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Abstract

The paper is devoted to the problem how close one can get with the n-
th Chebyshev numbers of a compact set Γ to the theoretical lower bound
cap(Γ)n. For a system of m ≥ 2 analytic curves it is shown that there
is always a subsequence for which the Chebyshev numbers are at least as
large as (1 + α)cap(Γ)n, while for another subsequence they are at most
(1 + O(n−1/(m−1))cap(Γ)n. It will also be shown that a better estimate
than the last one cannot be given. We shall also discuss how well a sys-
tem of curves can be approximated by lemniscates in Hausdorff metric.
The proofs are based on potential theoretical arguments. Simultaneous
Diophantine approximation of harmonic measures lies in the background.
To achieve the correct rate, a perturbation of the multi-valued complex
Green’s function is introduced which makes the n-th power of its expo-
nential single-valued and which allows to construct Faber-like polynomials
on multiply connected domains.

1 The norm of monic polynomials on systems of
analytic curves

Let K be an infinite compact set on the plane. For every n there is a unique
monic polynomial Tn(z) = zn + c1z

n−1 + · · ·, called the Chebyshev polynomial
of degree n of K, which minimizes the supremum norm on K:

∥Tn∥K = min ∥zn + · · · ∥K .

Chebyshev polynomials, being extremal from various points of view, appear in a
number of problems: the original motivation of Chebyshev came from mechan-
ics, but since then they made their appearance in potential theory, orthogonal
polynomials, number theory, numerical analysis, signal processing, differential
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equations, just to name a few (see e.g. [16], [17], [3]–[5] and the references there).
The properties of Chebyshev polynomials have been the subject of many pa-
pers, see the extensive literature in [18]. The case when K consists of several
intervals on R have been particularly developed via the theory of elliptic func-
tions, hyperelliptic curves and Riemann surfaces (see for example the papers [1],
[18], [3]–[5] and [11]–[14]). Here we shall be primarily interested in the behavior
of the Chebyshev numbers ∥Tn∥K when K is the union of a finite number of
curves.

By a theorem of Fekete and Szegő (see e.g. [16, Corollary 5.5.5]) for any K
we have

∥Tn∥K ≥ cap(K)n (1.1)

where cap(K) denotes logarithmic capacity, and, as n→ ∞, ∥Tn∥1/nK → cap(K).
The reader can find the concept of logarithmic capacity e.g. in [9] or [16]. For
example, the capacity of a disk/circle of radius r is r, while the capacity of a
segment of length l is l/4.

In this work we address the problem how close the Chebyshev number ∥Tn∥K
can get to the theoretical lower limit cap(K)n.

In a landmark paper [25] Harold Widom described the behavior of various
extremal polynomials associated with a system of curves on the complex plane
or with some measures on such curves. In particular, he described the (1+o(1))-
behavior of ∥Tn∥Γ when Γ is a family of smooth Jordan curves in terms of the
norm of some extremal analytic functions related to n. Although the asymptotic
is somewhat implicit, it implies

Theorem A (Widom) If Γ consists of m ≥ 2 smooth Jordan curves lying
exterior to one another, then there is a C such that for every n = 1, 2, . . . we
have ∥Tn∥Γ ≤ Ccap(Γ)n.

For an alternating proof based on discretization of the equilibrium measure
see [24].

In this paper we are interested in better than Ccap(Γ)n bounds in the sense
of [22], where the same problem was considered for finitely many intervals. We
shall use some ideas of that paper, but the method here is quite different. We
would like to illustrate the method, so not to mix in considerable technical
difficulties that would arise for less smooth curves, in this paper we choose the
curves to be analytic, and just mention that the results hold for less smooth,
say C2 curves, as well.

The case of a single analytic curve will be excluded below, for then things
are different and simpler. Indeed, if Γ is an analytic Jordan curve, Φ(z) =
z+c+c−1z

−1+ · · · is the conformal map (of the given form) of the exterior of Γ
onto the exterior of the disk {z |z| = cap(Γ)} and Φn are the Faber polynomials
associated with Γ (i.e. Φn(z) is the polynomial part of Φ(z)n), then we have
∥Φn − Φn∥Γ ≤ Cqn∥Φn∥Γ with some 0 < q < 1 ([19, Sec. II.3, (12)]), therefore
∥Φn∥Γ ≤ (1 + Cqn)cap(Γ)n, which is in sharp contrast with the results below.
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In the formulation of the theorems below Tn will denote the n-th Chebyshev
polynomial associated with the set Γ in question. However, the reader should
keep in mind that any result on Tn gives a result for all monic polynomials; e.g.
if we state ∥Tn∥Γ ≥ γn, then we get automatically the estimate ∥Pn∥ ≥ γn for
all monic polynomials Pn.

First of all we remark that Theorem A cannot be improved to have (1 +
o(1))cap(Γ)n rate.

Theorem 1.1 If Γ consists of m ≥ 2 analytic Jordan curves lying exterior to
one another, then there is a β > 0 and a subsequence M of the natural numbers
such that for every n ∈ M we have ∥Tn∥Γ ≥ (1 + β)cap(Γ)n.

Thus, a norm like (1 + o(1))cap(Γ)n is possible only along some subsequence.
That this is indeed the case is the content of

Theorem 1.2 If Γ consists of m ≥ 2 analytic Jordan curves lying exterior
to one another, then there is a C and a subsequence N of the natural numbers
such that ∥Tn∥Γ ≤ (1 + Cn−1/(m−1))cap(Γ)n for every n ∈ N .

Finally, we show that Theorem 1.2 is sharp regarding the order (1+n−1/(m−1)).

Theorem 1.3 For every m ≥ 2 there is set Γ consisting of m disjoint circles
such that for every n = 1, 2, . . . we have ∥Tn∥Γ ≥ (1 + cn−1/(m−1))cap(Γ)n with
some c > 0.

Actually, if we fix the centers of the circles then the radii for which Theorem
1.3 is true form a dense subset in [0, a]m for some a > 0. On the other hand,
there is a dense subset of the radii in [0, a]m for which there are infinitely many
n with the property

∥Tn∥Γ ≤ (1 + Cqn)cap(Γ)n (1.2)

with some 0 < q < 1 (this easily follows from the considerations below since
there is a dense set of radii for which each µΓ(Γj) is rational, and for such Γ’s
Theorem 1.4 gives the estimate (1.2) for infinitely many n).

