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Abstract

The class L0(H) of cyclic quasianalytic contractions was studied in
[K4]. The subclass L1(H) consists of those operators T in L0(H) whose
quasianalytic spectral set π(T ) covers the unit circle T. The contractions
in L1(H) have rich invariant subspace lattices. In this paper it is shown
that for every operator T ∈ L0(H) there exists an operator T1 ∈ L1(H)
commuting with T . Thus, the hyperinvariant subspace problems for the
two classes are equivalent. The operator T1 is found as an H∞-function
of T . The existence of an appropriate function, compressing π(T ) to the
whole circle, is proved using potential theoretic tools by constructing a
suitable regular compact set on T with absolutely continuous equilibrium
measure.

1 Introduction

Let H be an infinite dimensional separable complex Hilbert space and let L(H)
denote the set of bounded, linear operators acting on H. For an operator T ∈
L(H) let {T}′ = {C ∈ L(H) : CT = TC} denote the commutant of T , and
let Hlat T = Lat{T}′ stand for the hyperinvariant subspace lattice of T . The
Invariant Subspace Problem (ISP) asks whether every operator T ∈ L(H) has
a non-trivial invariant subspace, that is if Lat T ̸= {{0},H}. In a similar
fashion, the Hyperinvariant Subspace Problem (HSP) is whether every operator
T ∈ L(H) \ CI has a non-trivial hyperinvariant subspace. These problems
are arguably the most challenging open questions in operator theory. From
the point of view of subspaces one can normalize the operators to have norm at
most 1, hence in what follows we shall only consider contractions. In the present
work we shall show that for a relatively large class of contractions (L0(H), see
its definition below) the problem (HSP) is equivalent to (HSP) for a special
subclass (L1(H)), the members of which have rich invariant subspace lattice.
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The reduction will be achieved by establishing that for every T ∈ L0(H) there
is a T1 ∈ L1(H) which commutes with T . This T1 will be obtained as a function
f(T ) of T , where f is a special conformal map lying in the disk algebra. The
existence of f will be proven via potential theory.

We define some classes of contractions. These concepts were introduced (in
the non-cyclic case too) in [K2], where it was shown, among others, that non-
quasianalytic contractions (to be defined below) do have proper hyperinvariant
subspaces. Thus, in the quest for such subspaces one should concentrate on
quasianalytic contractions.

Let T ∈ L(H) be a contraction: ∥T∥ ≤ 1. We recall that the pair (X,V ) is
a unitary asymptote of T , if

(i) V is a unitary operator acting on a Hilbert space K,

(ii) X ∈ L(H,K) is a contractive mapping intertwining T with V : ∥X∥ ≤
1, XT = V X, and

(iii) for any similar contractive intertwining pair (X ′, V ′) there exists a unique
contractive transformation Y ∈ L(K,K′) such that Y V = V ′Y and X ′ =
Y X.

For the existence and uniqueness of unitary asymptotes we refer to [BK] (see
also [K1]). We assume that T is of class C10, which means that

• T is asymptotically non-vanishing: limn→∞ ∥Tnx∥ > 0 for every 0 ̸= x ∈
H, and

• the adjoint T ∗ is stable: limn→∞ ∥(T ∗)nx∥ = 0 for every x ∈ H.

Then the intertwining mapping X is injective, and the unitary operator V is
absolutely continuous. Let us also assume that V is cyclic: ∨∞

n=0V
ny = K for

some y ∈ K. Then, for some measurable subset α ⊂ T of the unit circle, V
is unitarily equivalent to the multiplication operator Mα on the Hilbert space
L2(α) by the identity function χ(ζ) = ζ: Mαf = χf , f ∈ L2(α). So from now
on we may assume K = L2(α) and V f = χf , f ∈ L2(α). The set α is uniquely
determined up to sets of zero Lebesgue measure, and is called the residual set
of T , denoted by ω(T ).

We say that T is quasianalytic on a measurable subset β of T, if (Xh)(ζ) ̸=
0 for a.e. ζ ∈ β whenever 0 ̸= h ∈ H. Taking the union of a sequence of
quasianalytic sets, whose measures converge to the supremum (of measures of
all quasianalytic sets), we obtain that there exists a largest quasianalytic set for
T , denoted by π(T ). The set π(T ) is determined up to sets of zero Lebesgue
measure, and is called the quasianalytic spectral set of T . Clearly, π(T ) is
included in ω(T ). The contraction T is quasianalytic, if π(T ) = ω(T ).

The paper [K4] introduced distinctive classes of quasianalytic contractions.
The class L0(H) consists of the operators T ∈ L(H) satisfying the conditions:

(i) T is a C10-contraction,
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(ii) the unitary operator V is cyclic, and

(iii) T is quasianalytic.

The subclass L1(H) consists of those operators T ∈ L0(H), which satisfy also
the additional condition:

(iv) π(T ) = T.

Every operator T ∈ L1(H) has a rich invariant subspace lattice Lat T ; see [K3].

