Erratum to "Large-amplitude periodic solutions for differential equations with delayed monotone positive feedback"

(J. Dynam. Differential Equations 23 (2011), no. 4, 727-790)

Tibor Krisztin, ${ }^{1}$ Gabriella Vas ${ }^{2}$

Original publication: J Dyn Diff Equat (2014) 26: 401-403. The final publication is available at Springer via http://dx.doi.org/10.1007/s10884-011-9225-2.

The purpose of this note is to correct a mistake left in our previous paper [2]. The paper concerns the scalar equation

$$
\begin{equation*}
\dot{x}(t)=-\mu x(t)+f(x(t-1)) \tag{1}
\end{equation*}
$$

with $\mu=1$ and a special strictly increasing, continuously differentiable f. The natural phase space for Eq. (1) is $C=C([-1,0], \mathbb{R})$ equipped with the supremum norm. For any $\varphi \in C$, there is a unique solution $x^{\varphi}:[-1, \infty) \rightarrow \mathbb{R}$ of (1). For each $t \geq 0$, the segment $x_{t}^{\varphi} \in C$ is defined by $x_{t}^{\varphi}(s)=x^{\varphi}(t+s),-1 \leq s \leq 0$. Let Φ denote the semiflow induced by E.q. (1):

$$
\Phi:[-1, \infty) \times C \ni(t, \varphi) \mapsto x_{t}^{\varphi} \in C
$$

Theorem 1.1 of paper [2] gives a periodic solution $p: \mathbb{R} \rightarrow \mathbb{R}$ of E.q. (1) with $p(-1)=0$ and $\dot{p}(-1) \neq 0$. The proof of Theorem 1.2 in Section 8 then applies a Poincaré return map defined on a neighborhood of p_{0} in H, where $H=\{\varphi: \varphi(-1)=0\}$ is a hyperplane transversal to the periodic orbit $\mathcal{O}_{p}=\left\{p_{t}: t \in \mathbb{R}\right\}$. As we shall see, this hyperplane was not selected appropriately.

We evoke results from Floquet theory before pointing at the error and showing its correction.

1. Floquet theory

Let $\omega \in(1,2)$ denote the minimal period of p. Consider the period map $Q=\Phi(\omega, \cdot)$ with fixed point p_{0}. Consider its derivative $M=D_{2} \Phi\left(\omega, p_{0}\right)$ at p_{0}. Then $M \varphi=u_{\omega}^{\varphi}$ for all

[^0]$\varphi \in C$, where $u^{\varphi}:[-1, \infty) \rightarrow \mathbb{R}$ is the solution of the variational equation
\[

$$
\begin{equation*}
\dot{u}(t)=-u(t)+f^{\prime}(p(t-1)) u(t-1) \tag{2}
\end{equation*}
$$

\]

with $u_{0}^{\varphi}=\varphi . M$ is called the monodromy operator. M is a compact operator, 0 belongs to its spectrum $\sigma=\sigma(M)$, and eigenvalues of finite multiplicity - the so called Floquet multipliers - form $\sigma(M) \backslash\{0\}$.

As \dot{p} is a nonzero solution of the variational equation, 1 is a Floquet multiplier with eigenfunction \dot{p}_{0}. The paper [2] proves that \mathcal{O}_{p} is hyperbolic, which means that the generalized eigenspace of M corresponding to the eigenvalue 1 is one-dimensional, furthermore there are no Floquet multipliers on the unit circle besides 1.

If φ is a nonzero element of the phase space $C=C([-1,0], \mathbb{R})$, let $V(\varphi)$ denote the number of sign changes of φ if it is even or ∞, otherwise let $V(\varphi)$ be the number of sign changes plus one. This is the so-called discrete Lyapunov functional of Mallet-Paret and Sell [4].

