Fully Distributed Robust Singular Value Decomposition

István Hegedűs*, Márk Jelasity†, Levente Kocsis‡ and András A. Benczúr‡

*University of Szeged, Hungary
†MTA-SZTE Research Group on Artificial Intelligence, Hungary
‡Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI)

Abstract—Low-rank matrix approximation is an important tool in data mining with a wide range of applications including recommender systems, clustering, and identifying topics in documents. The problem we tackle is implementing singular value decomposition (SVD)—a popular method for low rank approximation—in large fully distributed P2P systems in a robust and scalable manner. We assume that the matrix to be approximated is stored in a large network where each node knows one row of the matrix (personal attributes, documents, media ratings, etc). In our P2P model, we do not allow this personal information to leave the node, yet we want the nodes to collaboratively compute the SVD. Methods applied in large scale distributed systems such as synchronized parallel gradient search or distributed iterative methods are not preferable in our system model due to their requirements of synchronized rounds or their inherent issues with load balancing. Our approach overcomes these limitations with the help of a distributed stochastic gradient search in which the personal part of the decomposition remains local, and the global part (e.g., movie features) converges at all nodes to the correct value. We present a theoretical derivation of our algorithm, as well as a thorough experimental evaluation of real and synthetic data as well. We demonstrate that the convergence speed of our method is competitive while not relying on synchronization and being robust to extreme failure scenarios.

Keywords—data mining; matrix factorization; online learning; stochastic gradient descent; singular value decomposition; privacy

I. INTRODUCTION

Finding a low-rank decomposition of a matrix is an essential tool in data mining and information retrieval [1]. Prominent applications include recommender systems [2], information retrieval via Latent Semantic Indexing [3], [4], Kleinberg’s HITS algorithm for graph centrality [5], clustering [6], [7], and learning mixtures of distributions [8], [9].

Collaborative filtering forms one of the most prominent applications of low rank matrix approximation. To implement a recommender algorithm, one can define a matrix A of dimensions $m \times n$ with one row assigned to one of m users, and one column assigned to one movie out of a set of n movies. The essence of the ratings matrix A is given by a low rank decomposition $A \approx XY^T$, where matrices X and Y^T are of dimensions $m \times k$ and $k \times n$, respectively, and where k is small [10]. A row of X can be interpreted as a compressed representation (features) of the corresponding user, and a column of Y^T contains features of a movie. This representation can be applied to calculate missing ratings to offer recommendations. In addition to recommender systems, low rank approximation finds applications in summarizing adjacency matrices for social network analysis or term-document matrices for text classification.

Data such as movie ratings, lists of friends, or personal documents is often very sensitive. It is argued in [11] that it is paramount for privacy that users keep their data (e.g. ratings and user factors) local. Instead of uploading such data to cloud servers, it is a natural idea to store it only on personal devices and process it in place in a fully distributed way suitable for P2P services. This would increase the level of privacy and remove any dependence on central infrastructure and services. However, such an algorithm has to be extremely robust as networks of personal devices are unreliable with users entering and leaving dynamically. In addition, the communication costs should remain affordable as well.

A. Contribution

To meet these goals, we implement singular value decomposition (SVD), an approach to low rank decomposition with the attractive property that the matrices X and Y in the decomposition consist of orthogonal vectors. We present a stochastic gradient descent (SGD) algorithm to find the SVD, where several instances of the matrix Y perform a random walk in the network visiting the data (the rows of A), while matrices A and X are stored in a fully distributed way with each row at different nodes. The rows of matrices A and X are accessed only locally by the node that stores them. Note that the public matrix Y carries no sensitive information. When Y visits a node, it gets updated based on the local row of A, and the local row of X gets updated as well.

