*}
$$

Proof. Choose $z_{1} \in \mathcal{A}$ such that $\bar{\Pi}\left(z_{1}\right)>0$, and define for each $n \geq 1$

$$
z_{n+1}=\sup \left\{z>0: \bar{\Pi}(z)>\left(1+\frac{1}{n}\right) \bar{\Pi}\left(z_{n}-\right)\right\} .
$$

Notice that the sequence $\left\{z_{n}\right\}$ is well-defined, since $\bar{\Pi}(0+)=\infty$ and it is decreasing. Further we have

$$
\bar{\Pi}\left(z_{n+1}-\right) \geq\left(1+\frac{1}{n}\right) \bar{\Pi}\left(z_{n}-\right) \text { and } \bar{\Pi}\left(z_{n+1}\right) \leq\left(1+\frac{1}{n}\right) \bar{\Pi}\left(z_{n}-\right)
$$

where the second inequality follows by right continuity of $\bar{\Pi}$. Also note that $z_{n+1}<z_{n}$, since otherwise if $z_{n+1}=z_{n}$, then

$$
\bar{\Pi}\left(z_{n+1}-\right)=\bar{\Pi}\left(z_{n}-\right) \geq\left(1+\frac{1}{n}\right) \bar{\Pi}\left(z_{n}-\right),
$$

which is impossible. Observe that each z_{n+1} is in \mathcal{A} since by the definition of z_{n+1} for all $0<\varepsilon<z_{n+1}$

$$
\bar{\Pi}\left(z_{n+1}-\varepsilon\right)>\left(1+\frac{1}{n}\right) \bar{\Pi}\left(z_{n}-\right) \geq \bar{\Pi}\left(z_{n+1}\right) .
$$

Clearly since $\left\{z_{n}\right\}$ is a decreasing and positive sequence, $\lim _{n \rightarrow \infty} z_{n}=z^{*}$ exists and is ≥ 0. By construction

$$
\bar{\Pi}\left(z_{n+1}-\right) \geq\left(1+\frac{1}{n}\right) \bar{\Pi}\left(z_{n}-\right) \geq \prod_{k=1}^{n}\left(1+\frac{1}{k}\right) \bar{\Pi}\left(z_{1}-\right) .
$$

The infinite product $\prod_{n=1}^{\infty}(1+1 / n)=\infty$ forces $z^{*}=0$. Also by construction we have

$$
1 \leq \frac{\bar{\Pi}\left(z_{n+1}\right)}{\bar{\Pi}\left(z_{n}-\right)}=\frac{\bar{\Pi}\left(z_{n+1}\right)}{\bar{\Pi}\left(z_{n}\right)}\left(\frac{\bar{\Pi}\left(z_{n}\right)}{\bar{\Pi}\left(z_{n}-\right)}\right) \leq 1+\frac{1}{n} .
$$

By (20) we have

$$
\lim _{n \rightarrow \infty} \frac{\overline{\bar{\Pi}}\left(z_{n}\right)}{\bar{\Pi}\left(z_{n}-\right)}=1
$$

Therefore we get (22).
According to Proposition 1.10 .5 in [2] to establish that $\bar{\Pi}$ is regularly varying at zero it suffices to produce λ_{1} and λ_{2} in $(0,1)$ such that for $i=1,2$

$$
\frac{\bar{\Pi}\left(\lambda_{i} z_{n}\right)}{\bar{\Pi}\left(z_{n}\right)} \rightarrow d_{i} \in(0, \infty), \text { as } n \rightarrow \infty
$$

where $\left(\log \lambda_{1}\right) /\left(\log \lambda_{2}\right)$ is finite and irrational. This can clearly be done using (21) and $\mathbf{P}\left\{Y_{k}<1\right\}>0$. Necessarily $\bar{\Pi}$ has index of regular variation parameter $-\alpha \in(-\infty, 0]$. For $\alpha \in(0, \infty)$ the limiting distribution function has the form (4). In the case $\alpha=0, \bar{\Pi}$ is slowly varying at 0 and we get that $G_{k}(x)=1$ for $x \in(0,1)$, i.e. $Y_{k}=0$ a.s.

Now consider the case when $\mathbf{P}\left\{Y_{k}=1\right\}=1$, i.e. $G_{k}(x)=0$ for any $x \in(0,1)$. We once more use Theorem 1.7.1 in [2], with $c=0$ this time, and as an analog of (18) we obtain

$$
\lim _{u \rightarrow \infty} \frac{\bar{\Pi}(x \psi(u))}{u}=\infty
$$

This readily implies that

$$
\lim _{z \downarrow 0, z \in \mathcal{A}} \frac{\bar{\Pi}(x z)}{\bar{\Pi}(z)}=\infty
$$

Moreover, the analogs of formula (19) also hold, i.e.

$$
\lim _{z \downarrow 0, z \in \mathcal{J}} \frac{\bar{\Pi}(x z)}{\bar{\Pi}(z)}=\infty, \quad \text { and } \quad \lim _{z \downarrow 0, z \in \mathcal{J}} \frac{\bar{\Pi}(x z)}{\bar{\Pi}(z-)}=\infty
$$