By Section 4 of [2], \mathcal{O}_{p} has two real and simple Floquet multipliers λ_{1} and λ_{2} outside the unit circle with $\lambda_{1}>\lambda_{2}>1$. Regarding the associated eigenspaces, we have the following information from [4] and from Appendix VII of [3]. The eigenvector u_{1} of M corresponding to λ_{1} is strictly positive. The realified generalized eigenspace $C_{<\lambda_{1}}$ associated with the spectral set $\left\{z \in \sigma:|z|<\lambda_{1}\right\}$ satisfies

$$
\begin{equation*}
C_{<\lambda_{1}} \cap V^{-1}(0)=\emptyset . \tag{3}
\end{equation*}
$$

Let $C_{\leq \rho}, \rho>0$, denote the realified generalized eigenspace of M associated with the spectral set $\{z \in \sigma:|z| \leq \rho\}$. The set

$$
\left\{\rho \in(0, \infty): \sigma(M) \cap \rho S_{\mathbb{C}}^{1} \neq \emptyset, C_{\leq \rho} \cap V^{-1}(\{0,2\})=\emptyset\right\}
$$

is nonempty and has a maximum r_{M}. Then

$$
\begin{equation*}
C_{\leq r_{M}} \cap V^{-1}(\{0,2\})=\emptyset, \quad C_{r_{M}<} \backslash\{\hat{0}\} \subset V^{-1}(\{0,2\}) \text { and } \operatorname{dim} C_{r_{M}<} \leq 3, \tag{4}
\end{equation*}
$$

where $C_{r_{M}}<$ is the realified generalized eigenspace of M associated with the nonempty spectral set $\left\{z \in \sigma:|z|>r_{M}\right\}$. It follows from the construction of p in [2] that $V\left(\dot{p}_{0}\right)=2$. Hence $r_{M}<1$ in our case, and $V\left(u_{2}\right)=2$ for the eigenvector u_{2} of M corresponding to λ_{2}.

2. Poincaré return maps

Choose X to be a hyperplane with codimension 1 so that $\dot{p}_{0} \notin X$. An application of the implicit function theorem yields a convex bounded open neighborhood N of p_{0} in $C, \varepsilon \in(0, \omega)$ and a C^{1}-map $\gamma: N \rightarrow(\omega-\varepsilon, \omega+\varepsilon)$ with $\gamma\left(p_{0}\right)=\omega$ so that for each $(t, \varphi) \in(\omega-\varepsilon, \omega+\varepsilon) \times N$, the segment x_{t}^{φ} belongs to $p_{0}+X$ if and only if $t=\gamma(\varphi)$ (see
[1], Appendix I in [3]). The Poincaré return map P_{X} is defined by

$$
P_{X}: N \cap\left(p_{0}+X\right) \ni \varphi \mapsto \Phi(\gamma(\varphi), \varphi) \in p_{0}+X
$$

Then P_{X} is continuously differentiable with fixed point p_{0}.
Let $\sigma\left(P_{X}\right)$ and $\sigma(M)$ denote the spectra of $D P_{X}\left(p_{0}\right): X \rightarrow X$ and the monodromy operator M, respectively. We obtain the following result from Theorem XIV.4.5 in [1].

Lemma.

(i) $\sigma\left(P_{X}\right) \backslash\{0,1\}=\sigma(M) \backslash\{0,1\}$, and for every $\lambda \in \sigma(M) \backslash\{0,1\}$, the projection along $\mathbb{R} \dot{p}_{0}$ onto X defines an isomorphism from the realified generalized eigenspace of λ and M onto the realified generalized eigenspace of λ and $D P_{X}\left(p_{0}\right)$.
(ii) $1 \notin \sigma\left(P_{X}\right)$.

In Section 8 of [2] we selected the hyperplane $H=\{\varphi: \varphi(-1)=0\}$ and the associated Poincaré map $P=P_{H}$. It follows from the above proposition that $D P\left(p_{0}\right)$ has exactly two real eigenvalues $\lambda_{1}>\lambda_{2}>1$ outside the unit circle. Let v_{1} and v_{2} denote the eigenvectors of $D P\left(p_{0}\right)$ corresponding to λ_{1} and λ_{2}, respectively. Section 8 of [2] used the statement that $V\left(v_{1}\right)=0$ and $V\left(v_{2}\right)=2$. This is not necessarily true. The mistake can be corrected by selecting a different hyperplane.