To the best of our knowledge, we present the first fully distributed SGD algorithm that keeps X and A strictly local. As a special feature, our algorithm updates several versions of Y by sending them around over the network, resulting in a convergence much faster than a single instance of SGD for
SVD. The algorithm is fully asynchronous: messages can be delayed or lost. We only rely on random walks that can perform every transition in a bounded time. We show that the only stable fix points of the search algorithm correspond to the SVD. In addition, we perform an experimental analysis and demonstrate the convergence speed and the scalability of the protocol.

B. Related work

Calculating the SVD is a well studied problem. One approach is based on considering it as an optimization problem (see Section II) and using gradient search to solve it [12]. In general, parallel versions of gradient search often assume the MapReduce framework [13] or a similar, less constrained, but still centralized model [14]. In these approaches, partial gradients are calculated over batches of data in parallel, and these are either applied to blocks of \(X \) and \(Y \) in the map phase or summed up in the reduce phase. Zinkevich et al. propose a different approach in which SGD is applied on batches of data and the resulting models are then combined [15]. Gemulla et al. [16] propose an efficient parallel technique in which blocks of \(X \) and \(Y \) are iteratively updated while only blocks of \(Y \) are exchanged. In contrast to these approaches, we work with fully distributed data: we do not wish to make central components or synchronization, a set of requirements ruling out the direct application of earlier approaches.

Another possibility is using fully distributed iterative methods. GraphLab [17] supports iterative methods for various problems including SVD. In these approaches, the communication graph in the network is defined by the non-zero elements of matrix \(A \), in other words, \(A \) is stored as edge-weights in the network. This is feasible only if \(A \) is (very) sparse and well balanced; a constraint rarely met in practice. In addition, iterative methods need access to \(A^T \) as well, which violates our constraint that the rows of \(A \) are not shared. Using the same edge-weight representation of \(A \), one can implement another optimization approach for matrix decomposition: an iterative optimization of subproblems over overlapping local subnetworks [18]. The drawback of this approach is, again, that the structure of \(A \) defines the communication network and access to \(A^T \) is required. The approach of Ling et al. [19] also needs global information: in each iteration step a global average needs to be calculated.

The first fully distributed algorithm for spectral analysis was given in [20] where data is kept at the compute nodes and partial results are sent through the network. That algorithm, however, only computes the user side singular vectors but not the item side ones and hence insufficient, for example, to provide recommendations. Similarly, [21] computes the low rank approximation but not the decomposition. This drawback is circumvented in [22] by assigning compute nodes not just for users but for items as well. In their gradient descent algorithm, item vectors are also stored at peers, which means that all items must know the ratings they receive, and this violates privacy.

We overcome the limitations of earlier fully distributed and gossip SVD algorithms by providing an algorithm without item-based processing elements, i.e. our algorithm is fully distributed in the sense that processing is exclusively done at the users, who may access their own ratings and approximations of the item factor vectors.

II. PROBLEM DEFINITION

A. Low–Rank and Singular Value Decomposition

The problem we tackle is rank–\(k \) matrix approximation. We are given a matrix \(A \in \mathbb{R}^{m \times n} \). Matrix \(A \) holds our raw data, such as ratings of movies by users, or word statistics in documents. We are looking for matrices \(X \in \mathbb{R}^{m \times k} \) and \(Y \in \mathbb{R}^{n \times k} \) such that the error function

\[
J(X,Y) = \frac{1}{2} \| A - XY^T \|_F^2 = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} (a_{ij} - \sum_{k=1}^{k} x_{ik}y_{jk})^2
\]

is minimized. We say that the matrix \(XY^T \) for which this error function is minimized is an optimal rank-\(k \) approximation of \(A \). Clearly, matrices \(X \) and \(Y^T \)—and hence \(XY^T \)—have a rank of at most \(k \). Normally we select \(k \) such that \(k \leq \min(m,n) \) in order to achieve a significant compression of the data. As a result, matrices \(X \) and \(Y^T \) can be thought of as high level features (such as topics of documents, or semantic categories for words) that can be used to represent the original raw data in a compact way.