Let us consider also the class L̃(H) of those (non-scalar) contractions T ∈ L(H),
which are non-stable (i.e., limn→∞ ∥Tnx∥ > 0 for some x ∈ H), and where the

unitary asymptote V is cyclic. Clearly L1(H) ⊂ L0(H) ⊂ L̃(H).
We emphasize that from the point of view of invariant subspaces these classes

are very natural. Namely, we know from [K2] that the (HSP) in the class L̃(H)
is equivalent to the (HSP) in the class L0(H). Furthermore, if the (HSP) has

positive answer in L̃(H), then the (ISP) has an affirmative answer in the large
class of contractions T , where T or T ∗ is non-stable. As was mentioned earlier,
the (ISP) in L1(H) is answered affirmatively. Actually, a lot of information is
at our disposal on the structure of operators in L1(H), which may be helpful
in the study of the (HSP) in this class; see [K3]. It was proved in [K4] that if
T ∈ L0(H) and π(T ) contains an arc then there exists T1 ∈ L1(H) such that
{T}′ = {T1}′, and so Hlat T = Hlat T1. In the present paper we show that the
whole class L0(H) is strongly related to L1(H), proving the following theorem.

Theorem 1 For every operator T ∈ L0(H) there exists T1 ∈ L1(H) commuting
with T : TT1 = T1T .

Since the commutants {T}′ and {T1}′ are abelian (see e.g. Section 3 in
[K4]), the relation TT1 = T1T implies {T}′ = {T1}′, and so Hlat T = Hlat T1.
Therefore, we obtain the following corollary.

Corollary 2 The (HSP) in the class L0(H) is equivalent to the (HSP) in the
class L1(H).

These results are related to those in [FPN], [FP], [BFP] and [K3].
We provide an operator T1 in L1(H) ∩ {T}′ as a function of T , using the

Sz.-Nagy–Foias functional calculus; see Chapter III in [NFBK]. We shall apply
the spectral mapping theorem established in [K4]. The existence of a function
f ∈ H∞, satisfying the conditions f(T ) ∈ L0(H) and π(f(T )) = f(π(T )) = T,
is based on Theorem 3 below.

Let m denote the linear Lebesgue measure both on the real line and on the
unit circle. A domain G ⊂ C is called a circular comb domain if it is obtained
from the open unit disc D by deleting countably many radial segments of the
form {rζ : ρ < r < 1} with some 0 < ρ < 1 and ζ ∈ T.

Theorem 3 If Ω is a measurable subset of the unit circle T of positive (linear)

measure, then there are a compact set Ω̃ ⊂ Ω and a conformal map f from
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D onto a circular comb domain such that f can be extended to a continuous
function on the closed unit disc D, f−1[T] = Ω̃, and m(f [ω]) = 0 for every

Borel subset ω of Ω̃ of zero measure.

Here, and in what follows, f [A] := {f(a) : a ∈ A} is the range of f when
restricted to A, and f−1[B] := {b : f(b) ∈ B} is the complete inverse image of
the set B under the map f . When B = {b} has only one element, then we write
f−1[b] instead of f−1[{b}].

Theorem 3 will be derived from the subsequent Theorem 4. To formulate
it wee need some potential theoretical preliminaries. For all these facts see [R],
[GM] or [SaT]. Let K be a compact set on C, and let P(K) be the system of
all probability (Borel) measures supported on K. The potential

pν(z) =

∫
K

log |z − w| dν(w)

of a measure ν ∈ P(K) is a subharmonic function on C, which is harmonic on
C \ K. The (logarithmic) capacity of K is defined by cap(K) = exp(M(K)),
where

M(K) = sup

{∫
K

pν dν : ν ∈ P(K)

}
.

If cap(K) > 0, then there exists a unique measure µK ∈ P(K), called the
equilibrium measure of K, which is maximizing the energy integral:∫

K

pµK
dµK =M(K);

we write pK = pµK
for short. By Frostman’s theorem there is an Fσ-subset

F of K with cap(F ) = 0 such that pK(z) = M(K) for all z ∈ K \ F , and
pK(z) > M(K) for all z ∈ F ∪ (C \K). The compact set K is called regular, if
the potential pK is continuous on C, or equivalently, if the previous exceptional
set F is empty.

Theorem 4 Let E ⊂ R be a compact set of positive Lebesgue measure. Then
for every ε > 0, there is a regular compact set K ⊂ E such that m(E \K) < ε,
and µK is absolutely continuous with respect to the Lebesgue measure on the real
line R.

Theorems 3 and 4 should be compared to [P, Proposition 9.15]. Here the
additional absolute continuity of the extremal measure is the key to our results.

In Section 2 the functional calculus within the class L0(H) is discussed, and
Theorem 1 is proved relying on Theorem 3. The proofs of Theorems 3 and 4
are given in Section 3.

