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Abstract

The asymptotic behavior of Christoffel functions is established at points
of discontinuity of the first kind.

1 The result

Let µ be a measure on the real line with compact support S. The Christoffel
functions λn(z, µ) associated with µ are defined as

λn(z, µ) = inf
Pn(z)=1

∫
|Pn|2dµ,

where the infimum is taken for all polynomials of degree at most n which take
the value 1 at z. They play a fundamental role in the theory of orthogonal
polynomials and in random matrix theory, see the papers [9] and [11] for their
various use and properties. One of their most basic properties is that if pn(z) =
γnz

n + · · · are the orthonormal polynomials with respect to µ, then

1

λn(z, µ)
=

n∑
k=0

|pk(z)|2.

The aim of this paper is to establish the asymptotic behavior of λn(x0, µ) at
points x0 where the density of µ has a jump singularity. To do so we shall need
some basic notions from potential theory, see the books [5], [6] or [12] for the
fundamentals of logarithmic potential theory. In particular, we need the notion
of the equilibrium measure of S: it is the unique Borel-measure on S with total
mass 1 which minimizes the energy

I(ν) :=

∫ ∫
log

1

|z − t|
dν(z)dν(t) (1)
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provided there is a measure on S for which this energy is finite (when all energies
are infinite the set S is called polar and it does not have an equilibrium measure).
This is the case if S contains a non-degenerated interval. Denote the equilibrium
measure of S by µS . It is known that if I is an interval inside S then on I the
equilibrium measure µS is absolutely continuous with respect to the Lebesgue-
measure onR, and we shall denote by ωS its density: dµS(t) = ωS(t)dt, t ∈ I. A
general property of these densities that we shall often use is their monotonicity:
if I ⊂ S ⊂ S′ then

ωS(t) ≥ ωS′(t) for t ∈ I, (2)

see [15, Lemma 4.1].
The quantity cap(S) = exp(−I(µS)), where I(µS) is the minimal energy in

(1), is called the logarithmic capacity of S. In general, the logarithmic capacity
of a Borel-set is the supremum of the logarithmic capacities of its compact
subsets.

We shall also need the so called Reg class from [13]: we say that µ ∈ Reg if

lim
n→∞

γ1/n
n =

1

cap(S)
,

where γn is the leading coefficient of the aforementioned orthonormal polynomial
pn(z). It is known [13, Theorem 3.2.1] that this is equivalent to the fact that
for all z ∈ S with the exception of points lying in a set of capacity zero

lim sup
n→∞

(
|Qn(z)|

∥Qn∥L2(µ)

)1/n

≤ 1 (3)

for any polynomial sequence {Qn}, deg(Qn) ≤ n. When C \ S is regular with
respect to the Dirichlet-problem (see e.g. [12, Chapter 4]) then this is equivalent
to the fact that

lim sup
n→∞

(∥Qn∥L∞(S)

∥Qn∥L2(µ)

)1/n

= 1 (4)

for any polynomial sequence {Qn}, deg(Qn) ≤ n.
With these we state

Theorem 1 Let µ ∈ Reg with support S ⊂ R, and let x0 be a point in the
interior of the support. Suppose that in a neighborhood of x0 the measure µ is
absolutely continuous: dµ(x) = w(x)dx, and its density w has a singularity at
x0 of the first kind:

lim
x→x0−0

w(x) = A, lim
x→x0+0

w(x) = B, A,B > 0. (5)

Then

lim
n→∞

nλn(µ, x0) =
1

ωS(x0)

A−B

logA− logB
, (6)

where ωS(x0) is the density of the equilibrium measure of S with respect to the
Lebesgue measure.
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We note without proof that the absolute continuity can be replaced by
µs([x0 − δ, x0 + δ]) = o(δ) where µs is the singular part of µ.

When A or B is 0, the limit in (6) is 0. This follows from the monotonicity
of λn(µ, x) in µ and from (6) if we apply the latter to dµ(x) + εdx and let ε
tend to 0.