Singular value decomposition (SVD) is related to the above matrix decomposition problem. The SVD of a matrix \(A \in \mathbb{R}^{m \times n} \) involves two orthogonal matrices \(U \in \mathbb{R}^{m \times m} \) and \(V \in \mathbb{R}^{n \times n} \) such that

\[
A = U\Sigma V^T = \sum_{i=1}^{r} \sigma_i u_i v_i^T
\]

where the columns of the matrices \(U = [u_1 u_2 \cdots u_m] \) and \(V = [v_1 v_2 \cdots v_n] \) are the left and right singular vectors, and \(\Sigma \in \mathbb{R}^{m \times n} \) is a diagonal matrix containing the singular values \(\sigma_1, \sigma_2, \ldots, \sigma_r \geq 0 \) of \(A \) (\(r = \min(m,n) \)). The relationship of SVD and low rank decomposition is that \(U_k \Sigma_k V_k^T \) is an optimal rank-\(k \) approximation of \(A \), where the matrices \(U_k \in \mathbb{R}^{m \times k} \) and \(V_k \in \mathbb{R}^{n \times k} \) are derived from \(U \) and \(V \) by keeping the first \(k \) columns, and \(\Sigma_k \in \mathbb{R}^{k \times k} \) is derived from \(\Sigma \) by keeping the top left \(k \times k \) rectangular area, assuming without loss of generality that \(\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r \) [23].

Our goal in this paper is to find \(X^* = U_k \Sigma_U \) and \(Y^* = V_k \Sigma_V \) such that \(\Sigma_U \) and \(\Sigma_V \) are diagonal and \(\Sigma_U \Sigma_V = \Sigma_k \). In other words, although \(X^* \) and \(Y^* \) are not uniquely defined, we require them to contain orthogonal columns that are scaled versions of left and right singular vectors of \(A \), respectively.

B. System Model and Data Distribution

Having defined the computational problem, we need to elaborate on our assumptions on the network environment and
the distribution of the data. As our system model we consider
a network of nodes that are individual computational units
(e.g., personal computers, smart phones, etc.) and have unique
addresses. The number of nodes is potentially extremely large.
Every node can communicate to other nodes via passing
messages provided the address of the target node is known
locally. We assume that there is a peer sampling service in
our system which can provide addresses of live nodes from
the network selected uniformly at random (see e.g. [24] for a
fully distributed implementation). In addition, messages can be
lost or delayed and the nodes can leave the network and join
again without prior notice. When a node rejoins the network
it retains the state it had when leaving the network.

As for the data distribution, we assume that each node has
exactly one row (but note that our algorithms can be applied—
and in fact profit from it—if a node has several rows). Our
data distribution model is motivated by application scenarios
in which potentially sensitive data is available locally, such
as private documents or ratings that naturally define rows of
a matrix A, but where a decomposition needs to be found
collectively without blatantly exposing this private data.

III. ALGORITHM

Our algorithm has its roots in the GOLF framework [25].
Algorithm 1 contains a version of the GoLF algorithm adopted
to our problem. Each node i has its own approximation of
the full matrix Y^* and an approximation of row i of X^*: x_i. Thus,
the nodes collectively store one version of the matrix X (the
approximation of X^*) distributed just like matrix A with each
node storing one row. At the same time, at every point in time
every node has a possibly different approximation of the full
matrix Y^* locally.