All these theorems will be easy consequences of the following one. Let µΓ

be the equilibrium measure of Γ (see e.g. [9], [16] or [20]). Think of µΓ as the
distribution of a unit charge placed on the conductor Γ (i.e. the charge can move
freely in Γ) when it is in equilibrium. Let Γk, k = 1, . . . ,m be the components
of Γ, and consider the harmonic measures µΓ(Γk), k = 1, . . . ,m. For a θ > 0 let
{θ} denote its distance from the nearest integer, and set

κn = max
1≤k≤m

{nµΓ(Γk)}. (1.3)

Then κn/n measures how well each of µΓ(Γk) can be (simultaneously) approxi-
mated with rational numbers of the form p/n, p = 0, 1, 2, . . . (the denumerator
is fixed to be n). With this κn we can state
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Theorem 1.4 Let Γ be a finite family of analytic Jordan curves lying exterior
to one another. Then there are constants c, C > 0 and 0 < q < 1 depending
only on Γ such that for every n = 1, 2, . . .

(1 + cκn)cap(Γ)
n ≤ ∥Tn∥Γ ≤ (1 + Cκn + Cqn)cap(Γ)n. (1.4)

Note also that κn = 0 could easily happen for infinitely many n without Γ
being a lemniscate (level set of a polynomial), hence the sharper upper estimate

∥Tn∥Γ ≤ (1 + Cκn)cap(Γ)
n

is not necessarily true (it can be been shown that the equality ∥Tn∥Γ = cap(Γ)n

holds for a particular n if and only if Γ is the level curve of a polynomial of
degree n). This is the situation for example, if Γ consists of two circles of the
same radius, in which case κ2m = 0 for all m but ∥T2m∥Γ > cap(Γ)2m.

We shall see in Section 4 that the results are closely related to the problem
of approximation of a system of curves by lemniscates in Hausdorff metric.

Finally, we would like to mention that similar results can be proven for
smooth (not analytic) systems of curves. However, that situation is technically
very challenging for the following reason: for analytic curves we use the reflection
principle, with which we can continue the Green’s function of the complement
inside the components Γk of Γ, and then one can speak of level curves of the
Green’s function that lie inside Γ (Γ itself arises as the level curve of a Green’s
function associated with a smaller set). This is what we are going to do, and
this is what is no longer true when Γ is not analytic. In that case one needs
to imitate the inner level curves (Γ cannot arise then as a level curve of the
Green’s function associated with a smaller set), which is quite technical. For
that reason we skip the case of smooth curves in this paper.

The outline of the paper is as follows. In the next section we list some
preliminaries and prove a weaker version of Theorem 1.4 namely we verify

(1 + cκn)cap(Γ)
n ≤ ∥Tn∥Γ ≤ (1 + Cκn + C/n)cap(Γ)n. (1.5)

Since typically κn ≽ n1/(m−1) (see the proofs of Theorems 1.2 and 1.3), the
additional term C/n on the right is usually bounded by the first term Cκn.
Even though (1.5) is weaker than (1.4) since instead of qn we have 1/n on the
right hand side, it is sufficient to verify Theorems 1.1–1.3, which we shall do in
section 3. The sharper form (1.4) is more difficult than (1.5), it will be proven
in section 5. While the error O(1/n) in (1.5) will be obtained in section 2 via
a relatively simple discretization of the equilibrium potential, the error O(qn)
requires a fairly delicate adjustment of the complex Green’s function with which
the n-th power of its exponential becomes single-valued, and Cauchy’s formula
can be applied. The simpler discretization approach of section 2, even though it
produces weaker result, is of interest, since it can also be used in the case when
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Γ consists of smooth (not necessarily analytic) curves, for which it still yields
Theorems 1.1–1.3.

Section 4 will be on approximation of Γ by lemniscates in Hausdorff metric.
The proofs for lemniscate approximation are based on the arguments used for
Theorems 1.1–1.4. Roughly speaking, we shall get that the error in approxima-
tion by lemniscates of degree n is about κn/n.

2 Proof of the weaker version of Theorem 1.4

This section is dedicated to the proof of (1.5).
In this work we shall extensively use some basic results from logarithmic

potential theory, see e.g. [9], [16] or [20] for the concepts appearing below.
For a compact subset Γ (of positive logarithmic capacity) of the complex

plane let cap(Γ) denote its logarithmic capacity and µΓ its equilibrium measure.
Then, by Frostman’s theorem [16, Theorem 3.3.4], for the logarithmic potential

UµΓ(z) =

∫
log

1

|z − t|
dµΓ(t)

we have

UµΓ(z) ≤ log
1

cap(Γ)
, z ∈ C, (2.1)

and

UµΓ(z) = log
1

cap(Γ)
, for quasi-every z ∈ Γ, (2.2)

i.e. with the exception of a set of zero capacity. If Γ consists of finitely many
Jordan curves or arcs then (2.2) is true everywhere on Γ by Wiener’s criterion
[16, Theorem 5.4.1]. Let Ω = ΩΓ be the unbounded connected component of
C \ Γ and let gΩΓ(z,∞) be the Green’s function in Ω with pole at infinity. For
simpler notation we set

gC\Γ(z,∞) ≡ gΩΓ(z,∞).

Then (see e.g. [16, Sec. 4.4] or [20, (I.4.8)])

gC\Γ(z,∞) = log
1

cap(Γ)
− UµΓ(z). (2.3)

The set Pc(Γ) = C \ ΩΓ is called the polynomial convex hull of Γ (it is the
union of Γ with all the bounded components of C \ Γ).

We shall also form balayage out of Ω (see [20, Theorems II.4.1, II.4.4]): if ρ
is a finite Borel-measure with compact support in Ω then there is a measure ρ̂
supported on ∂Ω, called its balayage, such that it has the same total mass as ρ
and

U ρ̂(z) = Uρ(z) + const
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on ∂Ω. The constant is connected with the Green’s function, namely we have
(see [20, Theorem 4.4])

U ρ̂(z) = Uρ(z) +

∫
Ω

gΩ(a,∞)dρ(a). (2.4)

Proof of the upper bound in (1.5). Let Γ1, . . . ,Γm, m ≥ 2 be the con-
nected components of Γ, each being an analytic Jordan curve. Let φk be a
conformal map from the unit disk ∆1 onto the interior of Γk. Then φk can be
extended to a conformal map of some disk ∆r of radius r > 1 with center at
the origin onto some simply connected domain containing Γk ([10, Proposition
3.2]).

