
The polynomial inverse image method

Vilmos Totik

Abstract In this survey we discuss how to transfer results from an interval or the
unit circle to more general sets. At the basis of the method is taking polynomial
inverse images.

1 Introduction

In the last decade a method has been developed that (in some cases) allows one
to transfer result from an interval (like [−1,1]) or the unit circle C1 (which we are
going to call model cases) to more general sets. We emphasize that the method
TRANSFORMS the RESULT from the model case to the general case and is not
aimed to carry over the proofs from the model cases to the general situation.

The rationale of the method is the following: on the unit circle C1 and on [−1,1]
many classical and powerful tools (such as Fourier-series, classical orthogonal ex-
pansions, Poisson representation, Taylor expansions, H p-spaces etc.) have been de-
veloped, which are at our disposal when dealing with a problem on these model sets.
When dealing with more general sets like a compact subset of the real line instead
of [−1,1] or a system of Jordan corves instead of C1, either these tools are non-
existent, or they are dif£cult to use. Therefore, if we have a method that transforms
a model result to the general case, then

• we get the same result in many situations (as opposed to the single result in the
model case),

• we are saved the burden of £nding the analogue of the model proof (which may
not exist at all).
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The method in question is the following: apply inverse images under polynomial
mapping, i.e. if TN(z) = γNzN + · · · is a polynomial and E0 is [−1,1] or the unit circle
C1, then consider

E = T−1
N E0 = {z TN(z) ∈ E0}.

The point is that many properties are preserved when we take polynomial inverse
images, most notable, equilibrium measures and Green’s functions (see the Ap-
pendix) are preserved.

Thus, in a nutshell we make the following steps:

(a)Start from a result for the model case.
(b)Apply an inverse polynomial mapping to go to a special result on the inverse

images of the model sets.
(c)Approximate more general sets by inverse images as in (b).

Sometimes, (b)–(c) should be followed by an additional step:

(d)Get rid of the special properties appearing in steps (b)–(c).

Among others the polynomial inverse image method has been successful in the
following situations:

1. The Bernstein-type inequality (2) below, the model case being the classical
Bernstein inequality (1) on [−1,1].

2. The Markoff-type inequality (16)–(17) below, the model case being the classi-
cal Markoff inequality (15).

3. Asymptotics of Christoffel functions on compact subsets of the real line,
namely (25), when the model case was (23) on [−1,1].

4. Asymptotics of Christoffel functions on curves, namely (26), when the model
case was (22) on C1.

5. Universality (28) on general sets, the model case being (28) on [−1,1].
6. Fine zero spacing (30) of orthogonal polynomials, the model case being (29)

on [−1,1].
7. For a system of smooth Jordan curves the Bernstein-type inequality (19), where

the model case was Bernstein’s inequality (18) on the unit circle.

Before elaborating more on the method let us see how it works in a concrete case.
To this we need a few things from potential theory; see the Appendix at the end of
this paper for the de£nitions. In what follows, for a compact set E ⊂R of positive
capacity we denote by ωE the density of the equilibrium measure with respect to
the Lebesgue measure on R. This density certain exists in the (one dimensional)
interior of E. On the other hand, if E is a £nite family of smooth Jordan curves or
arcs, then ωE denotes the density of the equilibrium measure of E with respect to
arc measure on E.
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2 The Bernstein inequality on general sets

Let Pn denote an algebraic polynomial of degree at most n. Bernstein’s inequality

|P′n(x)| ≤
n√

1− x2
‖Pn‖[−1,1], x ∈ [−1,1] (1)

relating the derivative of Pn to its supremum norm on [−1,1] is of fundamental im-
portance in approximation theory. Now with the polynomial inverse image method
we can prove the following generalization of (1):

Theorem 2.1 If E ⊂R is compact, then

|P′n(x)| ≤ nπωE(x)‖Pn‖E , x ∈ Int(E). (2)

Note that for E = [−1,1] we have ωE(x) = 1/π
√

1− x2, so in this case (2) takes the
form (1). Let us also mention that (2) is sharp: if x0 ∈ Int(E) is arbitrary, then for
every ε > 0 there are polynomials Pn of degree at most n = 1,2, . . . such that

|P′n(x0)|> (1− ε)nπωE(x0)‖Pn‖E

for all large n.
Actually, more is true, namely

( |P′n(x)|
πωE(x)

)2

+n2|Pn(x)|2 ≤ n2‖Pn‖2
E , x ∈ Int(E), (3)

which is the analogue of the inequality

(

|P′n(x)|
√

1− x2
)2

+n2|Pn(x)|2 ≤ n2‖Pn‖2
[−1,1] (4)

of Szeg¦o ([36],[6]).
(2) and (3) are due to M. Baran [1], who actually got them also in higher di-

mension. Both inequalities were rediscovered in [39] with the method of the present
survey. The outline of the proof of (2) using polynomial inverse images is as follows:

(a)Start from Bernstein inequality on [−1,1].
(b)Next consider the special case when E = T−1

N [−1,1] and Pn = Sk(TN) with some
polynomial Sk. Assuming ‖Pn‖E = 1 we get

|P′n(x)|= |S′k(TN(x))T ′N(x)| ≤ k
√

1−T 2
N (x)

|T ′N(x)|= kNπ
|T ′N(x)|

πN
√

1−T 2
N (x)

,

and by (6) here the right-hand side is kNπωE(x), i.e. we get (2) in this special
case.