2 Functional calculus in L0(H)

In order to get C10-contractions, we consider functions in the Hardy class H∞

with specific boundary behaviour.
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Let M be the σ-algebra of Lebesgue measurable sets on T. For a complex
function f defined on the open unit disc D, let Ω(f) be the set of those points
ζ ∈ T, where the radial limit

lim
r→1−0

f(rζ) =: f(ζ)

exists and is of modulus 1: |f(ζ)| = 1. It can be easily seen that if f is continuous
on D, then Ω(f) ∈ M.

For any f ∈ H∞ the radial limit exists almost everywhere on T by Fatou’s
theorem; see [H]. We recall from [K4] that f ∈ H∞ is a partially inner function,
if

(i) |f(0)| < 1 = ∥f∥∞, and

(ii) m(Ω(f)) > 0.

Note that (i) implies f [D] ⊂ D by the Maximum Principle. Furthermore, Corol-
lary 2 of [K4] states that m(f−1[ω]) = 0 for every ω ∈ M with m(ω) = 0
(recall also that every set of measure 0 is included in a Borel set of measure
zero). Hence, for any Ω ∈ M, Ω ⊂ Ω(f), the measure µ : M → [0, 2π], µ(ω) =
m(f−1[ω]∩Ω) is absolutely continuous with respect tom. The properly essential
range of the restriction f Ω is defined by

pe-ran(f Ω) := {ζ ∈ T : (dµ/dm)(ζ) > 0}.

Note that the Radon–Nikodym derivative dµ/dm, and so the Lebesgue measur-
able set pe-ran(f Ω) too, is determined up to sets of measure zero. The spectral
mapping theorems in Section 2 of [K4] are formulated in terms of this kind of
range.

The properly essential range is just the range of the function under some
regularity conditions. We introduce this regularity property of a partially inner
function in a somewhat different (and simpler) manner than in [K4]. We say
that a function g : Ω → T, where Ω ⊂ T is a measurable subset of T, is weakly
absolutely continuous, if ω ⊂ Ω, m(ω) = 0, implies m(g[ω]) = 0. The partially
inner function f ∈ H∞ is called regular, if f Ω(f) is a weakly absolutely con-

tinuous function. The following lemma shows that this definition is essentially
the same as the one given in [K2] and [K4], replacing Borel sets occurring there
by Lebesgue measurable sets.

Lemma 5 Let f ∈ H∞ be a partially inner function.
(a) Then f is regular if and only if for every measurable set Ω ⊂ Ω(f) the image
set f [Ω] is also measurable.
(b) If f is regular and Ω ∈ M, Ω ⊂ Ω(f), then pe-ran(f Ω) = f(Ω).

Recall that pe-ran(f Ω) is determined only up to measure zero, so the equality
pe-ran(f Ω) = f(Ω) is also understood up to measure zero.

Proof. (a): We sketch the proof of this known equivalence. Suppose that
f is regular, and let Ω ∈ M, Ω ⊂ Ω(f). Since f Ω is the pointwise limit

5



of a sequence of continuous functions, it follows from Egorov’s theorem that
Ω = Ω1 ∪ Ω2, where Ω1 and f [Ω1] are Fσ-sets and m(Ω2) = 0. Hence, by
assumption, m(f [Ω2]) = 0 and thus f [Ω] ∈ M.

Conversely, if f is non-regular, then m(f [ω]) = 0 fails for some ω ⊂ Ω(f)
with m(ω) = 0. There is a non-measurable subset Ω′ of f [ω]. Thus Ω =
f−1[Ω′] ∩ ω ∈ M, while f [Ω] = Ω′ ̸∈ M.

(b): The sets ω1 = f [Ω] and ω2 =pe-ran(f Ω) are in M. Let us consider the
measure µ occurring in the definition of ω2, and let g = dµ/dm. Since∫

ω2\ω1

g dm = µ(ω2 \ ω1) = m
(
(f Ω)

−1[ω2 \ ω1]
)
= m(∅) = 0

and g(ζ) > 0 for ζ ∈ ω2 \ω1, it follows that m(ω2 \ω1) = 0. On the other hand,
we have

m
(
(f Ω)

−1[ω1 \ ω2]
)
= µ(ω1 \ ω2) =

∫
ω1\ω2

g dm = 0

since g(ζ) = 0 for (almost all) ζ ∈ ω1 \ω2; thus m(ω1 \ω2) = 0 by the regularity
condition.

�
Applying the functional calculus, for an operator in L0(H) we want to get

another operator in L0(H), which means that the cyclic property should be
preserved. Hence, univalent functions will be considered in the sequel. We
recall that f : D → C is called a univalent function (or a conformal map) if it is
analytic and injective. The range G = f [D] of f is a simply connected domain,
different from C. The boundary ∂G of G is a non-empty closed set. It is known
that the geometric properties of ∂G are reflected in the analytic properties of f .
For example ∂G is a curve (i.e. a continuous image of the unit circle) exactly
when f belongs to the disk algebra A, and then ∂G = f [T] (see Theorem 2.1
in [P]). We recall that the disk algebra A consists of those analytic complex
functions on D, which can be continuously extended to the closure D of D. We
focus our attention to the class

A1 :=
{
f ∈ A : f D is univalent

}
.

