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On normality of orthogonal polynomials†

Vilmos Totik

Abstract

We extend some recent results of Mart́ınez-Finkelshtein and Simon about measures µ on the
unit circle for which the corresponding orthonormal polynomials φn have the so called normal
behavior: ∥φ′

n∥/n → 1.
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Let µ be a Borel-measure on the unit circle T (with support that contains infinitely many points)
and let φn(z) = κnz

n + · · · be the orthonormal polynomials associated with µ. Thus,∫
φnφmdµ = 0 if n ̸= m, and

∫
|φn|2dµ = 1.

It is a simple fact due to the orthogonality, that here

1

κ2
n

= inf

{∫
|Pn|2dµ Pn(z) = zn + · · ·

}
, (1)

and if we apply this to Pn(z) = zφ′
n(z)/nκn, then we can conclude that∫

|φ′
n(z)|2dµ ≥ n2. (2)

†Supported by the TAMOP-4.2.1/B-09/1/KONV-2010-0005 project.
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A. Mart́ınez-Finkelshtein and B. Simon [4] raised the problem: when do we have equality in (2) in
asymptotic sense, i.e. when is it true that

lim
n→∞

∥φ′
n∥L2(µ)

n
= 1.

When this is the case, they call it normal behavior. The paper [4] contains motivations, different
formulations and several criteria for normal/non-normal behavior. The picture is far from complete
at this moment, and it is quite intriguing how different properties of the measure influence normal
behavior.

It was pointed out in [4] that normal behavior is linked to the Bernstein inequality. In this paper
we take this connection further, and with it we get some extensions of some results in [4].

As is usual, we identify the unit circle T with R/(mod2π).
We call a measure µ doubling if there is an L such that for all intervals I ⊂ [−π, π] we have

µ(2I) ≤ Lµ(I),

where 2I is the interval obtained from I by enlarging it twice from its center. When this is the case
and dµ(t) = w(t)dt is absolutely continuous, then we shall also use the terminology that w is doubling.

In what follows we shall use the decomposition µ = µa+µs, dµa(t) = w(t)dt, of µ into its absolutely
continuous and singular part, and the letters µ, µa, µs, w will always be related this way.

One of the general normality criteria of [4] is the following: if w is bounded and it is in the Szegő
class, i.e. if ∫

logw > −∞,

then for µ(t) = w(t)dt there is normal behavior (see [4, Theorem 5.1]). Our result is

Theorem 1. Let w be a doubling weight in the Szegő class such that w is locally bounded outside
a set of measure 0, and assume also that µs is doubling. Then dµ(t) = w(t)dt + dµs(t) has normal
behavior.

As an example, let {an} ⊂ [−π, π] be a sequence the cluster points of which are the points of the
Cantor-set. Then

w(x) =
∞∑

n=1

1

2n
1

|x− an|1/2

is in the Szegő class and it is locally bounded outside a set of measure zero (outside the union of {an}
and the set of its cluster points), even though it is unbounded around every point of the Cantor-set.
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Furthermore, the weights |x − a|−1/2 are uniformly doubling (the doubling constant is independent
of a), and it is easy to see that sums and limits of uniformly doubling weights is doubling, so w
is doubling. We can also add a nonzero singular doubling measure µs. In fact, the existence of
singular doubling measures follows from a paper of Beurling and Ahlfors [1] who, in connection with
quasiconformal mappings, showed that there is a strictly increasing continuous ρ : R → R for which

1

M
≤ ρ(x+ t)− ρ(x)

ρ(x)− ρ(x− t)
≤ M

is true for all x and t, and for which ρ′ = 0 almost everywhere. Clearly, this ρ generates a dρ which is
a singular doubling measure. For completeness, we shall give a direct construction at the end of the
paper.

Let us remark that, by a result of Feffermann and Muckenhoupt [3], a doubling weight may vanish
on a set of positive measure, so it need not be in the Szegő class. Even then, a doubling measure
cannot be too small on intervals, namely there is an s and a c > 0 such that for all I ⊂ [−π, π] we
have (see [5, Lemma 2.1])

µ(I) ≥ c|I|s

(this property for measurable sets I rather than intervals would be more than sufficient for the Szegő
property).

Corollary 2. All generalized Jacobi weigths dµ(t) = w(t)dt of the form

w(t) = h(t)
∏

1≤k≤N

|t− tk|αk

where αk > −1 and h is a positive continuous function, have normal behavior.