(c)Approximate a general E by T−1
N [−1,1] and Pn by Sk(TN) to get
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|P′n(x)| ≤ (1+ox,E(1))nπωE(x)‖Pn‖E (5)

where ox,E(1) denotes a quantity that tends to 0 as n tends to in£nity. See section
5 for this approximation step (the exact details for the general Bernstein inequal-
ity are in [39, Theorem 3.1]).

(d)Get rid of o(1).

This very last step can be done as follows. Let Pn be any polynomial, and x0 any
point in the interior of E. We may assume ‖Pn‖E = 1. Let Tm(z) = cos(marccosz) be
the classical Chebyshev polynomials, and for some 0 < αm < 1 and 0≤ εm < 1−αm
consider the polynomials

Rmn(x) = Tm(αmPn(x)+ εm),

where αm < 1 and 0 ≤ εm < 1−αm are chosen so that αmPn(x0)+ εm is one of the
zeros of Tm. Since the distance of neighboring zeros of Tm is smaller than 10/m,
we can do this with αm = 1−10/m and with some 0≤ εm < 10/m, and then αm→ 1
and εm → 0 as m→ ∞. Now apply (5) to Rmn. It follows that

|R′mn(x0)| ≤ (1+o(1))πωE(x0)mn‖Rmn‖E ,

where the term o(1) tends to zero as m→∞. Here, on the right, ‖Rmn‖E = 1, and on
the left we have

|R′mn(x0)|= |T ′
m(αmPn(x0)+ εm)||P′n(x0)|αm.

Since at the zeros z of Tm we have T ′
m(z) = m/

√
1− z2, it follows that

m
√

1− (αmPn(x0)+ εm)2
|P′n(x0)|αm ≤ (1+o(1))πωE(x0)mn,

where the term o(1) tends to zero as m→ ∞. On dividing here by m and letting m
tend to in£nity we obtain

|P′n(x0)|
√

1−P2
n (x0)

≤ πωE(x0)n,

and this is the inequality (3) at the point x0 because in our case ‖Pn‖E = 1.

3 The model case [−1,1], admissible polynomial maps,
approximation

As we have already mentioned, there are two model cases: the interval [−1,1] and
the unit circle C1 = {z |z|= 1}.
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For [−1,1] we allow polynomial maps with respect to real polynomials (called
admissible polynomials) TN(z) = γnxN + · · ·, γN 6= 0 such that TN has N zeros and
N−1 local extremal values each of which is of size ≥ 1 in absolute value. In other
words, there are u1, . . . ,uN with T ′N(u j) = 0 and |TN(u j)| ≥ 1. Then it easily follows
that the local extremal values alternate in sign and TN(z) runs through the interval
[−1,1] N-times as x runs through the real line. Thus,

E := T−1
N [−1,1] = {x TN(x) ∈ [−1,1]}

consists of N subintervals En, j, 1 ≤ j ≤ N each of which is mapped by TN onto
[−1,1] in a 1-to-1 fashion. However, some of these subintervals may be attached to
one another, so T−1

N [−1,1] actually consists of k intervals for some 1 ≤ k ≤ N; see
Figure 1 where N = 6 and k = 3. The equilibrium measure of E is the (normalized)
pull-back of the equilibrium measure on [−1,1] under the mapping TN :

ωE(x) =
|T ′N(x)|

πN
√

1−T 2
N (x)

, x ∈ E. (6)

1

-1

1

-1

Fig. 1

Polynomial inverse images of intervals, i.e. sets of the form T−1
N [−1,1] with ad-

missible TN have many interesting properties. They are the sets Σ = ∪l
j=1[a j,b j]

with the property that the equilibrium measure has rational mass on each subinter-
val, i.e. each µΣ ([a j,b j]), j = 1, . . . ,k is of the form p/N. They are also the sets
Σ = ∪l

i=1[ai,bi] for which the Pell-type equation

P2(z)−Q(z)S2(z) = 1 with Q(x) =
l

∏
i=1

(x−ai)(x−bi),
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which goes back to N. H. Abel, has polynomial solutions P and Q. See [24] – [29]
and the references there for many more interesting results connected with polyno-
mial inverse images.

What we need of them is that these sets are dense among all sets consisting of
£nitely many intervals.

Theorem 3.1 Given a system Σ = {[ai,bi]}l
i=1 of disjoint closed intervals and an

ε > 0, there is another system E = {[a′i,b′i]}l
i=1 such that ∪l

i=1[a
′
i,b
′
i] = T−1

N [−1,1]
for some admissible polynomial TN , and for each 1≤ i≤ l we have

|ai−a′i| ≤ ε, |bi−b′i| ≤ ε.