(Note, however, that this does not imply (20).) Let $z \notin \mathcal{A}$, and define $z^{\prime}=\inf \{v: v \in \mathcal{A}, v>z\}$. Clearly, $z^{\prime} \downarrow 0$ as $z \downarrow 0$. If $z^{\prime} \in \mathcal{A}$ then necessarily it is a jump point, $z^{\prime} \in \mathcal{J}$, and $\bar{\Pi}\left(z^{\prime}-\right)=\bar{\Pi}(z)$. Then

$$
\frac{\bar{\Pi}(x z)}{\bar{\Pi}(z)}=\frac{\bar{\Pi}(x z)}{\bar{\Pi}\left(z^{\prime}-\right)} \geq \frac{\bar{\Pi}\left(x z^{\prime}\right)}{\bar{\Pi}\left(z^{\prime}-\right)}
$$

and the latter tends to ∞ as $z \downarrow 0$. On the other hand, when $z^{\prime} \notin \mathcal{A}$ it is simple to see that $\bar{\Pi}\left(z^{\prime}\right)=\bar{\Pi}(z)$ and $\bar{\Pi}\left(z^{\prime}+\varepsilon\right)<\bar{\Pi}\left(z^{\prime}\right)$ for any $\varepsilon>0$. Moreover, we can find $z<z^{\prime \prime} \in \mathcal{A}$, such that $\bar{\Pi}(z) \leq \bar{\Pi}\left(z^{\prime \prime}\right)+1 \leq 2 \bar{\Pi}\left(z^{\prime \prime}\right)$ (we tacitly assumed that z is small enough). Thus

$$
\frac{\bar{\Pi}(x z)}{\bar{\Pi}(z)} \geq \frac{\bar{\Pi}(x z)}{\bar{\Pi}\left(z^{\prime \prime}\right)+1} \geq \frac{\bar{\Pi}\left(x z^{\prime \prime}\right)}{2 \bar{\Pi}\left(z^{\prime \prime}\right)}
$$

and the lower bound goes to ∞ as $z \downarrow 0$. Summarizing, we have proved that

$$
\lim _{z \downarrow 0} \frac{\bar{\Pi}(x z)}{\bar{\Pi}(z)}=\infty
$$

for any $x \in(0,1)$, that is, $\bar{\Pi}$ is rapidly varying at 0 with index $-\infty$.
Sufficiency. Assume that $\bar{\Pi}$ is regularly varying at 0 with index $-\alpha \in$ $(-\infty, 0)$. Then its asymptotic inverse function ψ is regularly varying at ∞ with index $-1 / \alpha$, therefore simply

$$
r_{k}(t)=\frac{\psi\left(S_{k+1} / t\right)}{\psi\left(S_{k} / t\right)} \rightarrow\left(\frac{S_{k}}{S_{k+1}}\right)^{1 / \alpha} \quad \text { a.s., as } t \downarrow 0,
$$

which has the distribution G_{k} in (4). Assume now that $\bar{\Pi}$ is slowly varying at 0 . Then $\psi \in \operatorname{RV}_{\infty}(-\infty)$, therefore

$$
r_{k}(t)=\frac{\psi\left(S_{k+1} / t\right)}{\psi\left(S_{k} / t\right)} \rightarrow 0 \quad \text { a.s., as } t \downarrow 0 .
$$

Finally, if $\bar{\Pi} \in \operatorname{RV}_{0}(-\infty)$ then ψ is slowly varying at infinity, so

$$
r_{k}(t)=\frac{\psi\left(S_{k+1} / t\right)}{\psi\left(S_{k} / t\right)} \rightarrow 1 \quad \text { a.s., as } t \downarrow 0,
$$

and the theorem is completely proved.
Acknowledgement. PK was supported by the Hungarian Scientific Research Fund OTKA PD106181 and by the European Union and co-funded by the European Social Fund under the project 'Telemedicine-focused research activities on the field of Mathematics, Informatics and Medical sciences' of project number TÁMOP-4.2.2.A-11/1/KONV-2012-0073. DM thanks the Bolyai Institute for their hospitality while this paper was being written. The authors thank the referee for the useful comments and suggestions.

References

[1] J. Bertoin. Random Fragmentation and Coagulation Processes. Cambridge University Press (2006).
[2] N.H. Bingham, C.M. Goldie, J.L. Teugels. Regular Variation. Encyclopedia of Mathematics and its Applications, 27, Cambridge University Press, Cambridge (1987).
[3] N.H. Bingham, J.L. Teugels. Conditions implying domains of attraction. Proceedings of the Sixth Conference on Probability Theory (Braşov, 1979), pp. 23-34, Ed. Acad. R.S. România, Bucharest (1981).
[4] L. Breiman. On some limit theorems similar to the arc-sin law. Teor. Verojatnost. i Primenen. 10, 351-360 (1965).
[5] B. Buchmann, Y. Fan, R. Maller. Distributional representations and dominance of a Lévy process over its maximal jump processes. Available on arXiv: http://arxiv.org/abs/1409.4050.
[6] D.A. Darling. The influence of the maximum term in the addition of independent random variables. Trans. Amer. Math. Soc. 73, 95-107 (1952).
[7] P. Kevei, D.M. Mason. Randomly Weighted Self-normalized Lévy Processes. Stochastic Processes and their Applications 123 (2), 490-522 (2013).
[8] W. Feller. An Introduction to Probability Theory and Its Applications Vol. II, John Wiley and Sons, Inc., New York-London-Sydney (1966).
[9] R.A. Maller, D.M. Mason. Small-time compactness and convergence behavior of deterministically and self-normalised Lévy processes. Trans. Amer. Math. Soc. 362, 2205-2248 (2010).
[10] D. Revuz, M. Yor. Continuous Martingales and Brownian Motion. Springer Verlag, Berlin (1991).
[11] J. Rosiński. Series representation of Lévy processes from the perspective of point processes, in: O.E. Barndorff-Nielsen, T. Mikosch and S.I. Resnick (Eds), Lévy Processes - Theory and Applications, Birkhauser, Boston, 401-415 (2001).
[12] J.L. Teugels. Limit theorems on order statistics. Ann. Probab. 9, no. 5, 868-880 (1981).