The following proposition shows that every partially inner function in A1 has an
almost injective unimodular component. The cardinality of a set H is denoted
by |H|. For distinct points ζ1, ζ2 ∈ T, the open arc determined by ζ1 and

ζ2 is defined by ζ̂1ζ2 = {eit : t1 < t < t2}, where t1 < t2 < t1 + 2π and
ζ1 = eit1 , ζ2 = eit2 .

Proposition 6 Let f ∈ A1 be a partially inner function.

(a) If f(ζ1) = f(ζ2) = w holds for distinct points ζ1, ζ2 ∈ Ω(f), then for one of

the arcs I = ζ̂1ζ2 or I = ζ̂2ζ1 we have m(I ∩ Ω(f)) = 0 and f(ζ) = w for
every ζ ∈ I ∩ Ω(f).
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(b) The setM =
{
w ∈ T : |f−1[w]| > 1

}
of multiple image points on T is count-

able.

(c) For any Borel subset Ω of Ω(f) with m(Ω) > 0 we have f [Ω] = pe-ran(f Ω)
if and only if f Ω is weakly absolutely continuous.

Proof. Statement (b) is an easy consequence of statement (a).
We sketch the proof of (a), which is based on ideas taken from the proof of

the related Proposition 2.5 in [P]. Let S denote the segment joining ζ1 with ζ2.
Then J = f [S] is a (closed) Jordan curve in D ∪ {w}. Let us consider the open
sets G1 = G ∩ intJ and G2 = G ∩ extJ , where G = f [D]. It is easy to check
that D1 = f−1[G1], D2 = f−1[G2] are the connected components of D \ S, and
G1 = f [D1], G2 = f [D2]. We may assume that ∂D1 = S ∪ ζ̂1ζ2; the other case

∂D1 = S ∪ ζ̂2ζ1 can be treated similarly. For every ζ ∈ ζ̂1ζ2 ∩ Ω(f), we have
f(ζ) ∈ G1 ∩ T = {w}. Since m(f−1[w]) = 0, the statement follows.

Turning to the proof of (c) notice first that Ω(f) is a compact set on T. In
view of (b) the system

S = {ω : ω ⊂ Ω(f), ω, f(ω) are Borel measurable}

is a σ-algebra on Ω(f) containing compact sets; hence S consists of the Borel
subsets of Ω(f). Setting ω1 = f [Ω] and ω2 =pe-ran(f Ω) we know that m(ω2 \
ω1) = 0 always holds, and m(ω1 \ ω2) = 0 whenever f Ω is weakly absolutely
continuous; see the proof of Lemma 5. Assuming that f Ω is not weakly ab-
solutely continuous, there exists a Borel set ω ⊂ Ω such that m(ω) = 0 and
m(ω′) > 0 for ω′ = f [ω]. Applying (b) again, we can see that

∫
ω′ g dm =

µ(ω′) = m
(
(f Ω)

−1[ω′]
)
= 0 holds for g = dµ/dm, and so m(ω2 ∩ ω′) = 0,

whence m(ω1 \ ω2) ≥ m(ω′) > 0 follows.
�

The following theorem describes the functional calculus within the class
L0(H). It plays crucial role in the proof of Theorem 1.

Theorem 7 Setting T ∈ L0(H), let f ∈ A1 be a regular partially inner function
such that m(π(T ) ∩ Ω(f)) > 0. Then T0 = f(T ) ∈ L0(H) and we have π(T0) =
f [π(T ) ∩ Ω(f)].

Proof. By Proposition 6 the setM = {w ∈ T : |f−1[w]| > 1} is countable, hence
m(M) = 0 yields m(f−1[M ]) = 0. Deleting f−1[M ] from the quasianalytic
spectral set (which is determined up to sets of measure zero), we may assume
that f is injective on the set α = π(T ) ∩ Ω(f) ∈ M. We know also that
β = f [α] ∈ M, and m(α) > 0, m(β) > 0. Furthermore, the restriction ϕ =
f α : α → β is a bijection, and for any ω ⊂ α we have ω ∈ M if and only
if ϕ[ω] ∈ M, and m(ω) = 0 exactly when m(ϕ[ω]) = 0. We use the notation
α̃ = π(T ) = ω(T ). Let (X,Mα̃) be a unitary asymptote of T , with a properly
chosen contractive intertwining mapping X : XT =Mα̃X.

Since T is a completely non-unitary contraction, it follows that T0 = f(T )
is also a completely non-unitary contraction (see Chapter III in [NFBK]). We
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know that T0 is quasianalytic and π(T0) = β (see Corollary 5 in [K4] and
Proposition 6). The conditionm(π(T0)) > 0 yields T0 ∈ C1·, and T ∈ C·0 readily
implies T0 ∈ C·0. Furthermore, by Theorem 3 in [K4] the pair (X0, ϕ(Mα))
is a unitary asymptote of T0, where X0v = χαXv (v ∈ H) (here χα is the
characteristic function of the set α). We know that ϕ(Mα) is an absolutely
continuous unitary operator because T0 is an absolutely continuous contraction.
It remains to show that ϕ(Mα) is cyclic.