The theorem immediately implies its strengthened form when we also prescribe
if a given a′i (or b′i) is smaller or bigger than ai (or bi). In particular, it is possible
to require e.g. that Σ ⊂ Σ ′. It is also true that in the theorem we can select a′i = ai
for all i, and even b′l = bl . Alternatively we can £x any l + 1 of the 2l points a i,bi,
1≤ i≤ l.

Theorem 3.1 has been proven several times independently in the literature, see
[31], [19], [7], [39], [23]. For a particularly simple proof see [42].

4 The model case C1, sharpened form of Hilbert’s lemniscate
theorem

For the unit circle C1 we shall take its inverse image under polynomial map-
pings generated by polynomials TN(z) = γNzN + · · · for which T ′N(z) 6= 0 whenever
|TN(z)|= 1. Then

σ := T−1
N C1 = {z |TN(z)|= 1}

is actually a level set of the polynomial TN , which, from now on, we call a lem-
niscate. Since T ′N(z) 6= 0 on E, this E consists of a £nite number of analytic Jordan
curves (a Jordan curve is a homeomorphic image of the unit circle). Again, the equi-
librium measure of E is the (normalized) pull-back of the equilibrium measure on
C1 under the mapping TN :

ωσ (z) =
1

2πN
|T ′N(z)|, z ∈ E. (7)

Hilbert’s lemniscate theorem claims that if K is a compact set on the plane and
U is a neighborhood of K then there is a lemniscate σ that separates K and C \U ,
i.e. it lies within U but encloses K. An equivalent formulation is the following. Let
γ j,Γj, j = 1, . . . ,m be Jordan curves (i.e. homeomorphic images of the unit circle),
γ j lying interior to Γj and the Γj’s lying exterior to one another, and set γ∗ = ∪ jγ j,
Γ ∗ = ∪ jΓj. Then there is a lemniscate σ that is contained in the interior of Γ ∗

which also contains γ∗ in its interior, i.e. σ separates γ∗ and Γ ∗ in the sense that it
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separates each γ j from the corresponding Γj. This is not enough for our purposes of
approximation, what we need is the following sharpened form (see [20]).

Let γ∗ and Γ ∗ be twice continuously differentiable in a neighborhood of P and
touching each other at P. We say that they K -touch each other if their (signed)
curvature at P is different (signed curvature is seen from the outside of Γ ∗). Equiv-
alently we can say that in a neighborhood of P the two curves are separated by two
circles one of them lying in the interior of the other one.

Theorem 4.1 Let γ∗ = ∪m
j=1γ j and Γ ∗ = ∪m

j=1Γj be as above, and let γ∗ K -touch
Γ ∗ in £nitely many points P1, . . . ,Pk in a neighborhood of which both curves are
twice continuously differentiable. Then there is a lemniscate σ that separates γ ∗
and Γ ∗ and K -touches both γ∗ and Γ ∗ at each Pj.

Furthermore, σ lies strictly in between γ∗ and Γ ∗ except for the points P1, . . . ,Pk,
and has precisely one connected component in between each γ j and Γj, j = 1, . . . ,m,
and these m components are Jordan curves.

From our point of view the following corollary is of primary importance. Let K
be the closed set enclosed by Γ ∗ and K0 the closed set enclosed by γ∗. Denote by
g(K,z) Green’s function of C \K with pole at in£nity. Finally, let L be the closed
set enclosed by σ .

Corollary 4.2 Let Γ ∗, γ∗ and P1, . . . ,Pk ∈ Γ ∗ be as in Theorem 4.1. Then for every
ε > 0 there is a lemniscate σ as in Theorem 4.1 such that for each Pj we have

∂g(L,Pj)

∂n
≤ ∂g(K,Pj)

∂n
+ ε , (8)

where ∂ (·)/∂n denotes (outward) normal derivative.
In a similar manner, for every ε > 0 there is a lemniscate σ as in Theorem 4.1

such that for each Pj we have

∂g(K0,Pj)

∂n
≤ ∂g(L,Pj)

∂n
+ ε. (9)

Note that
∂g(K,Pj)

∂n
≤ ∂g(L,Pj)

∂n
≤ ∂g(K0,Pj)

∂n
,

because K0 ⊂ L⊂ K.
Now ∂g(K,Pj)

/

∂n gives 2π-times the density of the equilibrium measure at Pj
with respect to arc length on Γ ∗:

ωΓ ∗(Pj) =
1

2π
∂g(K,Pj)

∂n
,

hence we can reformulate (with a different ε) (8) as

ωσ (Pj)≤ ωΓ ∗(Pj)+ ε ,

and similarly, (9) can be reformulated as
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ωγ∗(Pj)≤ ωσ (Pj)+ ε .

5 A critical point in the method

The splitting of the set appears in the step (b) when we go from the model case to
its inverse image under a polynomial mapping. That is a big advance, since from
then on one works with several components, and they may be suf£ciently general to
imitate an arbitrary set. However, there is a huge price to pay, namely in the transfer,
say, from [−1,1] to E = T−1

N [−1,1], the result is transferred into a very special
statement on E, e.g. in the Bernstein inequality (1) in this step we got the extension
(2) of the Bernstein inequality on E, but only for very special polynomials, namely
of the form Qk(TN). But our aim is to prove (in this case) the full analogue for ALL
polynomials. Besides, in Qk(TN) the polynomial TN is not known, and when we
approximate an arbitrary set of £nitely many intervals by T −1

N [−1,1], it is typically
of very high degree.