For Lipschitz continuous h this is [4, Theorem 10.1].
We say that a measure µ on the unit circle T has the Bernstein property, if there is a constant C0

such that ∫
|P ′

n|2dµ ≤ C0n
2

∫
|Pn|2dµ (3)

for all polynomials Pn of degree at most n = 1, 2, . . .. It is easy to see that this is the same that for
all trigonometric polynomials Sn of degree at most n = 1, 2, . . . we have∫ π

−π

|S′
n(t)|2dµ(t) ≤ C0n

2

∫ π

−π

|Sn(t)|2dµ(t)
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(with a possibly different C0). The L2-version of a classical theorem of Bernstein says that the
Lebesgue-measure has the Bernstein property, and (3) just requires the same for weighted L2 spaces.
It is a remarkable fact that the doubling property alone implies the Bernstein property, see [5] (there
absolutely continuous measures were considered, but the theorems and proofs are valid without any
change for doubling measures).

The following result shows that a doubling singular part is irrelevant from the point of view of
normality provided the absolutely continuous part is also doubling and in the Szegő class.

Theorem 3. Suppose that µa is a doubling measure in the Szegő class, and µs is also doubling. Then
µ is normal if and only if µa is normal.

Proof. Since µ is in the Szegő class, Szegő’s theorem (see e.g. [7, (12.3.9)] or [6, (1.1.8) and (1.5.22)])
gives that the leading coefficients κn(µ) and κn(µa) have the same positive limit, so if η > 0 is given,
then for large n we have

κn(µ) ≤ κn(µa) ≤ (1 + η)κn(µ)

for all large n no matter how 1 > η > 0 is given. Let Φn be the orthonormal polynomial for µa. Then
(see also (1)) ∫ ∣∣∣∣φn/κn(µ)− Φn/κn(µa)

2

∣∣∣∣2 dµa +

∫ ∣∣∣∣φn/κn(µ) + Φn/κn(µa)

2

∣∣∣∣2 dµa

=
1

2

∫
|φn/κn(µ)|2µa +

1

2

∫
|Φn/κn(µa)|2dµa

≤ 1

2κn(µ)2
+

1

2κn(µa)2
≤ (1 + η)2

κn(µa)2
. (4)

Since the second term on the left is at least 1/κn(µa)
2 (see (1)), it follows that∫ ∣∣∣∣φn/κn(µ)− Φn/κn(µa)

2

∣∣∣∣2 dµa ≤ 3η

κn(µa)2
,

i.e. ∫
|φn − Φn|2dµa ≤ 24η + 2

∫
|φn|2

∣∣∣∣κn(µa)

κn(µ)
− 1

∣∣∣∣2 dµa ≤ 26η. (5)

Using that µa is doubling, therefore it has the Bernstein property, it follows that∫
|φ′

n − Φ′
n|2dµa ≤ C0n

2

∫
|φn − Φn|2dµa ≤ 26C0n

2η.
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This gives

∥Φ′
n/n∥L2(µa) ≤ ∥φ′

n/n∥L2(µa) +
√
26C0η ≤ ∥φ′

n/n∥L2(µ) +
√

26C0η,

so the normality of µ implies that of µa.
In a similar vein,

∥φ′
n/n∥L2(µa) ≤ ∥Φ′

n/n∥L2(µa) +
√
26C0η.

Since µs is also doubling, it has the Bernstein property, therefore

∥φ′
n/n∥L2(µs) ≤ C0∥φn∥L2(µs) → 0

by [6, Theorem 2.2.14,(iv)], so it is less than any given ε if n is large. Hence, for all large n we have

∥φ′
n/n∥L2(µ) ≤ ∥Φ′

n/n∥L2(µa) +
√

26C0η + ε

so the normality of µa implies that of µ.

To prove Theorem 1 we need

Proposition 4. If µ is in the Szegő class and µ has the Bernstein property (in particular, if µ is
doubling), then for sets E ⊆ T consisting of finitely many arcs

lim sup
n→∞

1

n2

∫
E

|φ′
n|2dµ ≤ 2C0|E|.

Here |E| is the linear (arc) measure of E.

Proof. For an ε > 0 choose a polynomial S, say of degree m, such that 1 ≤ |S(z)| ≤ 2 on E,
|S(z)| ≤ ε on T \ 2E (2E is obtained by enlarging each subarc of E twice from its center) and
|S(z)| ≤ 2 otherwise. One can get easily such a polynomial from a similar trigonometric polynomial

S∗
m/2(t) =

[m/2]∑
k=−[m/2]

cke
ikt
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by setting

S(z) = z[m/2]

[m/2]∑
k=−[m/2]

ckz
k.