The function gC\Γ(φk(z),∞) is a positive harmonic function in the annulus

1 < |z| < r which has zero values on the unit circle. Hence, by the reflection
principle (see e.g. [8, Sect. X.3] and apply a conformal map from the exterior
of the unit disk onto the upper half plane), it can be extended to a harmonic
function in 1/r < |z| < 1 such that it has negative values in the annulus 1/r <
|z| < 1. On applying φ−1

k we get a harmonic extension g of gC\Γ(·,∞) to a

neighborhood of Γk with negative values inside Γk. We can do this for all k, so
g is defined in a neighborhood of Γ. But then, for some small δ > 0, the level set
γ := {z g(z) = −δ} consists of analytic Jordan curves γk, k = 1, . . . ,m one-one
lying inside each Γk, k = 1, . . . ,m. Since the function g(z) + δ is harmonic
outside γ, it is 0 on γ and it behaves at infinity like const + log |z|, it is the
Green’s function gC\γ(z,∞) of the unbounded component Ωγ of C\γ. Thus, Γ
is the δ-level set of gC\γ(z,∞). Since the limit of gC\γ(z,∞)− log |z| at infinity
is log 1/cap(γ) (see (2.3)), it also follows that

cap(Γ) = eδcap(γ). (2.5)

Finally, from formula (2.3) it follows that

Uµγ (z) = log
1

cap(γ)
− δ = log

1

cap(Γ)
, z ∈ Γ. (2.6)

Now let θk = µΓ(Γk) be the amount of mass of the equilibrium measure µγ

on the k-th component γk. Let τk be a smooth Jordan curve enclosing Γk such
that all the other Γj ’s lie outside τk, let n− denote the inner normal to τk and
let sτk be the arc length measure on τk. In view of the formula (2.3) connecting
the equilibrium measure and the Green’s function, we get from Gauss’ theorem
(see e.g. [20, Theorem II.1.1])

− 1

2π

∮
τk

∂gC\Γ

∂n−
dsτk(z) =

1

2π

∮
τk

∂UµΓ(z)

∂n−
dsτk(z) = µΓ(Γk).

Since the left-hand side does not change if we replace Γ by γ, it follows that if
γk is the component of γ that lies in Γk, then

µΓ(Γk) = µγ(γk), (2.7)
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so θk is also the number µγ(γk). In particular,

κn = max
1≤k≤m

{nµγ(γk)}. (2.8)

For a fixed n let nk, k = 1, . . . ,m− 1 be the closest integer to nθk, and we
define nm as n− (n1+ · · ·+nm−1). Then n1+ · · ·+nm = n and |nθk−nk| ≤ κn
for k = 1, . . . ,m− 1, while

|nθm − nm| = |n(1− θ1 − · · · θm−1)− (n− n1 − · · · − nm−1)|

=
m−1∑
k=1

|nθk − nk| ≤ (m− 1)κn.

Since µγ has C1+α (actually C∞) smooth density with respect to arc measure
on γ (c.f. [24, Proposition 2.2]), we can use the discretization technique of [24].
Divide each γk into nk arcs Ikj , j = 1, . . . , nk, each having equal weight θk/nk
with respect to µγ , i.e. µγ(I

k
j ) = θk/nk. Then∣∣∣∣∣n− 1

µγ(Ikj )

∣∣∣∣∣ =
∣∣∣∣n− nk

θk

∣∣∣∣ = ∣∣∣∣n− nθk +O (κn)

θk

∣∣∣∣ = O (κn) . (2.9)

Let

ξkj =
1

µγ(Ikj )

∫
Ik
j

u dµγ(u) (2.10)

be the center of mass of Ikj with respect to µγ , and consider the polynomials

Pn(z) =
∏
j,k

(z − ξkj ) (2.11)

of degree at most n. We claim that these polynomials give the upper estimate
in (1.5).

It was proved in [24, Proposition 2.2] that the density of µγ with respect
to arc measure sγ on γ is positive and continuous, hence diam(Ikj ) ∼ sγ(I

k
j ) ∼

µγ(I
k
j ) ∼ 1/n, where A ∼ B means that the ratio A/B is bounded away from

zero and infinity. It is also clear that for large n we have dist(ξkj , I
k
j ) ≤ diam(Ikj )

for all j, k.
Now for z ∈ Γ ∫

log+ |z − t|dµγ(t) ≤ log+ diam(Γ),

hence (use also (2.6))∫
| log |z − t||dµγ(t) ≤ 2 log+ diam(Γ)− log cap(Γ). (2.12)
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In view of (2.6) we can write for z ∈ Γ

n log cap(Γ) =
∑
j,k

(
n− 1

µγ(Ikj )

)∫
Ik
j

log |z − t|dµγ(t)

+
∑
j,k

1

µγ(Ikj )

∫
Ik
j

log |z − t|dµγ(t) = Σ1 +Σ2. (2.13)

Here, by (2.9) and (2.12),

Σ1 ≤
m∑

k=1

O (κn)

nk∑
j=1

∣∣∣∣∣
∫
Ij
j

log |z − t|µγ(t)

∣∣∣∣∣
≤

m∑
k=1

O (κn)

∫
| log |z − t||µγ(t) = O (κn) . (2.14)

Therefore, to prove that ∥Pn∥Γ ≤ (1 + O (κn + 1/n))cap(Γ)n, it is enough
to show that on Γ

log |Pn(z)| − Σ2 =
∑
j,k

1

µγ(Ikj )

∫
Ik
j

log

∣∣∣∣∣z − ξkj
z − t

∣∣∣∣∣ dµγ(t) = O(n−1). (2.15)

Actually we are going to show that even

|log |Pn(z)| − Σ2| ≤
∑
j,k

∣∣∣∣∣ 1

µγ(Ikj )

∫
Ik
j

log

∣∣∣∣∣z − ξkj
z − t

∣∣∣∣∣ dµγ(t)

∣∣∣∣∣ = O(n−1). (2.16)

Note that there is a ρ > 0 such that for z ∈ Γ, t ∈ γ we have |z − t| ≥ ρ, as
well as |z − ξkj | ≥ ρ for all j, k (and for all n, of course). For the integrand in

(2.16) we write for t ∈ Ikj

log

∣∣∣∣∣z − ξkj
z − t

∣∣∣∣∣ = − log

∣∣∣∣∣1 + ξkj − t

z − ξkj

∣∣∣∣∣ = −ℜ
ξkj − t

z − ξkj
+O

∣∣∣∣∣ ξkj − t

z − ξkj

∣∣∣∣∣
2


= −ℜ
ξkj − t

z − ξkj
+O

(∣∣∣∣1/nρ2
∣∣∣∣2
)
,

since then |ξkj − t| ≤ 2 diam(Ikj ) ≤ C/n. Therefore,

1

µγ(Ikj )

∫
Ik
j

log

∣∣∣∣∣z − ξkj
z − t

∣∣∣∣∣ dµγ(t) =
1

µγ(Ikj )

∫
Ik
j

O
(
n−2

)
dµγ(t) = O(n−2) (2.17)
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because the integral∫
Ik
j

ℜ
ξkj − t

z − ξkj
dµγ(t) = ℜ 1

z − ξkj

∫
Ik
j

(ξkj − t)dµγ(t)

vanishes by the choice of ξkj .
If we sum (2.17) up for all j and k then we obtain that the left-hand side in

(2.16) is at most Cn · n−2 ≤ C/n, an the proof is complete.
For later use let us mention that we have also proved the following: there

are ρ > 0, C0 and a sequence {Pn}n∈N of monic polynomials of exact degree n
such that if dist(z,Γ) < ρ then∣∣∣ngC\γ(z,∞) + n log cap(γ)− log |Pn(z)|