The idea of how to get rid of the special properties is the following. As we have
already observed, T−1

N [−1,1] consists of N subintervals Ei = EN,i, and we denote by
T−1

N,i that branch of T−1
N that maps [−1,1] into Ei. Let Pn be an arbitrary polynomial

of degree n, and consider the sum

S(x) =
N

∑
i=1

Pn(T−1
N,i (TN(x))). (10)

We claim that this is a polynomial of TN(x) of degree at most n/N, i.e. S(x) =
Sn(TN(x)) for some polynomial Sn of degree at most n/N. To this end let xi =
T−1

N,i (TN(x)), i = 1, . . . ,N. Then

S(x) = S(x1, . . . ,xN) =
N

∑
i=1

Pn(xi)

is a symmetric polynomial of the variables x1, . . . ,xN , and hence it is a polynomial
of the elementary symmetric polynomials

S j(x1, . . . ,xN) = ∑
1≤k1<k2<...<k j≤N

xk1 xk2 · · ·xk j , 1≤ j ≤ N.

However, x1,x2, . . . ,xN are the roots in t of the polynomial equation TN(t) = TN(x),
and so if TN(x) = dNxN + · · ·+d0, then it follows that

S j(x1, . . . ,xN) = (−1) jdN− j/dN

if 1≤ j < N, while

SN(x1, . . . ,xN) = (−1)N(d0−TN(x))/dN ,
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from which the claim that S is a polynomial of TN(x) follows. On comparing the
degree of the homogeneous parts of these polynomials, we can see that the degree
of

Sn(u) := S(T−1
N,1(u))

is at most deg(Pn)/N ≤ n/N in u.
There is a slight problem, namely if x ∈ EN,i0 , then the sum S(x) contains not

only Pn(x), but also the values of Pn at the conjugate points xi = T−1
N,i (TN(x)), so

S(x) does not really behave like Pn(x). But that is easy to correct, namely we do not
form S from Pn, but rather from a P∗n , which behaves like Pn around x and is small at
conjugate points. To illustrate this crucial step, we complete the proof of (5) in the
transform of the Bernstein inequality.

Let ε > 0 be arbitrary. Then, by Theorem 3.1, there are polynomial inverse image
sets E∗ consisting of the same number of intervals as E such that the corresponding
endpoints of the subintervals of E and E∗ are as close as we wish. Therefore, we
can choose E∗ ⊂ Int(E) so that

ωE∗(x0)≤ (1+ ε)ωE(x0) (11)

is satis£ed. Let E ∗ = T−1
N [−1,1], and let E∗i = T−1

N,i [−1,1], i = 1, . . . ,N be the N
inverse image intervals of [−1,1] under the N branches of T−1

N . Since any translate
of E∗ is the polynomial inverse image of [−1,1] via a translate of TN , we can assume
without loss of generality that x0 is not an endpoint of any of the intervals E∗i , i.e. x0
is lying in the interior of E∗i0 for some i0.

Let Pn be an arbitrary polynomial of degree n, and consider the polynomial

P∗n (x) = (1−α(x− x0)
2)[
√

n]Pn(x), (12)

where α > 0 is £xed so that 1−α(x− x0)
2 > 0 on E. Clearly, P∗n has degree at

most n+2
√

n, ‖P∗n ‖E ≤ ‖Pn‖E , P∗n (x0) = Pn(x0), (P∗n )′(x0) = P′n(x0), and there is a
0 < β < 1 such that

|P∗n (x)| ≤ β
√

n‖Pn‖E , |(P∗n (x))′| ≤ β
√

n‖Pn‖E (13)

uniformly for x ∈ E \E∗i0 (for the last relations just observe that the factor 1−α(x−
x0)

2 is nonnegative and strictly less than one on E \E∗i0 ). For x ∈ E∗ form now

S(x) =
N

∑
i=1

P∗n (T−1
N,i (TN(x))). (14)

As we have already observed, this is a polynomial of degree at most (n+2
√

n)/N of
TN(x), i.e. S(x) = Sn(TN(x)) for some polynomial Sn of degree at most (n+2

√
n)/N.

From the properties (13) it is also clear that

‖S‖E∗ ≤ (1+Nβ
√

n)‖Pn‖E , |S′(x0)−P′n(x0)| ≤ Nβ
√

n‖Pn‖E .



10 Vilmos Totik

Now S is already of the type for which we have veri£ed (2) above, so if we apply
to S the inequality (2) at x = x0, and if we use (11) and the preceding estimates we
obtain (2):

|P′n(x0)| ≤ |S′(x0)|+Nβ
√

n‖Pn‖E

≤ (n+2
√

n)πωE∗(x0)‖S‖E∗ +Nβ
√

n‖Pn‖E

≤ (n+2
√

n)(1+ ε)πωE(x0)(1+Nβ
√

n)‖Pn‖E +Nβ
√

n‖Pn‖E

= (1+o(1))nπωE(x0)‖Pn‖E ,

since ε > 0 was arbitrary.