These different approximations of Y^* perform random
walks in the network and get updated at the visited nodes
using the local data of the given node (a row of A and X).
First, each node i in the network initializes Y and x_i uniformly
at random from the interval $[0, 1]$. The nodes then periodically
send their current approximation Y to a randomly selected
peer from the network. The period is denoted by Δ. To select a
random peer, we rely on a peer sampling service as mentioned in
Section II-B. When receiving an approximation \tilde{Y} (see

Algorithm 1 P2P low–rank factorization at node i

1: $a_i \triangleright$ row i of A
2: initialize Y
3: initialize $x_i \triangleright$ row i of X
4: loop
5: $\text{wait}(\Delta)$
6: $p \leftarrow \text{selectPeer}()$
7: send Y to p
8: end loop
9: $\text{procedure} \text{onReceive}(\tilde{Y})$
10: $Y \leftarrow \tilde{Y}$
11: $(Y, x_i) \leftarrow \text{update}(Y, x_i, a_i)$
12: end procedure

procedure onReceive(\tilde{Y}) the node stores this approximation
and subsequently it updates both Y and x_i using a stochastic
gradient rule.

The algorithm involves periodic message sending at every
node with a period of Δ. Later on, when we refer to one
iteration or round of the algorithm, we simply mean a time
interval of length Δ. Note that we do not require any syn-
chronization of rounds over the network. Messages are sent
independently, and they can be delayed or dropped as well. We
require only that the delays are bounded and that the message
drop probability is less than one. This allows the random walks
to progress.

Algorithm 1 requires an implementation of the procedure
update. We will now elaborate on two different versions that
implement different stochastic gradient update rules.

A. Update Rule for General Rank–k Factorization

Let us first consider the error function given in equation (1)
and derive an update rule to optimize this error function. The
partial derivatives of $J(X, Y)$ by X and Y are

$$ \frac{\partial J}{\partial X} = (XY^T - A)Y, \quad \frac{\partial J}{\partial Y} = (YX^T - A^T)X. \quad (3) $$

Since only x_i is available at node i, the gradient is calculated
only w.r.t. x_i instead of X. Accordingly, the stochastic gradient
update rule with a learning rate η can be derived by substituting
x_i as shown in Algorithm 2. Although function J is not
convex, it has been shown that all the local optima of J are
also global [23]. Thus, for a small enough η, any stable fix
point of the dynamical system implemented by Algorithm 1
with the update rule in Algorithm 2 is guaranteed to be a global
optimum.

B. Update Rule for Rank–k SVD

Apart from minimizing the error function given in equation
(1) let us now also set the additional goal that the algo-

Algorithm 2 rank-k update at node i

1: $\eta \triangleright$ learning rate
2: $\text{procedure} \text{update}(Y, x_i, a_i)$
3: $\text{err} \leftarrow a_i - x_iY^T$
4: $x_i' \leftarrow x_i + \eta \cdot \text{err} \cdot Y$
5: $Y' \leftarrow Y + \eta \cdot \text{err}^T \cdot x_i$
6: $\text{return} (Y', x_i')$
7: end procedure

rithm converges to X^* and Y^*, as defined in Section II. This
is indeed a harder problem: while (X^*, Y^*) minimizes (1),
yany pair of matrices (X^*R^{-1}, Y^*R^T) will also minimize it
for any invertible matrix $R \in \mathbb{R}^{k \times k}$, so Algorithm 2 will not
be sufficient.

From now on, we will assume that the non-zero singular
values of A are all unique, and that the rank of A is at least k.
That is, $\sigma_1 > \cdots > \sigma_k > 0$. This makes the discussion simpler,
but these assumptions can be relaxed, and the algorithm is
applicable even if these assumptions do not hold.
Our key observation is that any optimal rank-1 approximation $X_1 Y_1^T$ of A is such that $X_1 \in \mathbb{R}^{m \times 1}$ contains the (unnormalized) left singular vector of A that belongs to σ_1, the largest singular value of A. Similarly, Y_1 contains the corresponding right singular vector. This is because for any optimal rank-k approximation XY^T there is an invertible matrix $R \in \mathbb{R}^{k \times k}$ such that $X = X^* R$ and $Y^T = R^{-1} Y^T$ [23]. For $k = 1$ this proves our observation because, as defined in Section II-A, $X^* \sim u_1$ and $Y^* \sim v_1$. Furthermore, for $k = 1$, $X_1 Y_1^T = X^* Y^* = \sigma_1 u_1 v_1^T$, (4)
which means that (using equation (2)) we have $A - X_1 Y_1^T = \sum_{i=2}^{r} \sigma_i u_i v_i^T$. (5)