∣∣∣ = |Unµγ (z) + log |Pn(z)||

≤ C0(κn + 1/n). (2.18)

Proof of the lower bound in (1.4) and (1.5). Assume to the contrary
that there is a subsequence N of the natural number such that for some positive
sequence εn = o(κn), we have monic polynomials Tn, n ∈ N such that ∥Tn∥Γ ≤
eεncap(Γ)n. In what follows, n will be selected from N . Then we get for the
counting measure νn on the zeros of Tn the inequality (see (2.1))

nUµΓ(z)− Uνn(z)− εn ≤ 0, z ∈ Γ. (2.19)

If ν̂n is the balayage of νn out of Ω = ΩΓ (the unbounded component of C \ Γ)
onto Γ, then on Γ the change in the potential is (see (2.4))

U ν̂n(z) = Uνn(z) +
∑
k

gC\Γ(zk,n,∞),

where the summation extends to all zero zk,n of Tn which lie in Ω. Hence,
together with (2.19) we also have

nUµΓ(z)− U ν̂n(z) +
∑
k

gC\Γ(zk,n,∞)− εn ≤ 0, z ∈ Γ. (2.20)

By the principle of domination (see e.g. [20, Theorem II3.2]), this inequality
extends to all z ∈ C, and for z → ∞ we obtain∑

k

gC\Γ(zk,n,∞)− εn ≤ 0,
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which shows that for large n there cannot be a zero of Tn outside any fixed
neighborhood U of Γ (since the Green’s function gC\Γ(z,∞) has a positive

lower bound there).
Let now ∪m

j=1τj , j = 1, . . . be the level set {z gC\Γ(z,∞) = ρ} with some

small ρ > 0 such that τj encloses Γj and the τj ’s are lying exterior to one
another (for small ρ this is the case), and let Vj be a small closed neighborhood
of τj . We may assume the neighborhood U of Γ to lie so close to Γ that Vj
lies outside U . Now by the principle of domination (2.19) extends to all z ∈ C,
and the left-hand side is a non-positive harmonic function outside U (including
the point infinity) with value −εn at infinity. Thus, by Harnack’s theorem [16,
Theorems 1.3.1 and 1.3.3], there is a C1 > 0 such that for all z ∈ ∪jVj we have

−C1εn ≤ UnµΓ(z)− Uνn(z)− εn ≤ 0,

and so
|UnµΓ(z)− Uνn(z)| ≤ C1εn. (2.21)

Then for the normal derivative with respect to the inner normal n− on τj we
have ∣∣∣∣∣∂

(
UnµΓ(z)− Uνn(z)

)
∂n−

∣∣∣∣∣ ≤ C2εn (2.22)

on τj , j = 1, . . . ,m with some C2. Indeed, if Vj is a d-neighborhood of τj ,
j = 1, . . . ,m, then for z ∈ γj the disk Dd(z) of radius d and with center at z lies
in ∪m

j=1Vj , hence for the harmonic function UnµΓ − Uνn the estimate (2.21) is
true in Dd(z). Now if we apply Poisson’s formula in Dd(z), then (2.22) follows
with C2 = 4C1/d.

By Gauss’ theorem (see e.g. [20, Theorem II.1.1])

1

2π

∮
τj

∂
(
UnµΓ(z)− Uνn(z)

)
∂n−

dsτj (z) = nµΓ(Hj)− νn(Hj), (2.23)

where Hj is the domain enclosed by τj and sτj is the arc-length on τj . Here
µΓ(Hj) = µΓ(Γj) and νn(Hj) is the number of zeros of Tn inside τj , so it is an
integer nj (that depends of course on n). Hence, (2.22) and (2.23) give

|nθj − nj | = |nµΓ(Γj)− nj | ≤ C2εn (2.24)

for all j = 1, . . . ,m. This, however, means by the definition of the numbers
κn in (1.3) that κn ≤ C2εn, n ∈ N , which is not the case since we assumed
εn = o(κn). This contradiction proves the lower estimate in (1.4).

3 Proofs of Theorems 1.1–1.3
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Proof of Theorem 1.2. Let, as before, Γ1, . . . ,Γm, m ≥ 2 be the connected
components of Γ and set θk = µΓ(θk). By Kronecker’s theorem on simultaneous
rational approximation (see e.g. [7, Theorems VI, VII in Chapter I]) there
is a C > 0 and a subsequence N of the natural numbers such that if {nθk}
denotes the distance from nθk to the nearest integer, then {nθk} ≤ Cn−1/(m−1)

for all k = 1, . . . ,m − 1 as n → ∞, n ∈ N . Since the sum of the θk’s is 1,
{nθm} ≤ (m − 1)Cn−1/(m−1) is then also true. Hence, κn = O(n−1/(m−1))
along N , and the theorem follows from the upper estimate in (1.5).

Proof of Theorem 1.3. By Furtwangler’s theorem (see e.g. [7, Theorem
III of Chapter V]) there are real numbers θ1, . . . , θm−1 and a constant c0 > 0
such that for any n and any integers pj we have maxj |nθj − pj | ≥ c0/n

1/(m−1).

Without loss of generality we may assume θj > 0 and
∑m−1

j=1 θj < 1 (just add to
θj a large integer and then divide the result by another sufficiently large integer

number). Set θm = 1−
∑m−1

j=1 θj . Let o1, . . . , om be distinct points on the real
line and consider circles Cxj (oj) about oj of radius 0 < xj < rj , where rj are so
small that the circles Crj (oj) lie exterior to one another. We claim that there
are xj ’s such that if Γ = ∪m

j=1Cxj
(oj), then µΓ(Cxj

(oj)) = θj , and this will be
our choice of Γ. Let

Γ(x1, . . . , xm) =

m∪
j=1

Cxj (oj),

and set

gj(x1, . . . , xm) = µΓ(x1,...,xm)(Cxj (oj)), j = 1, . . . ,m.

These are positive continuous functions with sum identically 1. If x′j = xj
except for j = k and x′k > xk, then Γ(x1, . . . , xm) lies inside Γ(x′1, . . . , x

′
m)

(more precisely inside the polynomial convex hull of Γ(x′1, . . . , x
′
m)), and hence

µΓ(x1,...,xm) is the balayage of the measure µΓ(x′
1,...,x

′
m) onto Γ(x1, . . . , xm), i.e.

out of ΩΓ(x1,...,xm) (see [20, Theorem Iv.1.6,(e)]). This shows that for j ̸= k we
have gj(x1, . . . , xm) > gj(x

′
1, . . . , x

′
m), and, as a consequence (since

∑m
j=1 gk ≡

1), gk(x1, . . . , xm) < gk(x
′
1, . . . , x

′
m). Hence, the system {gj(x1, . . . , xm)}mj=1 is

a so called monotone system in the sense of [21]. In addition, if xk is fixed and
all other xj tend to 0, then gk(x1, . . . , xm) tends to 1, i.e.

lim
u↘0

gj(u, u, . . . , u, xj , u, . . . , u) = 1 for all j = 1, 2, . . . ,m and xj > 0.