6 The Markoff inequality for several intervals

The classical Markoff inequality

‖P′n‖[−1,1] ≤ n2‖Pn‖[−1,1] (15)

complements Bernstein’s inequality when we have to estimate the derivative of a
polynomial on [−1,1] close to the endpoints. What happens, if we consider more
than one intervals? In [8] it was shown that if E = [−b,−a]∪ [a,b], then

‖P′n‖E ≤ (1+o(1))
n2b

b2−a2 ‖Pn‖E .

Why is b/(b2− a2) the correct factor here? This can be answered by the transfor-
mation x→ x2, but what if we have two intervals of different size, or when we have
more than two intervals? With the polynomial inverse image method we proved in
[39] the following extension.

Let E = ∪l
j=1[a2 j−1,a2 j], a1 < a2 < · · · < a2l consist of l intervals. When we

consider the analogue of the Markoff inequality for E, actually we have to talk about
one-one Markoff inequality around every endpoint of E. Let a j be an endpoint of
E, E j part of E that lies closer to a j than to any other endpoint. Let M j be the best
constant for which

‖P′n‖E j ≤ (1+o(1))M jn2‖Pn‖E (16)

holds, where o(1) tends to 0 as n tends to in£nity. This M j clearly depends on what
endpoint a j we are considering. Its value is given by (see [39])

Theorem 6.1

M j = 2
∏l−1

i=1(a j−λi)
2

∏i6= j |a j−ai|
, (17)

where the λ j are the numbers that appear in the equilibrium measure in (40)–(41).
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Let us consider the example E = [−b,−a] ∪ [a,b]. In this case l = 2, a1 =
−b, a2 =−a, a3 = a, a4 = b, and, by symmetry, λ1 = 0. Hence

ωE(t) =
|t|

π
√

(b2− t2)(t2−a2)
,

M1 = M4 =
2b2

(b−a)(b+a)(2b)
=

b
b2−a2

M2 = M3 =
2a2

(b−a)(b+a)(2b)
=

a
b2−a2 .

Since M1 = M4 > M2 = M3 we obtain that

‖P′n‖[−b,−a]∪[a,b] ≤ (1+o(1))n2 b
b2−a2 ‖Pn‖[−b,−a]∪[a,b],

which is the result of [8] mentioned above.
As an immediate consequence of the theorem we get the following asymptoti-

cally best possible Markoff inequality:
Corollary 6.2

‖P′n‖E ≤ (1+o(1))n2
(

max
1≤ j≤2l

M j

)

‖Pn‖E .

It is quite interesting that here the o(1) term cannot be dropped. This is due to the
strange fact that there are cases, where the maximum of

|P′n(x)|/‖Pn‖E

for all x ∈ E and all Pn of given degree n, is attained in an inner point of E ([2]).
It seems to be a dif£cult problem to £nd on several intervals for each n the best

Markoff constant for polynomials of degree at most n. The previous corollary gives
the asymptotically best constant (as n tends to in£nity).

7 Bernstein’s inequality on curves

Bernstein had another inequality on the derivative of a polynomial, namely if C1 is
the unit circle, then

|P′n(z)| ≤ n‖Pn‖C1 , z ∈C1 (18)

for any polynomial of degree at most n. With the polynomial inverse image method
in [20] we extended this to a family of C2 Jordan curves.

Theorem 7.1 Let E be a £nite union of C2 Jordan curves (lying exterior to one
another), and ωE the density of the equilibrium measure of E with respect to arc
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length. Then for any polynomial Pn of degree at most n = 1,2, . . .

|P′n(z)| ≤ (1+o(1))2πnωE(z)‖Pn‖E , z ∈ E. (19)

This is sharp:

Theorem 7.2 With the assumptions of the previous theorem for any z0 ∈ E there
are polynomials Pn of degree at most n such that

|P′n(z0)|> (1−o(1))2πnωE(z0)‖Pn‖E .

for some Pn’s.

We mention that the term o(1) is necessary, without it the inequality is not true. Note
also that, as opposed to (2), here, on the right hand side, the factor is 2πωE(z) rather
than πωE(z).

Corollary 7.3 If E is a £nite family of disjoint C2 Jordan curves then

‖P′n‖E ≤ (1+o(1))n

(

2π sup
z∈E

ωE(z)

)

‖Pn‖E ,

and this is sharp, for

‖P′n‖E > (1−o(1))n

(

2π sup
z∈E

ωE(z)

)

‖Pn‖E

for some polynomials Pn, n = 1,2, . . ..

8 Asymptotics for Christoffel functions

Let µ be a £nite Borel measure on the plane such that its support is compact and
consists of in£nitely many points. The Christoffel functions associated with µ are
de£ned as

λn(µ ,z) = inf
Pn(z)=1

∫

|Pn|2dµ , (20)

where the in£mum is taken for all polynomials of degree at most n that take the
value 1 at z. If pk(z) = pk(µ ,z) denote the orthonormal polynomials with respect to
µ , i.e.