Let us introduce the measure ν on

M(β) = {ω ∈ M : ω ⊂ β}

via
ν(ω) = m(ϕ−1[ω]).

The properties of ϕ imply that ν is equivalent to (mutually absolutely continuous
with) the Lebesgue measure on β. Let us consider the unitary operator Nν ∈
L(L2(ν)), Nνg = χg, which is unitarily equivalent to Mβ (see Theorem IX.3.6
in [C]). It is easy to verify that Z : L2(ν) → L2(α), g 7→ g ◦ ϕ is a unitary
transformation, intertwining Nν with ϕ(Mα) : ZNν = ϕ(Mα)Z. Therefore,
ϕ(Mα) is unitarily equivalent to Mβ , and so it is cyclic.

�
Now we proceed with the proof of Theorem 1 relying on the statement of

Theorem 3.

Proof of Theorem 1. Let T be a contraction in the class L0(H), and let us
consider the quasianalytic spectral set Ω = π(T ) of positive measure. By The-

orem 3 there exist a compact set Ω̃ ⊂ Ω and a function f ∈ A1 such that f [D]
is a circular comb domain, f−1[T] = Ω̃, and f Ω̃ is weakly absolutely contin-

uous. In other words, f is a regular partially inner function with Ω(f) = Ω̃

and f [Ω̃] = T. Applying Theorem 7 we conclude that T1 = f(T ) ∈ L0(H)

and π(T1) = f [π(T ) ∩ Ω(f)] = f [Ω̃] = T, whence T1 ∈ L1(H) follows. Being
norm-limit of polynomials of T , the operator T1 commutes with T .

�

3 Absolutely continuous equilibrium measures

First we prove Theorem 3 applying Theorem 4.

Proof of Theorem 3. Let Ω ⊂ T be a set of positive Lebesgue measure, and let
Ω1 ⊂ Ω be a compact subset of positive measure. Applying rotation we may
assume that 1 is a density point of Ω1; let Ω′

1 be its reflection onto the real
axis. The compact set Ω2 = Ω1 ∩Ω′

1 is of positive measure and symmetric with
respect to R. Let us consider the bijective Joukovskii map φ : D → C \ [−1, 1],
defined by φ(z) = (z+1/z)/2; the continuous extension to D is also denoted by
φ. Then E = φ[Ω2] is a compact subset of [−1, 1] with positive measure, and
Ω2 = φ−1[φ[Ω2]] because of the symmetry of Ω2.
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By Theorem 4 there is a regular compact subset K of E with an absolutely
continuous equilibrium measure µK . Let [a, b] be the smallest interval containing
K. Consider the analytic function

Φ(z) = exp

(
−
∫
K

log(z − t) dµK(t) + log cap(K)

)
on the upper half plane H+ = {z ∈ C : ℑz > 0} with that branch of log
which is positive on (0,∞). It is easy to see that for every x ∈ R the function
ratio Φ(z)/|Φ(z)| converges to exp [−iπµK((x,∞))] as z → x from the upper
half plane. Since |Φ(z)| = exp(−pK(z)) · cap(K) and K is regular, it follows
that Φ can be continuously extended to the closure of H+ in C; Φ(∞) = 0.
We can see that Φ(K) coincides with the lower circle T− = {z ∈ T : ℑz ≤
0}, Φ(R \ (a, b)) = [−1, 1], and each component I of (a, b) \ K is mapped by
Φ onto a radial segment of the form {rζ : ρ < r < 1} with some 0 < ρ < 1
and ζ ∈ T−. It can be shown also that Φ is univalent; see Chapter 2.1 in [A].
Since Φ(x) = exp [−iπµK((x,∞))] for x ∈ K and µK is absolutely continuous,
it follows that sets of measure zero on K are mapped by Φ into sets of measure
zero.

Let G+ be the domain Φ(H+), and G− its reflection onto the real axis. Since
Φ(z) is real for z ∈ R \ [a, b], using the reflection principle we can extend Φ via
the definition Φ(z) = Φ(z), ℑz < 0 to a conformal map of the domain C \ [a, b]
onto the circular comb domain G = G+ ∪ G− ∪ (−1, 1). Then f = Φ ◦ φ is
a conformal map from D onto G, it belongs to the disk algebra, and we have
f [Ω̃] = T, f [T\ Ω̃] ⊂ D for the compact set Ω̃ = φ−1[K] ⊂ Ω. If ω ⊂ Ω̃ is of zero

linear measure, then f [ω] is also of zero linear measure. Thus Ω̃ and f have all
the properties set forth in the theorem.

Note also that for compact, symmetric Ω the measure of Ω \ Ω̃ can be made
as small as we wish.

�
To prove Theorem 4 we need two lemmas.