Now under these conditions [21, Theorem 10] guarantees that for any positive
vector (λ1, . . . , λm) with

∑
j λj = 1 there is an (x1, . . . , xm) arbitrarily close to

(0, . . . , 0) such that gj(x1, . . . , xm) = λj for each j = 1, . . . ,m. With the choice
λj = θj we get our Γ as the corresponding Γ(x1, . . . , xm).
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By the choice of Γ we have a c0 > 0 with the property that for n = 1, 2, . . .
no matter what integers n1, . . . , nm we chose, always

max
1≤j≤m

|nG(Γj)θj − nj | ≥ c0n
−1/(m−1). (3.1)

This means that κn ≥ c0n
−1/(m−1) for all n, and the statement in Theorem 1.3

follows from the lower bound in Theorem 1.4.

Proof of Theorem 1.1. By the assumption m ≥ 2, and so 0 < µΓ(Γ1) < 1.
Then there is an infinite sequence of n’s for which 1/3 ≤ {nµΓ(Γ1)} ≤ 1/2
(this is clear for rational µΓ(Γ1), and when µΓ(Γ1) is irrational, then actually
{µΓ(Γ1)} is dense in [0, 1/2] by Weyl’s theorem). Hence, for an infinite sequence
of the n’s we have κn ≥ 1/3, and the claim follows from the lower estimate in
Theorem 1.4.

4 Approximation by lemniscates

Call a level set of a polynomial a lemniscate σ. If the polynomial in question
is of exact degree n then we denote σ by σn. In this section we address the
problem how closely a set of analytic Jordan curves Γ can be approximated by
a lemniscate σn. We shall measure the error of approximation in the Hausdorff
distance:

d(σn,Γ) = max
(
sup
z∈Γ

dist(z, σn); sup
z∈σn

dist(z,Γ)
)
. (4.1)

We shall usually require that σn and Γ have the same number of components. In
addition, we may also request that σn lies within Γ (i.e. σn lies in the polynomial
convex hull Pc(Γ)) or vice versa.

D. Hilbert showed in 1897 that if Γ is a single analytic curve then it can be
arbitrarily well approximated by lemniscates in the above sense. E. P. Dolzenko
(see [6, p.21]) raised the question of the rate of approximation, and in response
V. V. Andrievskii [2] proved that for any continuum the rate is O(log n/n). He
also verified that if Γ is a curve with bounded secant variation then the rate of
approximation by a σn is O(1/n), and better than O(1/n) rate is not possible
in general.

Here we prove

Theorem 4.1 Let Γ consist of m ≥ 2 analytic Jordan curves lying exterior to
one another, and let κn be defined by (1.3). Then there are constants c, C > 0
and 0 < q < 1 depending only on Γ such that there is a lemniscate σn consisting
of m components for which

d(σn,Γ) ≤ C(κn/n+ qn), (4.2)
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and if σn is a lemniscate consisting of m components, then

cκn/n ≤ d(σn,Γ). (4.3)

As a consequence in the sense of the first part of this paper we list

Corollary 4.2 Let Γ consist of m ≥ 2 analytic Jordan curves lying exterior to
one another.

(a) There is a C and for every n = 1, 2, . . . there is a lemniscate σn consisting
of precisely m components with d(σn,Γ) ≤ Cn−1.

(b) There is a c > 0 and an infinite sequence M of the natural numbers such
that for any lemniscate σn, n ∈ M, that consists of m components we
have d(σn,Γ) ≥ cn−1.

(c) There is a C and a subsequence N of the natural numbers such that for
every n ∈ N there is a lemniscate σn consisting of m components with
d(σn,Γ) ≤ Cn−m/(m−1).

(d) There is a set Γ consisting of m disjoint circles and a constant c > 0 such
that for every n = 1, 2, . . . and for every lemniscate σn consisting of m
components we have d(σn,Γ) ≥ cn−m/(m−1).

Let us also mention that the requirement that σn consists of precisely m
components is not necessary (in (b) or (d), for in (a) and (c) this is an additional
property of the approximating lemniscate), e.g. (b) and (d) hold whenever
σn ⊆ Pc(Γ)).

The corollary can be obtained the same way as Theorems 1.1–1.3 were ob-
tained from Theorem 1.4; we shall skip the details.

In this section we prove only the weaker version

d(σn,Γ) ≤ C(κn/n+ 1/n2), (4.4)

which is enough to deduce the corollary. The sharper form (with qn instead of
1/n2 on the right) will follow the same arguments once we verify in the next
section (5.20) instead of (2.18) that we use below.

Proof of (4.4). In the proof of Theorem 1.4 (see (2.18) at the end of the
proof) we verified the following (see the notations there): there are ρ > 0, C0

and a sequence {Pn}n∈N of monic polynomials of exact degree n such that if
dist(z,Γ) < ρ then∣∣∣ngC\γ(z,∞) + n log cap(γ)− log |Pn(z)|

∣∣∣ = |Unµγ (z) + log |Pn(z)||

≤ C0(κn + 1/n). (4.5)
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This implies, in view of cap(Γ) = eδcap(γ) (see (2.5)), that the lemniscate
σn := {z |Pn(z)| = n log cap(Γ)} lies in between the level curves

L± := {z ngC\γ(z,∞) = nδ ± C0(κn + 1/n)}.

By the Lip 1 property of gC\γ(z,∞) the Hausdorff distance in between L± is

≤ C1(κn + 1/n) with some C1, and since Γ is the level set {z gC\γ(z,∞) = δ}
lying in between L±, the claim in the theorem follows.

Proof of (4.3). Suppose to the contrary that there are lemniscates σn (con-
sisting of m components) such that for infinitely many n we have d(σn,Γ) ≤ ε∗n
with some ε∗n = o(κn/n). In what follows n will be always selected from this
sequence of the n’s.

Let Γρ = {z gC\γ(z,∞) = δ − ρ}, where γ and δ have the same meaning

as in the proof of the upper estimate of Theorem 1.4, and further let (γρ)k,
k = 1, . . . ,m be the m components of Γδ. These are level curves of the Green’s
function gC\γ(z,∞), Γ0 = Γ, and it is easy to see that for 0 ≤ ρ1 < ρ2 ≤ δ/2 the

distance between (Γρ1)k and (Γρ2)k is ∼ ρ2 − ρ1 for each k = 1, . . . ,m. Indeed,
this is immediate from the fact that the normal derivative ∂gC\γ(z,∞)/∂n with

respect to the outer normal on Γδ is uniformly continuous and positive on each
(Γρ1)k. The uniform continuity is immediate, and the strict positivity follows
from the fact that this normal derivative is nothing else (apply [16, Theorem
4.3.14], [20, Theorem II.1.5] to the formula (2.3), see also (5.16) later in this
paper) than 2π-times the harmonic measure with respect to the point ∞ in
the unbounded component of C \ Γρ (more precisely, the normal derivative is
2π times the density of this harmonic measure with respect to arc length on
Γρ). Note also that this harmonic measure is just the equilibrium measure of Γρ

(see [16, Theorem 4.3.14]), and the positivity in question is just the statement
that the density of the equilibrium measure (with respect to arc length) cannot
vanish; see [24, Proposition 2.2] for more details.