∫

pn pmdµ = δn,m,

then λn can be expressed as

λ−1
n (µ ,z) =

n

∑
k=0
|pk(z)|2.
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In other words, λ−1
n (z) is the diagonal of the reproducing kernel

Kn(z,w) =
n

∑
k=0

pk(z)pk(w), (21)

which makes it an essential tool in many problems.
In past literature a lot of work has been devoted to Christoffel functions, e.g. the

H p theory emerged from Szeg¦o’s theorem; the density of states in statistical me-
chanical models of quantum physics is given by the reciprocal of the Christoffel
function associated with the spectral measure (see e.g. [22]); and the recent break-
through [16] by Lubinsky in universality connected with random matrices has also
been based on them (cf. also [10], [41] and particularly [32] where the importance
of Christoffel functions regarding off diagonal behavior of the reproducing kernel
was emphasized). See [12], [14], [34], and particularly [21] by P. Nevai and [33] by
B. Simon for the role and various use of Christoffel functions.

In 1915 Szeg¦o proved that if dµ(t) = µ ′(t)dt is an absolutely continuous measure
on the unit circle (identi£ed with [−π,π]) then

lim
n→∞

λn(z) = (1−|z|2)exp
(

1
2π

∫ π

−π

eit − z
eit + z

log µ ′(t)dt
)

, |z|< 1

provided log µ ′(t) is integrable (otherwise the limit on the left is 0). Just to show
the importance of Christoffel functions, let us mention that the z = 0 case of this
theorem immediately implies that the polynomials are dense in L2(µ) if and only if
∫

log µ ′ =−∞. Szeg¦o ([37, Th. I’, p. 461]) also proved that on the unit circle

lim
n→∞

nλn(µ ,eiθ ) = 2πµ ′(θ) (22)

under the condition that µ is absolutely continuous and µ ′ > 0 is twice continuously
differentiable. The almost everywhere result came much later, only in 1991 was it
proven in [18] that (22) is true almost everywhere provided log µ ′ is integrable.

All the aforestated results can be translated into theorems on [−1,1], e.g.: if the
support of µ is [−1,1] and log µ ′ ∈ L1

loc, then

lim
n→∞

nλn(x) = π
√

1− x2µ ′(x) (23)

almost everywhere. A local result is that (23) is true on an interval I if µ is in the Reg
class (see below), µ is absolutely continuous on I and log µ ′ ∈ L1(I). The measure
µ is called to be in the Reg class (see [35, Theorem 3.2.3]) if the L2(µ) and L∞(µ)
norms of polynomials are asymptotically the same in n-th root sense:

limsup
n→∞

‖Qn‖1/n
L∞(µ)

‖Qn‖1/n
L2(µ)

≤ 1. (24)
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An equivalent formulation is: λn(µ ,z)1/n → 1 uniformly on the support of µ . µ ∈
Reg is a fairly weak condition on µ; see [35] for general regularity criteria and
different equivalent formulations of µ ∈ Reg. For example, µ ′ > 0 a.e. implies that
µ ∈ Reg.

When the support is not [−1,1], things change. Indeed, let K = supp(µ)⊂ R be
a compact set (of positive logarithmic capacity), and let νK denote the equilibrium
measure of K. The polynomial inverse image method gives (see [38], [41])

Theorem 8.1 Let K = supp(µ) be a compact set of positive capacity and suppose
that µ ∈ Reg and log µ ′ ∈ L1(I) for some interval I ⊂ K. Then almost everywhere
on I

lim
n→∞

nλn(µ ,x) =
dµ(x)
dνK

, (25)

where, on the right-hand side, the expression is the Radon-Nikodym derivative of µ
with respect to the equilibrium measure µK .

Of course, when K = [−1,1], then (23) and (25) are the same.
In a similar vein, but with totally different proof (based now on the model case

C1) we have (see [43]):

Theorem 8.2 Let K = supp(µ) be a £nite family of C2 Jordan curves and suppose
that µ ∈ Reg and log µ ′ ∈ L1(I) for some arc I ⊂ K. Then almost everywhere on I

lim
n→∞

nλn(µ ,x) =
dµ(x)
dνK

, (26)

Here L1(I) is meant with respect to arc measure on K.
We note that (26) holds at every point where the measure µ has continuous den-

sity with respect to arc length (see [43]). In this case the support of µ can be much
more general, and the result is about the asymptotics of the Christoffel function on
an outer boundary arc of the support.

One can also allow a combination of Jordan arcs (homeomorphic images of
[−1,1]) and curves for the support of µ . However, this extension does not come
directly from the polynomial inverse image method, for there is a huge difference
between smooth Jordan arcs and Jordan curves: the interior of Jordan curves (or
family of curves) can be exhausted by lemniscates, and once an arc is in the set, this
is no longer true.