Let C_{s} and C_{u} be the closed subspaces of C chosen so that $C=C_{s} \oplus \mathbb{R} \dot{p}_{0} \oplus C_{u}, C_{s}$ and C_{u} are invariant under M, and the spectra $\sigma_{s}(M)$ and $\sigma_{u}(M)$ of the induced maps $C_{s} \ni x \mapsto M x \in C_{s}$ and $C_{u} \ni x \mapsto M x \in C_{u}$ are contained in $\{\mu \in \mathbb{C}:|\mu|<1\}$ and $\{\mu \in \mathbb{C}:|\mu|>1\}$, respectively. As \mathcal{O}_{p} has two real and simple Floquet multipliers λ_{1} and λ_{2} outside the unit circle with eigenvectors u_{1} and u_{2}, we have $C_{u}=\left\{c_{1} u_{1}+c_{2} u_{2}\right\}$.

Set $Y=C_{s} \oplus C_{u}$. Then Y is a hyperplane in $C, \dot{p}_{0} \notin Y$ and $C=Y \oplus \mathbb{R} \dot{p}_{0}$.
The special choice of Y and Lemma imply that λ_{i} and u_{i} is an eigenvalue-eigenvector pair of $D P_{Y}\left(p_{0}\right)$ for both $i \in\{1,2\}$. In addition, C_{s} and C_{u} are invariant under $D P_{Y}\left(p_{0}\right)$, and the spectra $\sigma_{s}\left(P_{Y}\right)$ and $\sigma_{u}\left(P_{Y}\right)$ of the induced maps $C_{s} \ni x \mapsto D P_{Y}\left(p_{0}\right) x \in C_{s}$ and $C_{u} \ni x \mapsto D P_{Y}\left(p_{0}\right) x \in C_{u}$ are contained in $\{\mu \in \mathbb{C}:|\mu|<1\}$ and $\{\mu \in \mathbb{C}:|\mu|>1\}$, respectively. Summing up, $D P_{Y}\left(p_{0}\right)$ has exactly two real and simple eigenvalues $\lambda_{1}>$ $\lambda_{2}>1$ outside the unit circle, and for the corresponding eigenvectors u_{1} and u_{2}, we have the desired properties $V\left(u_{1}\right)=0$ and $V\left(u_{2}\right)=2$.

In accordance, H and $P=P_{H}$ should be changed to Y and P_{Y} in Section 8 of [2]. Then the proof of Theorem 1.2. (found in Section 8 of [2]) becomes correct without any further change.

References

[1] Diekmann, O., van Gils, S. A., Verduyn Lunel, S. M., and Walther, H.-O. (1995). Delay equations. Functional, complex, and nonlinear analysis, Springer-Verlag, New York.
[2] Krisztin, T. and Vas, G. (2011). Large-amplitude periodic solutions for differential equations with delayed monotone positive feedback. J. Dynam. Differential Equations 23, no. 4, 727-790.
[3] Krisztin T., Walter H.-O., and Wu J. (1999). Shape, smoothness and invariant stratification of an attracting set for delayed monotone positive feedback, Amer. Math. Soc., Providence, RI.
[4] Mallet-Paret, J., and Sell G. R. (1996). Systems of differential delay equations: Floquet multipliers and discrete Lyapunov Functions. J. Differential Equations 125, 385-440.

[^0]: ${ }^{1}$ Bolyai Institute, University of Szeged and MTA-SZTE Analysis and Stochastics Research Group, Szeged, Hungary
 e-mail: krisztin@math.u-szeged.hu
 ${ }^{2}$ MTA-SZTE Analysis and Stochastics Research Group, Bolyai Institute, University of Szeged, Szeged, Hungary
 e-mail: vasg@math.u-szeged.hu