Thus, a rank-1 approximation of the matrix $A - X_1 Y_1^T$ will reveal the direction of the singular vectors corresponding to the second largest singular value σ_2. A naive approach based on these observations would be to first compute $X_1 Y_1^T$, a rank-1 approximation of A. After this has converged, we could compute a rank-1 approximation $X_2 Y_2^T$ of $A - X_1 Y_1^T$. This would give us a rank-2 approximation of A containing the first two left and right singular vectors, since according to the above observations $[X_1, X_2][Y_1, Y_2]^T$ is in fact such a rank-2 approximation. We could repeat this procedure k times to get the desired decomposition X^* and Y^* by filling in one column at a time sequentially in both matrices.

A more efficient and robust approach is to let all rank-1 approximations in this sequential naive approach evolve at the same time. Intuitively, when there is a reasonable estimate of the singular vector corresponding to the largest singular value, then the next vector can already start progressing in the right direction, and so on. This idea is implemented in Algorithm 3.

C. Synchronized Rank–k SVD

As a baseline method in our experimental evaluation, we will use a synchronized version of Algorithm 1 with the update rule in Algorithm 3. In this version (shown in Algorithm 4), the rank-1 updates are done over the entire matrix A at once, and there is only one central version of the approximation of Y as opposed to the several independent versions we had previously. As in Algorithm 1, the matrices X and Y are initialized with uniform random values from $[0, 1]$. Note that this algorithm listing uses a different notation: here x_ℓ denotes the ℓ-th column, not the ℓ-th row.

Note that—although it is formulated as a centralized sequential algorithm—this algorithm can easily be adopted for the MapReduce framework, where the mappers compute parts of the gradients (e.g., the gradients of the rows of A as in Algorithm 3) while the reducer sums up the components of the gradient and executes the update steps.

IV. EXPERIMENTS

Here we demonstrate various properties of our algorithm including convergence speed, scalability and robustness. Our testbed of matrices includes standard machine learning test data sets as well as synthetic matrices with controllable properties.

In case of the distributed algorithms the number of nodes in the network equals the number of rows of the matrix to be factorized, since every node has exactly one row of the matrix. We used the PeerSim [26] simulator with the event-based engine, and we implemented the peer sampling service by the NEWSCAST [24] protocol. Our implementation is publicly available.\(^1\)

A. Algorithms

Here we provide names for the algorithms we include in our experiments. Algorithm 1 with the update rule in

Algorithm 3 (our main contribution) will be referred to as Fully Distributed SVD (FuDiSVD). Replacing Algorithm 3 with Algorithm 2 we get Fully Distributed Low Rank Decomposition (FuDiLRD). Recall that this algorithm will converge to a rank-k decomposition that is not necessarily the SVD of A. Algorithm 4 will be called Gradient SVD (GradSVD). Recall that this algorithm can be parallelized: for example, the gradient can be calculated row by row and then summed up to get the full gradient.

Finally, we introduce a baseline algorithm, Stochastic Gradient SVD (SGSVD). This algorithm uses the update rule in Algorithm 3 but we have only a single approximation Y at any point in time, and there is only one process, which repeatedly gets random rows of A and then applies the update rule in Algorithm 3 to the current approximation Y and the corresponding row of X.