Orthogonal polynomials with respect to area measures go back to Carleman [9]
who gave strong asymptotics for them in the case of a Jordan domain with analytic
boundary curve. For less smooth domains or for regions consisting of several com-
ponents the situation is more dif£cult. The polynomial inverse image method in [43]
gave the asymptotics for Christoffel functions with respect to area-like measures:

Theorem 8.3 Suppose that K is a compact set bounded by a £nite number of C2

Jordan curves and µ is a measure on K of the form dµ =WdA with some continuous
W such that that

cap
(

{z W (z) > 0}∩ Int(K)
)

= cap(K).
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Then for z0 ∈ ∂K

lim
n→∞

n2λn(µ ,z0) =
W (z0)

2πωK(z0)2 (27)

where ωK is the density of the equilibrium measure with respect to arc length on ∂K
(note that the equilibrium measure is supported on ∂K).

9 Lubinsky’s universality on general sets

Let µ be a measure with compact support on the real line, and for simplicity let us
assume that dµ(x) = w(x)dx with an L1 function w. A form of universality in ran-
dom matrix theory/statistical quantum mechanics can be expressed via orthogonal
polynomials in the form (recall that Kn are the reproducing kernels from (21))

lim
n→∞

Kn

(

x+ a
w(x)Kn(x,x) ,x+ b

w(x)Kn(x,x)

)

Kn(x,x)
=

sinπ(a−b)

π(a−b)
. (28)

(The term “universality” comes from the fact that the right-hand side is independent
of the original weight w as well as of the place x). There has been a lot of papers
devoted to universality both in the mathematics and in the physics literature; the
very £rst instance is due to E. Wigner concerning the Hermite weight. Previous
approaches used rather restrictive assumptions, see [16] for references. In [16] D. S.
Lubinsky recently gave a stunningly simple approach that proves (28) for measures
in the Reg class for which supp(µ) = [−1,1] and w is continuous and positive on an
interval I (then (28) holds on I uniformly in |a|, |b| ≤A, for any A > 0). In [41], again
with the polynomial inverse image method, universality was extended to regular
measures with arbitrary support (the same result was proved by B. Simon in [32]
using so called Jost solutions to recurrences):

Theorem 9.1 (28) holds uniformly in |a|, |b| ≤ A, A > 0 at every continuity point
of the weight w (lying inside the support) provided dµ(x) = w(x)dx is in the Reg
class.

When the support is [−1,1], the almost every version of (28) under the local Szeg ¦o
condition logw ∈ L1(I) was proved in [10], which just pulls over to the general case
(the support arbitrary) via the polynomial inverse image method (see [41]).

Theorem 9.2 (28) holds at almost every point of an interval I provided dµ(x) =
w(x)dx is in the Reg class and logw ∈ L1(I).
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10 Fine zero spacing of orthogonal polynomials

Let µ be a measure with compact support on the real line, and let pn = pn(µ ,z)
be the n-th orthonormal polynomial with respect to µ . It is well known that
classical orthogonal polynomials on [−1,1] have rather uniform zero spacing: if
xn, j = cosθn, j are the zeros of the n-th orthogonal polynomials, then (inside (−1,1))
θn, j−θn, j+1 ∼ 1/n. In turn, this property of zeros is of fundamental importance in
quadrature and Lagrange interpolation. Several hundreds of papers have been de-
voted to zeros of orthogonal polynomials, still the following beautiful result has
only been proven a few years ago, namely when Levin and Lubinsky [15] found
that Lubinsky’s universality described in Section 9 implies very £ne zero spacing:

lim
n→∞

(xn,k+1− xn,k)
n

π
√

1− x2
n,k

= 1. (29)

With the polynomial inverse image method this was extended in [41] to arbitrary
support (see also [32]):

Theorem 10.1 If K = supp(µ) ⊂ R, µ ∈ Reg and µ ′ is continuous and positive
about x, then

lim
n→∞

n(xn,k+1− xn,k)ωK(x) = 1, |xn,k− x| ≤ A/n (30)

where ωK is the density of the equilibrium measure of the support K.

Furthermore, this holds locally a.e. under the local Szeg ¦o condition log µ ′ ∈ L1:

Theorem 10.2 If K = supp(µ)⊂ R, µ ∈ Reg and log µ ′ ∈ L1(I) for some interval
I, then (30) is true a.e. in I in the sense that for almost every x ∈ I and for every
A > 0 we have (30) for |xn,k− x| ≤ A/n.

11 Polynomial approximation on compact subsets of the real line

The approximation of the |x| function on [−1,1] by polynomials is a key to many
problems in approximation theory. Let En( f ,F) denote the error of best approxima-
tion to f on F by polynomials of degree at most n. S. N. Bernstein [3] proved in
1914, that the limit

lim
n→∞

nEn(|x|, [−1,1]) = σ (31)

exists, it is £nite and positive. This is a rather dif£cult result (with a proof over
50 pages). For σ he showed 0.278 < σ < 0.286. The exact value of σ is still un-
known. Bernstein returned to the same problem some 35 years later in [4], [5], and
he established that for p > 0, p not an even integer, the £nite and nonzero limit

lim
n→∞

npEn(|x|p, [−1,1]) = σp (32)
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exists, furthermore that for x0 ∈ (−1,1)

lim
n→∞

npEn(|x− x0|p, [−1,1]) = (1− x2
0)

p/2σp (33)

holds true, where σp is the same constant as in (32).
In this section we discuss the problem that arises for more general sets. This

problem was considered by R. K. Vasiliev in [44]. His approach is as follows. Let

F = [−1,1]\∪∞
i=1(αi,βi),

and form the sets
Fm = [−1,1]\∪m−1

i=1 (αi,βi).