When A = B the density is continuous, and in that case (or in the A → B
case) the quantity (A−B)/(logA− logB) should be interpreted as the common
value A, i.e. if w is continuous at x0 and µ ∈ Reg, then

lim
n→∞

nλn(µ, x0) =
w(x0)

ωS(x0)
. (7)

This was proved in [14, Theorem 1] under the additional assumption that C \S
is regular with respect to the Dirichlet problem. In the proof of [15, Theorem
3.1] it was mentioned that this latter condition can be dropped, but the proof
outlined there was incomplete. Now Theorem 1 furnishes (7) in full generality
(without the regularity assumption on S).

2 Proof

For simplicity we shall write

γ :=
A−B

logA− logB
. (8)

In what follows let dν(x) = v(x)dx where

v(x) =

{
A if x ∈ [−1, 0]
B if x ∈ (0, 1]

(9)

or

v(x) =

{
B if x ∈ [−1, 0]
A if x ∈ (0, 1].

(10)

Which of these two definitions is needed will be explained at the appropriate
part of the proof. In any case Theorem 11 of [4] tells us that

lim
n→∞

nλn(ν, 0) = π
A−B

logA− logB
=: πγ. (11)

This is a key result, we shall deduce the theorem from it using the polynomial
inverse image technique, see e.g. [16].

Without loss of generality we may assume S ⊂ (−1/4, 1/4).
Fix a small η > 0 and choose a > 0 such that for x ∈ (x0 − a, x0) we have

A

1 + η
≤ w(x) ≤ (1 + η)A, (12)
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and for x ∈ (x0, x0 + a) we have

B

1 + η
≤ w(x) ≤ (1 + η)B. (13)

The upper estimate

Choose E = ∪m
j=1[aj , bj ] ⊂ [−1/4, 1/4] such that S lies in the interior of E and

ωE(x0) >
1

1 + η
ωS(x0) (14)

(the other direction ωE(x0) ≤ ωS(x0) is automatic, c.f. (2)). This is possible,
see e.g. [15, Lemma 4.1].

We call a polynomial TN of exact degree N admissible if it has N−1 extrema
that are all ≥ 1 in absolute value. Set EN = T−1

N [−1, 1] for an admissible TN .
It is known that sets of these type are dense among all sets consisting of finitely
many intervals in the sense that if E = ∪m

j=1[αj , βj ] is a set consisting of finitely
many intervals then for every ε there is an EN = ∪m

j=1[α
′
j , β

′
j ] with |αj−α′

j | < ε,
βj − β′

j | < ε for all j = 1, . . . ,m. This automatically implies then that, besides
this property we may also assume E ⊂ EN or, if we want, EN ⊂ E. For all
these see [16, Theorem 3.1] as well as the papers [2], [7], [8], [10] that contain
this density theorem.

Let ε > 0 be so small that

S ⊂
m∪
j=1

[aj + 2ε, bj − 2ε].

By the just formulated density theorem there is an admissible TN such that for
EN = T−1

N [−1, 1] we have

m∪
j=1

[aj + 2ε, bj − 2ε] ⊂ EN ⊂
m∪
j=1

[aj + ε, bj − ε].

If TN is replaced by Tk(TN ) with the classical Chebyshev polynomials Tk(x) =
cos(k arccosx), then EN does not change, but for large k all subintervals of EN

over which TN is a 1–to–1 mapping onto [−1, 1] are shorter than ε, so by a
translation of TN by an amount < ε we may assume that S ⊂ EN ⊂ E and
TN (x0) = 0. In view of [16, (6)] we get in this case

ωEN (x0) =
|T ′

N (x0)|
Nπ
√
1− T 2

N (x0)
=

|T ′
N (x0)|
Nπ

. (15)
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There is a 0 < b < a such that TN is 1–to–1 on [x0 − b, x0 + b], and

1

1 + η
|T ′

N (x)| ≤ |T ′
N (x0)| ≤ (1 + η)|T ′

N (x)|

there. Note that by (12)–(13) we also have on [x0−b, x0+b]\{x0} the inequality

w(x) ≤ (1 + η)v(TN (x))

with the v either from (9) or from (10) (depending on if TN is increasing or
decreasing on [x0 − b, x0 + b]).