Lemma 8 Let 1 ≤ ξ1 < α1 < ξ2 < α2 < · · · < ξl < αl. Then for x, y ∈ [−1, 0]
we have

1

2
≤

l∏
s=1

(
ξs − x

αs − x

/ ξs − y

αs − y

)
≤ 2. (1)

In a similar manner, if 1 ≤ β1 < ξ1 < β2 < · · · < βl < ξl, then for x, y ∈ [−1, 0]
we have

1

2
≤

l∏
s=1

(
ξs − x

βs − x

/ ξs − y

βs − y

)
≤ 2. (2)

Proof. The inequalities (2) are obtained by taking reciprocal in (1) and switching
the role of βs, ξs and ξs, αs. Similarly, in proving (1) we may assume without
loss of generality that y ≤ x. The product in (1) can be written as

l∏
s=1

(
ξs − x

ξs − y

/αs − x

αs − y

)
=

(
ξ1 − x

ξ1 − y

/αl − x

αl − y

) l−1∏
s=1

(
ξs+1 − x

ξs+1 − y

/αs − x

αs − y

)
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(l ≥ 2 can be assumed). Since (t−x)/(t− y) is increasing on (0,∞), it immedi-
ately follows from the left hand side that the product in question is at most 1.
On the other hand, by the same token the second factor on the right is at least
1, so the product is at least as large as

ξ1 − x

ξ1 − y

/αl − x

αl − y
≥ ξ1 − x

ξ1 − y
≥ 1

2
.

�
Let β1 < α1 < · · · < βl < αl be positive integers, and let ξs ∈ (βs, αs) for

every 1 ≤ s ≤ l. Taking the geometric mean of the products in (1) and (2) of
Lemma 8 it follows that

1

2
≤

l∏
s=1

(
|x− ξs|√

|x− αs||x− βs|

/ |y − ξs|√
|y − αs||y − βs|

)
≤ 2 (3)

for every x, y ∈ [−1, 0]. Multiplying everything by (−1), and changing the
notation it follows that (3) holds also, when αs, βs are negative integers and
x, y ∈ [0, 1]. Let Z denote the set of integers. Via scaling (multiplying everything
by 2−N (N ∈ N) and applying translation), we obtain that

(3) is true if αs, βs ∈ 2−NZ for every 1 ≤ s ≤ l and

x, y ∈ [(j − 1)/2N , j/2N ] with some j ∈ Z satisfying (4)

the condition j/2N < β1 or (j − 1)/2N > αl.

Given N ∈ N let IN,j =
[
(j − 1)2−N , j2−N

]
for any j ∈ Z. Setting a non-

empty set S ⊂ {k ∈ N : k ≤ 2N} of non-consecutive indeces, let us consider the
compact set F = ∪j∈SIN,j , which can be written in the form F = ∪n

s=1[as, bs]
with a1 < b1 < a2 < b2 < · · · < bn (n ≥ 2). The equilibrium measure µF of F
is absolutely continuous with respect to the Lebesgue measure m on R, and its
density function is given by the formula

ψ(t) = (dµF /dm)(t) =
1

π

∏n−1
s=1 |t− τs|∏n

s=1

√
|t− as||t− bs|

dt, t ∈ F, (5)

where the numbers τs ∈ (bs, as+1) (1 ≤ s ≤ n − 1) are the unique solution of
the system of equations∫ ak+1

bk

∏n−1
s=1 (t− τs)∏n

s=1

√
|t− as||t− bs|

dt = 0, 1 ≤ k ≤ n− 1. (6)

This is a linear system in the coefficients of the polynomial
∏n−1

s=1 (t−τs). When
n = 1 then the product in the numerator (5) is replaced by 1. For all these see
Lemma 4.4 in [StT] and Chapter III, (5.8) in [SaT].
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Lemma 9 Let 0 < η < 1/2, j ∈ S, and H a measurable subset of IN,j (N,S, F
and IN,j are as before). If

m(H) ≥ (1− 2η)m(IN,j), (7)

then
µF (H) ≥

(
1− 229η1/2

)
µF (IN,j). (8)

Proof. We shall give an estimate of the density function ψ on IN,j . Assuming
that IN,j ⊆ [ar, br], this estimate depends on the position of IN,j inside [ar, br].

Case I. ar, br ̸∈ IN,j, i.e. IN,j lies inside (ar, br). For x, y ∈ IN,j we can write

ψ(x)

ψ(y)
=

√
|y − a1|
|x− a1|

/ |x− bn|
|y − bn|

· θ1,r−1(x)

θ1,r−1(y)
· θr,n−1(x)

θr,n−1(y)
, (9)

where

θk,l(x) =

∏l
s=k |x− τs|∏l

s=k

√
|x− as+1||x− bs|

(θ1,0 = θn,n−1 = 1 by definition). Since each factor in this decomposition (9) of
ψ(x)/ψ(y) lies between 1/2 and 2 by (4), it follows that

1

8
ψ(y) ≤ ψ(x) ≤ 8ψ(y). (10)

Case II. Precisely one of ar, br belongs to IN,j. Then either j2−N = br or
(j − 1)2−N = ar, say j2

−N = br. We shall consider only the situation when
1 < r < n, for the other options (i.e. when r = 1 or r = n) are simpler. In this
case

πψ(x) =
|x− τr|√

|x− br||x− ar+1|
· θ1(x)θ2(x), (11)

where

θ1(x) =
1√

|x− a1|
· θ1,r−1(x)

and

θ2(x) =
1√

|x− bn|
· θr+1,n−1(x).