B. Error measures

a) **Cosine similarity:** To measure the difference between the correct and the approximated singular vectors, we used cosine similarity, because it is not sensitive to the scaling of the vectors (recall, that our algorithm does not guarantee unit-length columns in X and Y). The formula to measure the error of a rank-k decomposition XY^T is

$$\text{Error}(X,Y) = \frac{1}{2k} \sum_{i=1}^{k} 1 - \left| \frac{y_i^T v_i}{\|y_i\|} \right| + 1 - \left| \frac{x_i^T u_i}{\|x_i\|} \right|, \quad (6)$$

where x_i, y_i, u_i, and v_i are column vectors of X, Y, U_k and V_k, respectively. Matrices U_k and V_k are orthogonal matrices defined in Section II.

b) **Frobenius norm:** Another measure of error is given by function $J(X,Y)$ defined in equation (1). The advantage of this measure is that it can be applied to Algorithm 2 as well. However, obviously, this error measure does not reflect whether the calculated matrices X and Y contain scaled singular vectors or not; it simply measures the quality of rank-k approximation. On the plots we call this error measure FNORM.

d) **Real data:** These matrices were constructed from data sets from the well known UCI [30] machine learning repository. In these applications the role of SVD is dimensionality reduction and feature extraction. The selected data sets are the Iris, the Pendigits (Pen-Based Recognition of Handwritten Digits) and the Segmentation (Statlog (Image Segmentation)) data sets. Parameter k was set so that the approximation has at least 90% of the information in the data set, that is, we set the minimal k such that $\sum_{i=1}^{k} \sigma_i^2 / \sum_{i=1}^{n} \sigma_i^2 > 0.9$ [31]. Table I illustrates the main properties of the selected data sets. In order to be able to compute the error over these matrices, we computed the exact singular value decomposition using the Jama [32] library.
D. Convergence

The experimental results are shown in Figures 1 and 2. We tested the convergence speed of the algorithms over the real data sets with parameter \(k \) set according to Table I.

Figure 1 illustrates the deviation from the exact singular vectors. GRADSDV is the fastest to converge, however, it either needs a central database to store \(A \), or it requires a synchronized master-slave communication model when parallelized. We also show a reference curve that is calculated by scaling the number of iterations by \(\log_{10} m \) for GRADSDV. The motivation is a more scalable potential implementation of GRADSDV in which there is a hierarchical communication structure in place where nodes propagate partial sums of the gradient up a tree (with a branching factor of 10) instead of each node communicating with a central server as in [33]. This curve almost completely overlaps with that of F\(O\)\(D\)ISV\(D\), our fully distributed robust algorithm.

We also illustrate the speedup w.r.t. SGSVD. The major difference between SGSVD and F\(O\)\(D\)ISV\(D\) is that in F\(O\)\(D\)ISV\(D\) there are \(m \) different approximations of \(Y \) all of which keep updating the rows of \(X \) simultaneously, while in SGSVD there is only one version of \(Y \). Other than that, both algorithms apply exactly the same gradient update rule. In other words, in F\(O\)\(D\)ISV\(D\) any row of \(X \) experiences \(m \) times as many updates in one unit of time.

Figure 2 illustrates the difference between F\(O\)\(D\)I\(R\)D and F\(O\)\(D\)ISV\(D\). Both optimize the same error function (that is shown on the plots), however, F\(O\)\(D\)ISV\(D\) introduces the extra constraint of aiming for the singular vectors of \(A \). Fortunately this extra constraint does not slow down the convergence significantly in the case of the data sets we examined, although it does introduce a bumpier convergence pattern. The reason is that the singular vectors converge in a sequential order, and the vectors that belong to smaller singular values might have to be completely re-oriented when the singular vectors that precede them in the order of convergence have converged.

E. Scalability

For evaluating the scalability of F\(O\)\(D\)ISV\(D\) we generated a range of synthetic matrices of various sizes using the method described earlier. Figure 3 shows the outcome of the experiments. Clearly, the method is somewhat more sensitive to changing the number of nodes (that is, to varying the first dimension \(m \)) than to varying the second dimension \(n \) (the length of a row). This is not surprising as the full row of \(A \) is always used at once in an update step, irrespective of its length, whereas a larger \(m \) requires visiting more nodes, which takes more iterations.