Then ∫
E

|φ′
n|2dµ ≤

∫
E

|φ′
nS|2dµ ≤ 2

∫
E

|φnS
′|2dµ+ 2

∫
E

|(φnS)
′|2dµ.

The first term on the right is at most a constant times the integral of |φn|2dµ on E, so it is bounded,
and hence the quantity obtained by dividing it by n2 tends to 0 as n tends to ∞. Using the Bernstein
property we obtain for the second term∫

E

|(φnS)
′|2dµ ≤ C0(n+m)2

∫
|φnS|2dµ

≤ C0(n+m)2ε2
∫
T\2E

|φn|2dµ+ 4C0(n+m)2
∫
2E

|φn|2dµ.

To estimate the last factor in the second term of the right-hand side we use that |φn(e
it)|2dµ(t) tends

weakly to dt/2π (see [6, Theorem 2.2.14,(v)]), and so

lim sup
n→∞

∫
2E

|φn|2dµ =
2|E|
2π

.

Plugging this into the preceding estimate, dividing by n2, letting n → ∞ and then ε → 0, we
obtain what we want.

Proof of Theorem 1. In view of Theorem 3 we may assume µ = µa i.e. that µ is absolutely
continuous: dµ(x) = w(x)dx.

We start with a similar argument as in Theorem 3. Let wM = min(w,M), and set dµM (t) =
wM (t)dt. Then, by the assumption that w is locally finite outside a set of measure 0, this wM agrees
with w outside a set EM which can be chosen as a finite union of intervals with |EM | → 0 as M → ∞.
From Szegő’s theorem (see e.g. [7, (12.3.9)] or [6, (1.1.8) and (1.5.22)]) we get that the corresponding
leading coefficients κn(µ) and κn(µM ) differ by as small quantity as we wish if M is large and then n
is large, i.e. we can have

κn(µ) ≤ κn(µM ) ≤ (1 + η)κn(µ) (6)
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for all large M and then large n, no matter how 1 > η > 0 is given.
Let Φn be the orthonormal polynomial for µM . Now repeat the argument (4)–(5) with with µa

replaced by µM (that argument was based on µa ≤ µ and for µM we also have µM ≤ µ) to conclude∫
|φn − Φn|2dµM ≤ 26η. (7)

Let ε > 0 and fix an M0 such that |EM0 | ≤ ε. Let J be a subarc of T \ 2EM0 , and J ′ the subarc
of T \ EM0 that contains J . By the local Bernstein inequality for doubling weights [2] we have∫

J

|φ′
n − Φ′

n|2w ≤ CJ,J′n2

∫
J ′
|φn − Φn|2w

(in [2] it is assumed that J ′ is of length at most 1, which is enough for us, for we can apply that result
to smaller parts of J ′ if this is not the case). Taking sum for all subarcs of T \ 2EM0 we can see that∫

T\2EM0

|φ′
n − Φ′

n|2w ≤ CM0n
2

∫
T\EM0

|φn − Φn|2w

= CM0n
2

∫
T\EM0

|φn − Φn|2wM ≤ CM026ηn
2,

where, in the last but one step we used that for M > M0 we have w = wM on T \ EM0 (clearly, we
may assume the sets EM decreasing, so EM ⊂ EM0), and in the last step we used (7).

On the other hand, by [4, Theorem 5.1] (note that wM is a bounded Szegő weight which agrees
with w on T \ EM0)

1

n2

∫
T\2EM0

|Φ′
n|2w =

1

n2

∫
T\2EM0

|Φ′
n|2wM ≤ 1 + ε (8)

for large n. A combination of these give for large n

1

n2

∫
T\2EM0

|φ′
n|2w ≤ (

√
CM026η +

√
1 + ε)2.

The integral over 2EM0 is handled by Proposition 4, namely

1

n2

∫
2EM0

|φ′
n|2dµ ≤ 3C02|EM0 | ≤ 6C0ε (9)
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for large n.
All these show that for large n

∥φ′
n∥L2(µ)

n
≤

√
CM026η +

√
1 + 2ε+

√
6C0ε,

and since here ε > 0 is arbitrarily small, and independently of this and M0, the number η > 0 can be
arbitrarily small, the proof is complete.