Fm consists of m intervals
Fm = ∪m

j=1[a j,b j]

a1 < b1 < a2 < b2 · · ·bm−1 < am < bm, and for it de£ne

hFm(x) =
∏m−1

j=1 |x−λ j|
√

∏m
j=1 |x−a j||x−b j|

,

where λ j are chosen so that

∫ ak+1

bk

∏m−1
j=1 (t−λ j)

√

∏m
j=1 |t−a j||t−b j|

dt = 0

for all k = 1, . . . ,m−1. Set

hF(x) = lim
m→∞

hFm(x) = sup
m

hFm(x),

where it can be shown that the limit exists (but it is not necessarily £nite).
Now with these notations Vasiliev claims the following two results:

lim
n→∞

npEn(|x− x0|p,F) = hF(x0)
−pσp, (34)

lim
n→∞

npEn(|x− x0|p,F)> 0⇐⇒
∫ 1

0

meas{[x0− t,x0 + t]\F}2

t3 dt < ∞. (35)

This second claim seems to contradict the fact (see e.g. [40, Corollary 10.4]) that
there are (Cantor type) sets of measure zero for which En(|x− x0|p,F)≥ cn−p with
some c > 0 (for a set F of zero measure the integral is clearly in£nite). Vasiliev’s
paper [44] is 166 pages long, and it is dedicated solely to the proof of (34) and (35),
so it is dif£cult to say what might be wrong in the proof. We do not know if the
full (34) is correct, but we gave in [40, Theorem 10.5] a few pages proof, based on
polynomial inverse images, that shows its validity provided x0 lies in the interior of
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E. In fact, in this case we have transferred the original Bernstein theorem (32) into
Vasiliev’s theorem.

Taking into account the form (40) of the equilibrium measure for several inter-
vals, we see that Vasiliev’s function is just hF(x) = πωF(x) if F consists of a £nite
number of intervals (and also if F is arbitrary compact, but x is in its interior). Hence,
(34) for x0 ∈ Int(F) takes the following form.

Theorem 11.1 (R. K. Vasiliev) Let F ⊆ R be compact and let x0 be a point in the
interior of F. Then

lim
n→∞

npEn(|x− x0|p,F) = (πωF(x0))
−pσp, (36)

where σp is the constant from Bernstein’s theorem (32).

E.g. if F = [−1,1], then

πω[−1,1](x) =
1√

1− x2
,

and in this special case we recapture Bernstein’s result (33).
Here again, Theorem 11.1 can be obtained from Bernstein’s theorems (32) via

polynomial mappings and approximation.

12 Appendix: basic notions from logarithmic potential theory

For a general reference to logarithmic potential theory see [30].
Let E ⊂C be compact. Except for pathological cases, there is a unique probabil-

ity (Borel) measure µE on E, called the equilibrium measure of E, that minimizes
the energy integral

∫ ∫

log
1

|z− t|dµ(z)dµ(t). (37)

µE certainly exists if E has non-empty interior. One should think of µE as the distri-
bution of a unit charge placed on the conductor E (in this case Coulomb’s law takes
the form that the repelling force between charged particles is proportional with the
reciprocal of the distance).

The logarithmic capacity of E is cap(E) = exp(−V ), where V is the minimum
of the energies (37) above. The Green’s function of the unbounded component Ω
of the complement C\E with pole at in£nity is denoted by gΩ (z,∞), and it has the
form

gΩ (z,∞) =
∫

log
1

|z− t|dµE(t)+ logcap(E). (38)

When E ⊂ R then we shall denote by ωE(t) the density of µE with respect to
Lebesgue measure wherever it exists. It certainly exists in the interior of E. For
example
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ω[−1,1](t) =
1

π
√

1− t2
, t ∈ [−1,1]

is just the well known Chebyshev distribution.
If E = T−1

N [−1,1], E = ∪N
i=1Ii in such a way that TN maps each of the intervals Ii

onto [−1,1] in a 1-to-1 way, then (see [13], [30])

µE(A) =
1
N

N

∑
i=1

µ[−1,1](TN(A∩ Ii)),

which gives

ωE(t) =
|T ′N(t)|

πN
√

1−TN(t)2
, t ∈ E. (39)

We also know a rather explicit form for ωE when E =∪l
1[a j,b j] is a set consisting

of £nitely many intervals (see e.g. [39]):

ωE(x) =
∏l−1

j=1 |x−λ j|

π
√

∏l
j=1 |x−a j||x−b j|

, (40)

where λ j are chosen so that

∫ ak+1

bk

∏l−1
j=1(t−λ j)

√

∏l
j=1 |t−a j||t−b j|

dt = 0 (41)

for all k = 1, . . . , l−1. It can be easily shown that these λ j’s are uniquely determined
and there is one λ j on any contiguous interval (bk,ak+1).
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