Let now Γ∗
n = ΓC∗ε∗n

with some C∗ to be chosen in a moment. From the
previous discussion and from d(σn,Γ) ≤ ε∗n it follows that if C∗ is sufficiently
large, then Γ∗

n lies in the polynomial hull Pc(σn) of σn, and hence µΓ∗
n
is the

balayage of µσn onto Γ∗
n ([20, Theorem IV.1.6,(e)]). This gives in view of (2.3)–

(2.4)

log
1

cap(Γ∗
n)

= log
1

cap(σn)
+

∫
gC\Γ∗

n
(a,∞)dµσn(a). (4.6)

Since outside Γ∗
n we have

gC\Γ∗
n
(z,∞) ≡ gC\γ(z,∞)− (δ − C∗ε∗n),

these functions are uniformly Lip 1 on Γ∗
n, and since σn lies in an ε∗n-neighborhood

of Γ (so in a O(ε∗n)-neighborhood of Γ∗
n), we have for the integral in (4.6) the
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bound ≤ C0ε
∗
n with some C0 > 0 independent of ε∗n. This gives

cap(Γ∗
n) ≥ e−C0ε

∗
ncap(σn).

Recall now that σn = {z |Pn(z)| = tn} with some tn and polynomial Pn of
degree n, and we may assume that this Pn to be a monic polynomial. But then

by [16, Theorem 5.2.5] cap(σn) = t
1/n
n , and it follows that

cap(Γ∗
n) ≥ e−C0ε

∗
nt1/nn ,

i.e.
tn ≤ eC0ε

∗
nncap(Γ∗

n)
n.

Since ∥Pn∥Γ∗
n
≤ ∥Pn∥σn = tn, we also have

∥Pn∥Γ∗
n
≤ eC0ε

∗
nncap(Γ∗

n)
n.

Now copy the proof of Theorem 1.4 from (2.19) to (2.24) with Γ∗
n, Pn and C0nε

∗
n

instead of Γn, Tn and εn, respectively, and conclude for all k = 1, . . . ,m the
inequality

|nµΓ∗
n
((Γ∗

n)k)− nk| ≤ C1nε
∗
n,

with some C1. Here µΓ∗
n
((Γ∗

n)k) is the same as µΓ(Γk) (see (2.7) which can also
be applied to Γ∗

n instead of γ), hence

|nµΓ(Γk)− nk| ≤ C1nε
∗
n,

that is κn ≤ C1nε
∗
n is also true. However, we have assumed ε∗n = o(κn/n), and

this contradiction proves the claim.

5 A perturbation of the complex Green’s func-
tion for a system of curves

In this section we prove (1.4) and (4.2) in its full generality (recall that so far
we have proved only the weaker estimates (1.5) and (4.4)).

In the beginning of the paper we indicated that Faber polynomials associated
with a single Jordan curve can be very useful; and indeed, they have been used in
various situations (see e.g. [19]). However, if the set in question contains several
components then there is no conformal map from the (unbounded) complement
onto the exterior of a circle and then it is not clear what takes the role of Faber
polynomials (the so called Faber-Walsh version that was created for this purpose
is not suitable for us). In this section we construct a substitute which allows us
to prove (1.4) and (4.2). We believe that the construction can substitute Faber
polynomials in other situations, as well.
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In the case of a single Jordan curve γ let g̃ be an analytic conjugate of
the Green’s function gC\γ(z,∞) of the unbounded component Ωγ of C \ γ (i.e.

gC\γ(z,∞) + ig̃(z) is locally analytic). Then

ψ(z) := exp(gC\γ(z,∞) + ig̃(z))

maps Ωγ conformally onto the exterior of the unit circle. When γ has several
components then g̃ can still be defined, but ψ(z) is not single-valued. However,
if each of the harmonic measures µγ(γk) (where µγ is the equilibrium measure
of γ and γk are the components of γ) are of the form pk/n with the common
denominator n, then ψn(z) is single-valued (see the discussion later in between
(5.16) and (5.17)). What we are going to show in this section is that this situa-
tion can be achieved with small perturbation of the components γk. How large
perturbation we need for a given n depends on how close the numbers µγ(γk)
are from an integer, i.e. on the quantity κn in (1.3). The single-valuedness of
ψn(z) is perfectly enough to construct Faber-like polynomials for Ωγ by taking
its polynomial part in its expansion around the point ∞.

Thus, let γ = ∪m
j=1γk be a family of Jordan curves lying exterior to one

another. As before, gC\γ(z,∞) is the Green’s function of the unbounded com-

ponent Ωγ of the complement, and for t > 0 set

γt = {z gC\γ(z,∞) = t}.

For small t this consists of m analytic Jordan curves γk,t, k = 1, . . . ,m, and fist
we fix a c0 > 0 such that γ4c0 still has m components (i.e. γk,4c0 all exist and are
disjoint). In what follows t, tj are always taken from the interval [0, c0]. We shall
work with unions of components of different level sets γt, so for t = (t1, . . . , tm)
set

γ(t) = ∪m
j=1γj,tj .

Note that this is not a level curve of the Green’s function, it is rather built up
from different components of different level curves. As before, let µγ denote the
equilibrium measure of γ and consider the system of functions

Fk(t1, . . . , tm) = µγ(t1,...,tm)(γk,tk), k = 1, . . . ,m. (5.1)

These functions describe how much each part of γ(t) carries from the total mass
of the equilibrium measure µγ(t). We clearly have

∑
k Fk(t) ≡ 1, and also (see

(2.7))
Fk(t, t, . . . , t) ≡ Fk(0, . . . , 0) (5.2)

for all 0 ≤ t ≤ c0.
We shall have to work with balayage measures. If G is a domain and ν is a

measure supported in G, then let Bal(ν,G; ·) be the balayage measure obtained
by sweeping ν out of G (see section 2). So Bal(ν,G; ·) is a measure on ∂G with
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the same mass as ν, and the balayage measure of a Borel set E ⊂ ∂G is denoted
by Bal(ν,G;E). Of course,

Bal(ν,G;E) =

∫
Bal(δa, G;E)dν(a),

and it is known (see e.g. [20, (A.3.3)]) that for a ∈ G the value Bal(δa, G;E)
agrees with the harmonic measure of E with respect to a and G:

Bal(δa, G;E) = ω(a,E,G)

(recall that ω(z, E,G) is the harmonic function in G which has boundary values
1 on E and 0 on ∂G \ E).