However, when \(m \) is large, we can apply sampling techniques [34]. That is, we can consider only a small sample of the network drawn uniformly or from an appropriately biased distribution and calculate a high quality SVD based on that subset. To illustrate such sampling techniques, we implemented uniform sampling. When we wish to select a given proportion \(p \) of the nodes, each node decides locally about joining the sample with a probability \(p \). The size of the resulting sample will follow the binomial distribution \(B(N,p) \).
Figure 2. Convergence on the real data sets. Error is based on the Frobenius norm. Horizontal dashed lines in top-down order show the FNorm value for the optimal rank-i approximations for $i = 1, \ldots, k$.

Figure 4 shows our experimental results with $p = 1/2$ and $p = 1/3$. Clearly, while communication costs overall are decreased proportionally to the sample size, on our benchmark both precision and convergence speed remain almost unchanged. The only exception is the Iris data set. However, that is a relatively small data set over which the variance of our uniform sampling method is relatively high (note, for example, that the run with $p = 1/3$ resulted in a better performance than with $p = 1/2$).

F. Failure Scenarios

We used two different failure scenarios: a mild and a hard one. In the two scenarios message delay was drawn uniformly at random from between Δ and 5Δ or 10Δ time units, respectively. Messages were dropped with 20% or 50% probability, respectively.

Node churn was modeled taking into account statistics from a BitTorrent trace [35] as well as known empirical findings [36]. We draw the online session length for each node independently from a lognormal probability distribution with parameters $\mu = 5\Delta$ and $\sigma = 0.5\Delta$. Offline session lengths are determined implicitly by fixing the number of nodes that are offline at the same time. For the two scenarios 50% or 80% of the nodes were offline at the same time, respectively.

The results of the algorithms in these extreme failure scenarios can be seen in Figure 5. As we can see, the different types of failures (whether examined separately or combined together) result in only delay on the convergence rate, but the algorithm still converges. This is in sharp contrast with competing approaches that require synchronization, such as GradSVD, for example.

An interesting observation is that when only churn is
modeled, at the beginning of the simulation convergence is actually faster. This effect is due to the fact that since most of the nodes are offline, the effective network is smaller, but this small sample still allows for an approximation of the SVD. However, convergence eventually slows down as full precision cannot be reached without taking most of the nodes into account in the particular matrix we experiment with.

V. Conclusion

In this paper we proposed an SGD algorithm with an update rule that has stable fix points only in the SVD of a matrix A. The output of the algorithm for rank k are two matrices X and Y that contain scaled versions of the first k left and right singular vectors of A, respectively. Matrices X and Y are unique apart from the scaling of the columns.

The most important feature of the algorithms is a P2P sense privacy preservation: we operate over fully distributed data where each network node stores one full row of A as its private data. The output matrix X is also fully distributed: node i that stores row i of A computes row i of X, the private model for the node. Matrices A and X are private in that only the node that stores a given row has access to it. A version of the matrix Y is available in full at all nodes.

Through experimental evaluation we studied the convergence speed of the algorithm, and showed that it is competitive with other gradient methods, that require more freedom for data access. We also demonstrated the remarkable robustness of the method in extreme failure scenarios.

Our future work includes addressing interesting challenges such as dynamically changing data, and investigating methods for further improving the efficiency of the protocol, for example, through sampling from the rows and/or columns of A using several sampling techniques.

Acknowledgments

M. Jelasity was supported by the Bolyai Scholarship of the Hungarian Academy of Sciences. This work was partially supported by the European Union and the European Social Fund through project FuturICT.hu (grant no.: TAMOP-4.2.2.C-11/1/KONV-2012-0013), by the grant OTKA NK 105645, and the “Momentum - Big Data” grant of the Hungarian Academy of Sciences.

References

14-th IEEE International Conference on Peer-to-Peer Computing