Next we prove that here

τr − br ≥ 2−82−N . (12)

If τr − br ≥ 2−N then there is nothing to prove, so let us assume that τr ∈
[br, br + 2−N ]. For t ∈ [br, br + 2−N ] the claim (4) gives the bounds

θi(br)

4
≤ θi(t) ≤ 4θi(br), i = 1, 2. (13)

11



For k = r the equation (6) can be written as∫ ar+1

br

t− τr√
(t− br)(ar+1 − t)

θ1(t)θ2(t) dt = 0,

so ∫ τr

br

τr − t√
(t− br)(ar+1 − t)

θ1(t)θ2(t) dt

=

∫ ar+1

τr

t− τr√
(t− br)(ar+1 − t)

θ1(t)θ2(t) dt

≥
∫ br+2−N

τr

t− τr√
(t− br)(ar+1 − t)

θ1(t)θ2(t) dt.

In view of (13) this gives after division by θ1(br)θ2(br) the inequality∫ τr

br

τr − t√
(t− br)(ar+1 − t)

16 dt ≥
∫ br+2−N

τr

t− τr√
(t− br)(ar+1 − t)

1

16
dt.

If we make a linear substitution so that [br, br + 2−N ] becomes [0, 1] and make
use that for 0 ≤ τ ≤ 2−8 and l ∈ N the inequality∫ τ

0

τ − u√
u(l − u)

16 du <

∫ 1

τ

u− τ√
u(l − u)

1

16
du

holds, we can conclude (12).
Now (12) immediately gives that for x, y ∈ IN,j

|x− τr|
|y − τr|

≤ 29. (14)

Next note that along with (13) the bounds

θi(y)

4
≤ θi(x) ≤ 4θi(y) (i = 1, 2) (15)

are also true for x, y ∈ IN,j (since (j−1)2−N is not an endpoint of a subinterval
of F ), so (11), (14) and (15) yield for x, y ∈ IN,j

ψ(x)
√
|x− br|

ψ(y)
√
|y − br|

≤ 16
|x− τr|
|y − τr|

√
|y − ar+1|
|x− ar+1|

≤ 214.

By reversing the role of x and y and then fixing y to be the center of IN,j we

can conclude with c =
√
|br − y|ψ(y)

c2−14 1√
br − x

≤ ψ(x) ≤ c214
1√

br − x
, x ∈ IN,j . (16)
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Case III. ar, br ∈ IN,j. Then IN,j = [ar, br]. In this case (15) holds only on
the right half I+N,j of IN,j , so we can conclude (16) (with y = (ar + br)/2) only

there. However, an analogous argument gives that on the left half I−N,j of IN,j

we have

c2−14 1√
x− ar

≤ ψ(x) ≤ c214
1√

x− ar
. (17)

Thus, we have the estimates (10), (16) or (17) for ψ on IN,j , depending on
the position of the interval IN,j in the set F .

Let now H be a measurable subset of IN,j with measure m(H) ≥ (1 −
2η)m(IN,j) and let H0 = IN,j \ H. Assume that the Case III holds for the
interval IN,j . (In Case II the same argument can be applied, and in Case
I the computations based on (10) are actually much simpler, giving a better
estimate.) Let I+ and I− denote the right half and the left half of the interval
IN,j , respectively. Then, using (16) on I+, we can see that∫

H0∩I+

ψ(x) dx ≤
∫
H0∩I+

c214
1√

br − x
dx

≤ c2142m(H0)
1/2 ≤ c215(2η)1/2m(IN,j)

1/2

≤ c215η1/22m(I+)1/2 = η1/2215c

∫
I+

1√
br − x

dx

= η1/2229
∫
I+

c2−14

√
br − x

dx ≤ η1/2229
∫
I+

ψ(x) dx.

Since a similar bound can be given for the integral over H0 ∩ I− using (17),
it follows that µF (H0) ≤ 229η1/2µF (IN,j). Then we conclude that µF (H) ≥
(1− 229η1/2)µF (IN,j) as was to be proved.

�
Now we are ready to prove Theorem 4.

Proof of Theorem 4. Without loss of generality we may assume that the compact
set E of positive Lebesgue measure is contained in [0, 1]. For an N ∈ N and
δ > 0 let us consider the finite set

S(E,N, δ) := {j ∈ N : m(E ∩ IN,j) ≥ (1− δ)m(IN,j)} ,

and let
E(N, δ) :=

∪
{IN,j : j ∈ S(E,N, δ)} .

By Lebesgue’s density theorem almost all x ∈ E belongs to all E(N, δ) for
sufficiently large N , i.e. to

∞∪
M=1

∞∩
N=M

(E ∩ E(N, δ)).