Let for large n Pn be a polynomial of degree n such that Pn(0) = 1 and∫
P 2
ndν =

∫ 1

−1

P 2
nv ≤ 1 + η

n
πγ (16)

(see (11)), and with some small ε > 0 set

Rn(x) = Pn(TN (x))(1− (x− x0)
2)[εn].

This is a polynomial of degree at most nN + 2[εn] such that Rn(x0) = 1. We
can write∫ x0+b

x0−b

R2
ndµ ≤ (1 + η)2

|T ′
N (x0)|

∫ x0+b

x0−b

Pn(TN (x))2v(TN (x))|T ′
N (x)|dx

=
(1 + η)2

|T ′
N (x0)|

∫
TN ([x0−b,x0+b])

Pn(u)
2v(u)du ≤ (1 + η)3

|T ′
N (x0)|

πγ

n

It follows from (16) via Nikolskii’s inequality [3, Theorem 4.2.6] that Pn =
O(n) (actually O(

√
n)) on [−1, 1], so on S \ [x0 − b, x0 + b] we have Rn =

O(n(1 − b2)εn) = o(1/n). These give (use Rn as test polynomials to estimate
λn(µ, x0) from above)

lim sup
n→∞

(Nn+ 2[εn])λNn+2[εn](µ, x0) ≤ (N + 2ε)
(1 + η)3

|T ′
N (x0)|

πγ ≤ N + 2ε

N

(1 + η)4

ωS(x0)
γ

≤ 1 + 2ε

1

(1 + η)4

ωS(x0)
γ,

where we used that by (2), (14) and (15)

Nπ

|T ′
N (x0)|

=
1

ωEN (x0)
≤ 1

ωE(x0)
≤ 1 + η

ωS(x0)
.

Since ε and η are arbitrarily small numbers, it follows from the preceding lim sup
estimate and from the monotonicity of λn in n that

lim sup
n→∞

nλn(µ, x0) ≤
1

ωS(x0)
γ =

1

ωS(x0)

A−B

logA− logB
.
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The lower estimate in the case for regular sets

The proof of the lower estimate is simpler if we assume that C \ S is regular
with respect to the Dirichlet problem. In this subsection we assume that, and
in the next subsection we shall deal with the general case.

Fix a small η > 0. Let

lim inf
n→∞

nλn(µ, x0) = γ0,

and select N ⊂ N such that for n ∈ N there are Pn with Pn(x0) = 1,∫
P 2
ndµ ≤ (1 + η)γ0

n
. (17)

Choose for this η the a as before (see (12)–(13)). By Nikolskii’s inequality
we have Pn = O(n) on [x0 − a, x0 + a] (with O depending on a).

The regularity of µ implies for every τ > 0

∥Qn∥L∞(S) ≤ (1 + τ)n∥Qn∥L2(µ)

for all polynomials Qn of sufficiently large degree n. The regularity of S and
the Bernstein-Walsh lemma (see e.g. [17, p. 77] or [12, Thm. 5.5.7]) give that
for every τ > 0 there is a δ > 0 such that if dist(z, S) < δ, then

|Qn(z)| ≤ (1 + τ)n∥Qn∥L∞(S).