By a slight abuse of the language we can also say that Bal(ν,G; ·) is the
balayage of ν onto ∂G, and in this sense if ν is supported outside γ (i.e. in the
unbounded component Ωγ of C \ γ) then we shall write its balayage onto γ as
Bal(ν,C\γ; ·) (i.e. Bal(ν,C\γ; ·) ≡ Bal(ν,Ωγ ; ·)). If ν is not supported outside
γ but rather on the closure Ωγ of the unbounded component, then in forming
the balayage measure Bal(ν,C \ γ; ·) we sweep out only the part of ν that lies
outside γ and leave its part on γ unchanged. A feature that we shall often use is
that if the components γ′k of γ′ include the respective components γk of γ (i.e.
γ lies in the polynomial convex hull Pc(γ′) of γ′), then

Bal(ν,C \ γ; ·) = Bal(Bal(ν,C \ γ′; ·),C \ γ; ·),

i.e taking balayage onto γ amounts the same as taking its balayage first onto
γ′, and then taking the balayage of this balayage measure onto γ. In particular,
this implies that if γ′k = γk for a particular k, then

Bal(ν,C \ γ; γk) ≥ Bal(ν,C \ γ′; γk). (5.3)

The relevance of balayage measures to our subject is the formula: if γ′ includes
γ in the above sense then

µγ = Bal(µγ′ ,C \ γ, ·). (5.4)

In particular, for tj ≤ t′j , j = 1, . . . ,m we have that µγ(t) is nothing else than
the balayage of µγ(t′) onto γt. As an immediate consequence it follows that
each of the functions Fj , j ̸= k in (5.1) is strictly monotone decreasing if tk ↗,
and since the sum of the Fj ’s is identically 1, we also get that Fk is strictly
increasing as tk ↗. Thus, this system {Fk}mk=1 is a monotone system in the
sense of [21].

Next we remark that there clearly exists a constant c1 > 0 such that for all
k = 1, . . . ,m

Bal(δw,C \ γ(c0, . . . , c0,
k

0̆, c0, . . . , c0), γk) ≥ c1, w ∈ γm,2c0 . (5.5)
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In a similar manner,

c2 := µγ(c0,...,c0,0)(γm) = Fm(c0, . . . , c0, 0) (5.6)

is a positive number. With these c0, c1, c2 we set

M =
5c0
c1c2

, (5.7)

and prove

Proposition 5.1 Let 0 < a ≤ c0/M . Then the range of

F(t) = (F1(t), . . . , Fm−1(t)) , t ∈ [0,Ma]m,

includes the cube F (0) + [−a, a]m−1.

Actually, we are going to show that the range includes that cube even for t ∈
[0,Ma]m for which tm = Ma/2 is fixed. Note that this valued vector function
F does not contain the last function Fm.

Proof. Let k < m and 0 ≤ tj ≤ c0 for all j. First we estimate from below the
quantity

Fk(t1, . . . , tm−1, tm)− Fk(t1, . . . , tm−1, tm + τ)

for some τ < c0. In view of the definition of Fk and of (5.4), this quantity is
equal to

Bal
(
µγ(t1,...,tm−1,tm+τ)

γm,tm+τ

, γ(t1, . . . , tm−1, tm); γk,tk

)
≥ µγ(t1,...,tm−1,tm+τ)(γm,tm+τ )×

× min
z∈γm,t+τm

Bal
(
δz, γ(t1, . . . , tm−1, tm); γk,tk

)
. (5.8)

Because of the monotonicity properties of Fm the first factor on the right is

Fm(t1, . . . , tm−1, tm + τ) ≥ Fm(c0, . . . , c0, 0) = c2

(see (5.6)). Let H be the domain enclosed by the curves γm,tm and γm,2c0 . The
expression

Bal
(
δz, γ(t1, . . . , tm−1, tm); γk,tk

)
in the second factor in (5.8) is obtained by first taking the balayage of δz out of
H (onto γm,tm ∪ γm,2c0), and then taking the balayage onto γ(t1, . . . , tm−1, tm)
of that part of this measure that sits on γm,2c0 (the part that sits on γm,tm is
already on the set γ(t1, . . . , tm), os it is not moving when we take the second
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balayage). In view of (5.3)–(5.5), on γk,tk this last balayage is at least as large
as the total mass (= Bal(δz,H; γm,2c0)) times

min
w∈γm,2c0

Bal(δw,C \ γ(t1, . . . , tm), γk,tk)

≥ min
w∈γm,2c0

Bal(δw,C \ γ(c0, . . . , c0,
k

t̆k, c0, . . . , c0), γk,tk)

≥ min
w∈γm,2c0

Bal(δw,C \ γ(c0, . . . , c0,
k

0̆, c0, . . . , c0), γk) ≥ c1.

Therefore,

Bal
(
δz, γ(t1, . . . , tm−1, tm); γk,tk

)
≥ c1Bal

(
δz,H; γm,2c0

)
. (5.9)

Now gC\γ(z,∞) is harmonic in H, it takes the value tk on γm,tm , it takes the

value 2c0 on γm,2c0 and these two curves make up the boundary of H, hence
(gC\γ(z,∞) − tm)/(2c0 − tm) is the harmonic measure in H corresponding to

the boundary arc γm,2c0 . As a consequence, for z ∈ γm,tm+τ we have

Bal
(
δz,H; γm,2c0

)
= ω(z, γm,2c0 , H) =

gC\γ(z,∞)− tm

2c0 − tm
=

τ

2c0 − tm
≥ τ

c0
.

All in all, these considerations give (see (5.8))

Fk(t1, . . . , tm−1, tm)− Fk(t1, . . . , tm−1, tm + τ) ≥ c2c1
τ

c0
. (5.10)

After these preparations let A = (A1, . . . , Am−1) ∈ [−a, a]m−1, and consider

G(t1, . . . , tm−1) = F(t1, . . . , tm−1,Ma/2)− (F(0) +A).