Thus

lim
M→∞

m

( ∞∩
N=M

(E ∩ E(N, δ))

)
= m(E),
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whence
lim

N→∞
m(E ∩ E(N, δ)) = m(E)

follows.
Let there be given an ε ∈ (0,m(E)/4). Set εn = ε/2n for n ∈ N, and

recursively define the positive integers N1 < N2 < . . . and the closed sets
E ⊃ E1 ⊃ E2 ⊃ . . . in the following manner. Let N1 be so large that

m(E \ E(N1, ε1)) < ε1,

and set E1 = E ∩ E(N1, ε1). In general, if Nn, En have already been defined,
then select a large Nn+1 > Nn so that

m(En \ En(Nn+1, εn+1)) < εn+1/2
Nn ,

and let En+1 = En ∩ En(Nn+1, εn+1). We obtain the sequences {Nn}∞n=1 and
{En}∞n=1. The compact subset K of E is defined by K = ∩∞

n=1En.
Setting N0 = 0 and E0 = E, we have m(En \ En+1) < εn+1/2

Nn for every
n ≥ 0, hence

m(E \K) <
∞∑

n=0

εn+1/2
Nn =

∞∑
n=0

ε/2n+1+Nn < ε,

in particular m(K) > 3m(E)/4 > 0. Furthermore, given n ∈ N for every
j ∈ S(En−1, Nn, εn) we have En−1∩INn,j = En∩INn,j and so, by the definition
of S(En−1, Nn, εn), we have m(En ∩ INn,j) ≥ (1− εn)m(INn,j). Since for k ≥ 0

m(En+k \ En+k+1) ≤ εn+k+1/2
Nn+k ≤ εn/2

Nn+k+1 =
εn
2k+1

m(INn,j),

it follows

m(K ∩ INn,j) ≥ m(En ∩ INn,j)−
∞∑
k=0

m(En+k \ En+k+1)

≥ (1− 2εn)m(INn,j). (18)

Set z0 ∈ K, and for any k ∈ N let

Kk = K
∩{

z ∈ C : 2−k−1 ≤ |z − z0| ≤ 2−k
}
.

For every n ∈ N there is an index jn ∈ S(En−1, Nn, εn) such that z0 ∈ INn,jn .
Since cap(H) ≥ m(H)/4 for any Borel subset of the real line, applying (18) we
obtain

cap(KNn+1) ≥ m(KNn+1)/4 ≥ 1

4

(
1

4
− 2εn

)
m(INn,jn) ≥ 2−Nn−1 · 2−4,

whence
Nn + 1

log(1/cap(KNn+1)
≥ 1

2
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follows (provided n ≥ 3). Thus

∞∑
k=1

k

log(1/cap(Kk))
= ∞

and so Wiener’s criterion (see [R, Theorem 5.4.1]) yields that the compact set
K is regular.

It remains to show that the measure µK is absolutely continuous. Let V ⊂ K
be a set of measure zero, and let U = K \ V . For n ∈ N, let us consider the set

Fn = En−1(Nn, εn) =
∪

{INn,j : j ∈ Sn} ,

where Sn = S(En−1, Nn, εn). We know from (18) that

m(U ∩ INn,j) = m(K ∩ INn,j) ≥ (1− 2εn)m(INn,j)

holds for every j ∈ Sn. Then Lemma 9 implies

µFn(U ∩ INn,j) ≥ (1− 229ε1/2n )µFn(INn,j).

Summing up for j ∈ Sn we get

µFn(U) ≥ 1− 229ε1/2n .

Since K ⊂ Fn ⊂ R, the measure µK is obtained by adding to the restricition
µFn |K the so called balayage of µFn (Fn \K) onto K (see Theorem IV.1.6(e)

in [SaT]). Therefore

µK(U) ≥ µFn(U) ≥ 1− 229ε1/2n ,

and so
µK(V ) = 1− µK(U) ≤ 229ε1/2n

hold for every n ∈ N. By letting n tend to infinity we conclude that µK(V ) = 0.
�

We complete this paper by two comments.

Remarks. 1. The analogue of Theorem 4 is true for sets of positive measure on
the unit circle. Actually, the construction that we made on the real line could
be done on the unit circle, and then the included compact set can be arbitrarily
close in measure. The construction was based on the explicit form (5) of the
equilibrium measure for a finite union of intervals. This form has an analogue
(see [PS, Lemma4.1]) for a finite union of arcs on the unit circle, but this latter
one is more cumbersome to use, and we found it better to work on the real line.

2. Examples for non-regular partially inner functions are induced by compact
subsets of T with equilibrium measures, which are not absolutely continuous.
For example, if Ω̃ = I ∪ C is the disjoint union of an arc I and of the inverse
image C of the Cantor set under the Joukovskii mapping, then Ω̃ is a regular set
of positive measure, but, since C is of positive capacity, the equilibrium measure
µΩ̃ is not identically zero on C, hence it is not absolutely continuous.
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