For more clarification, this is the order of selection of the parameters: given ε > 0 select M0 so
that |EM0 | ≤ ε. With this choice of EM0 we get the constant CM0 , and select η so that CM026η < ε.
Then select the M > M0 and N so large that with this M the inequality (6) is true for n ≥ N .
Finally, there are two more thresholds on n, namely that (8) be true and that (9) be satisfied.

We finish the paper by a construction of a singular doubling measure on the unit circle.
We shall construct a 1-periodic singular doubling measure µ on the real line, then its dilation by

2π will be appropriate on the unit circle.
Let h be the a 1-periodic function that is 2 on the interval [1/3, 2/3) and equals 1/2 on [0, 1/3) ∪

[2/3, 1). Then the integral of h over [0, 1) is 1. Let, for n = 1, 2, . . .,

gn(x) =
n∏

k=1

h(3kx),

and dµn(x) = gn(x)dx. The function gn is constant on each triadic interval Ij,n = [j/3n, (j+1)/3n) ⊂
[0, 1), the constant being 4lj,n/2n, where lj,n is the number of those digits {εk}, 1 ≤ k ≤ n, in the
triadic expansion of the center

j + 1/2

3n
= 0.ε1ε2 . . . εnεn+1 · · · , εk = 0, 1, 2

which equal 1:
lj,n = #{k 1 ≤ k ≤ n, εk = 1}. (10)

Thus,

µn(Ij,n) =
4lj,n

6n
,
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and from the choice of h (namely from the fact that its integral over [0, 1) is 1) we also get

µm(Ij,n) = µn(Ij,n) for all m ≥ n.

Therefore, if µ is a weak∗-limit of {µm}∞m=1, then we have

µ(Ij,n) =
4lj,n

6n
.

We fix such a weak∗ limit µ, and next we show that µ is doubling. If I is a subinterval of [0, 1] with
3−n ≤ |I| < 3n−1, n ≥ 2, then there is an interval Ij,n+1 ⊂ I, and 2I is contained in Ik,n−1 ∪ Ik+1,n−1

for some k. Let d be the density of µn−1 on Ik,n−1. Then its density on Ik+1,n−1 is either 4d or d/4,
so the density of µn on any subinterval Is,n of Ik,n−1 ∪ Ik+1,n−1 lies in between d/42 and 42d, and
the density of µn+1 on any subinterval It,n+1 of Ik,n−1 ∪ Ik+1,n−1 lies in between d/43 and 43d. In
particular, this is true for Ij,n+1. Thus,

µ(2I) ≤ µ(Ik,n−1 ∪ Ik+1,n−1) = µn−1(Ik,n−1 ∪ Ik+1,n−1)

≤ 4d|Ik,n−1 ∪ Ik+1,n−1| = 8d3−(n−1),

while

µ(I) ≥ µ(Ij,n+1) = µn+1(Ij,n+1) ≥
d

43
|Ij,n+1| =

d

43
d3−(n+1),

so
µ(2I) ≤ 8 · 43 · 9 · µ(I).

Finally, we prove that µ is singular. Let ε > 0 be given, and for an n consider the set Eε,n of those
points x ∈ [0, 1) for which gn(x) > ε. If l is an integer with 4l/2n > ε, then the number of intervals
Ij,n on which the density is precisely 4l/2n is (see (10))(

n

l

)
2n−l,

and these have total length (
n

l

)
2n−l

3n
,

so

|Eε,n| =
∑

4l>ε2n

(
n

l

)
2n−l

3n
=:

∑
4l>ε2n

Cn,l.
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Since, for large n, we have

Cn,l+1 ≤ 12

14
Cn,l for l ≥ 7n/18,

and 4l > ε2n implies l > n/2 + log ε > 8n/18, we get with q = (12/14)1/18 that

|Eε,n| ≤ Cq

∑
4l>ε2n

(
12

14

)l−7n/18

≤ C ′
qq

n. (11)

On the complement of Eε,n (which is a union of intervals Ij,n) the density of µn is ≤ ε, so

µ([0, 1) \ Eε,n) = µn([0, 1) \ Eε,n) ≤ ε.

This gives for

Eε := lim sup
n→∞

Eε,n = ∩N ∪n≥N Eε,n

that µ([0, 1)\Eε) ≤ ε, and, by (11), Eε is of measure 0. Thus, if E = ∪∞
m=1E1/m, then E is of measure

0 and µ([0, 1) \ E) = 0, which shows the singularity of µ.
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