The claim in the proposition follows if we show that his vector valued function
G vanishes somewhere in [0,Ma]m−1. For each k = 1, . . . ,m − 1 we have by
(5.10) and by the choice of M in (5.7)

Gk(

m−1︷ ︸︸ ︷
0, . . . , 0) = Fk(

m−1︷ ︸︸ ︷
0, . . . , 0,Ma/2)− Fk(

m︷ ︸︸ ︷
0, . . . , 0, 0)−Ak

≤ −c2c1
Ma/2

c0
−Ak < −2a+ a = −a. (5.11)

On the other hand, (5.2) and (5.10) give

Gk(

m−1︷ ︸︸ ︷
Ma, . . . ,Ma) = Fk(

m−1︷ ︸︸ ︷
Ma, . . . ,Ma,Ma/2)− Fk(

m︷ ︸︸ ︷
Ma, . . . ,Ma,Ma)−Ak

≥ c2c1
Ma/2

c0
−Ak > 2a− a = a. (5.12)
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The system (Gk(t1, . . . , tm−1))
m−1
k=1 has the same monotonicity properties as the

Fk’s had, so for all tj we can deduce from (5.11) for all k = 1, . . . ,m− 1

Gk(t1, . . . , tk−1, 0, tk+1, . . . , tm−1) ≤ Gk(0) < −a (5.13)

and from (5.12)

Gk(t1, . . . , tk−1,Ma, tk+1, . . . , tm−1) ≥ Gk(Ma, . . . ,Ma) > a. (5.14)

By continuity then these inequalities remain through if 0 resp. Ma on the left
is replaced by a tk with tk = ε resp. tk = Ma− ε with some small ε. But this
means that if α > 0 is a small number, then close to the boundary of the cube
[0,Ma]m−1 the range of the mapping t → t−αG(t) lies in that same cube, and
for sufficiently small α the same holds true when t is away from the boundary.
Hence, this mapping maps [0,Ma]m−1 into itself, and the Brower fixed point
theorem gives then a t ∈ [0,Ma]m−1 for which G(t) = 0, and this is what we
needed to prove.

We are going to apply what we have done above to the system γ that was
constructed from Γ in the proof of Theorem 1.4 at the beginning of section 2.
Recall that γ was the level curve of a harmonic function, hence it consists of
analytic Jordan curves. Recall also that Γ was the δ-level curve of the Green’s
function gC\γ(z,∞), and we had cap(Γ) = cap(γ)eδ. We choose the c0 from the

previous discussion so small that γ4c0 lies in the polynomial convex hull of Γ.
Consider the κn from (1.3). For a particular n let nk, k = 1, . . . ,m, be the

closest integer to nµγ(γ1) (so {nµγ(γk)} = |nµγ(γk)− nk|), and set

A =
(
n1 − nµγ(γ1), . . . , nm−1 − nµγ(γm−1)

)
.

Then A/n is from the cube [−κn/n, κn/n]m−1, hence, by Proposition 5.1, there
is a t ∈ [−κn/n, κn/n]m such that the equality

nFk(t) = n(Fk(0) +Ak/n) = nµγ(γk) +Ak,

holds for all k = 1, . . . ,m−1. Since the right-hand side is an integer (nk) by the
definition of Ak, we get that nFm(t) must also be integer (note that the Fk’s
sum up to 1). Hence, all nFk(t) are integer, i.e. if we define L = γ(t), then L
consists of m analytic Jordan curves Lk and each of nµL(Lk), k = 1, . . . ,m is
an integer. Note that this L (and Lk) depends on n, but it is so close to γ that
we have

cap(L) ≤ cap(γMκn/n) = cap(γ)eMκn/n (5.15)

(since L lies in the polynomial convex hull of γMκn/n).
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It is known (see e.g. [23, Theorem 3.2] or [20, Theorem II.4.11] and [16,
Theorem 4.3.14]) that if n denotes the normal to L in the direction of the outer
domain ΩL, then for z ∈ L

∂gC\L(z,∞)

∂n
= 2π

dµL(z)

dsL
, (5.16)

where sL is the arc element on L. Thus,∫
Lk

∂gC\L(z,∞)

∂n
dsL(z) = 2πµL(Lk).

Let g̃ be an analytic conjugate of gC\L(z,∞). By the Cauchy-Riemann equa-
tions

∂gC\L(z,∞)

∂n
=
∂g̃(z)

∂e
,

where e is the unit tangent vector to L at z ∈ L in the direction of positive
(counterclockwise) orientation of each component of L. Hence,∫

Lk

∂g̃(z)

∂e
dsL(z) = 2πµL(Lk)

is also true. This means that, as we move once around Lk in the counterclockwise
direction, the imaginary part of n-times the complex Green’s function, i.e. of

n(gC\L(z,∞) + ig̃(z)),

changes by 2πnµL(Lk), which, by our construction, is an integer multiple of 2π.
Hence

Ψn(z) = exp
(
n(gC\L(z,∞) + ig̃(z) + log cap(L))

)
(5.17)

is a single-valued analytic function in the unbounded component ΩL of C \ L.
Since at infinity gC\L(z,∞) behaves like log |z| − log cap(L), we get that in a

neighborhood of infinity

Ψn(z) = zn + β1z
n−1 + · · · = Sn(z) +Rn(z),

where Sn(z) = zn+ · · · is a monic polynomial of degree n and Rn is an analytic
function in the unbounded component ΩL with a zero at infinity. Cauchy’s
formula gives for z ∈ ΩL

Rn(z) =
1

2πi

∫
γ

Ψn(ξ)

ξ − z
dξ

(note that Sn(ξ)/(ξ − z) is analytic in ξ inside each Lk, so its integral over L is
0). In the denominator we have for z ∈ Γ and ξ ∈ L

|ξ − z| ≥ dist(Γ, L) ≥ dist(Γ, γ2c0),
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and in the numerator

|Ψn(ξ)| = exp
(
ngC\L(ξ,∞) + n log cap(L)

)
= cap(L)n.

It is easy to see from the construction of L that the length of L (which depends
on n) is bounded (in n). Hence, for z ∈ Γ we obtain

|Rn(z)| ≤ Ccap(γ)n (5.18)

with a C independent of n.
On the other hand,

|Ψn(z)| = exp
(
ngC\L(z,∞) + n log cap(L)

)
.

Here we can apply (5.15) and the fact (note that γ is contained in the polynomial
convex hull of L)

gC\L(z,∞) ≤ gC\γ(z,∞)

to conclude for z ∈ Γ

|Ψn(z)| ≤ exp
(
ngC\γ(z,∞) + n log cap(γ) +Mκn

)
= exp(n log cap(Γ) +Mκn) = cap(Γ)neMκn . (5.19)

(5.18) and (5.19) together imply for z ∈ Γ

|Sn(z)| = |Ψn(z)−Rn(z)| ≤ cap(Γ)neMκn+Ccap(γ)n = cap(Γ)n(1+O(κn+q
n))

with q = cap(γc0)/cap(Γ) (which is bigger than cap(L)/cap(Γ)). This is the
upper bound in (1.4), and the proof is complete.

The same proof gives the following: there are ρ > 0, C0 and a sequence
{Sn}n∈N of monic polynomials of exact degree n such that if dist(z,Γ) < ρ
then ∣∣∣ngC\γ(z,∞) + n log cap(γ)− log |Sn(z)|

∣∣∣ ≤ C0(κn + qn). (5.20)

If we use this instead of (4.5) in the proof of Theorem 4.1 given in Section 4,
then we get the sharp form (4.2) stated in Theorem 4.1.

22



References
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