Thus, there is a set E ⊂ [−1/4, 1/4] consisting of finitely many intervals such
that E contains S in its interior and

∥Qn∥L∞(E) ≤ (1 + τ)2n∥Qn∥L2(µ) (18)

for all polynomials Qn of sufficiently large degree n.
Choose again an admissible TN such TN (x0) = 0, and for EN = T−1

N [−1, 1]
we have S ⊂ EN ⊂ E. We can write EN = ∪N

j=1[aj , bj ], where the [aj , bj ]’s are
disjoint except perhaps for their endpoints, and TN maps each [aj , bj ] in a 1–
to–1 manner onto [−1, 1]. Thus, a branch of T−1

N maps [−1, 1] onto [aj , bj ]. Let
x0 ∈ [aj0 , bj0 ] and let b < min{x0 − aj0 , bj0 −x0} be such that on [x0 − b, x0 + b]
we have

1

1 + η
|T ′

N (x)| ≤ |T ′
N (x0)| ≤ (1 + η)|T ′

N (x)|.

Consider with some small ε > 0 the polynomial

Rn(x) = Pn(x)(1− (x− x0)
2)[εn].

Its degree is ≤ n + 2εn, and clearly Rn(x0) = 1. On [x0 − a, x0 + a] \ [aj0 , bj0 ]
we have

|Rn| ≤ Cn(1− b2)εn, (19)
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while on EN \ [x0 − a, x0 + a] we have for large n (apply (17)–(18) for Pn)

|Rn| ≤
(
(1 + τ)2(1− a2)ε

)n
, (20)

and we choose τ > 0 so small that

(1 + τ)2(1− a2)ε < 1. (21)

For an x ∈ EN let ξj = ξj(x) ∈ [aj , bj ], j = 1, . . . , N be the solutions of the
equation

TN (ξ)− TN (x) = 0,

and set

R∗
n(x) =

N∑
j=1

Rn(ξj).

This is a symmetric polynomial of the ξj ’s, so it is a polynomial of their elemen-
tary symmetric polynomials, i.e. (in view of Viéte’s formulae) of the coefficients
of the polynomial TN (ξ)−TN (x) (considered as a polynomial of ξ). Thus, R∗

n(x)
is a polynomial of TN (x): R∗

n(x) = Vn/N (TN (x)), and here the degree of Vn/N

is at most deg(R∗
n)/N ≤ (1 + 2ε)n/N (c.f. [16, Sec. 5]).

Next, with the v from (9) if TN is increasing on [aj0 , bj0 ] or with the v from
(10) if TN is decreasing on [aj0 , bj0 ] we can write∫
TN ([x0−b,x0+b])

Vn/N (u)2v(u)du =

∫ x0+b

x0−b

Vn/N (TN (x))2v(TN (x))|T ′
N (x)|dx

≤ (1 + η)2|T ′
N (x0)|

∫ x0+b

x0−b

R∗
n(x)

2dµ(x). (22)

According to (19)-(21) and the fact that R∗
n(x) = O(n) on [x0 − a, x0 + a] ⊃

[aj0 , bj0 ] we have here
R∗

n(x)
2 = Rn(x)

2 +O(ρn)

with some ρ < 1 independent of n (which may depend on a, b, τ, ε). Therefore,
we can continue (22) as

≤ (1 + η)2|T ′
N (x0)|

∫ x0+b

x0−b

Rn(x)
2dµ(x) +O(ρn)

≤ (1 + η)2|T ′
N (x0)|

∫ x0+b

x0−b

Pn(x)
2dµ(x) +O(ρn)

≤ (1 + η)2|T ′
N (x0)|

(1 + η)γ0
n

+O(ρn).
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On [aj0 , bj0 ] \ [x0 − b, x0 + b] the inequality

R∗
n(x)

2 = Rn(x)
2 +O(ρn) = O(ρn),

holds, so∫
[−1,1]\TN ([x0−b,x0+b])

Vn/N (u)2v(u)du

=

∫
[aj0 ,bj0 ]\[x0−b,x0+b]

Vn/N (TN (x))2v(TN (x))|T ′
N (x)|dx

≤
∫
[aj0 ,bj0 ]\[x0−b,x0+b]

O(R∗
n(x)

2)dx = O(ρn).

All in all, for n ∈ N we can deduce∫
V 2
n/Ndν ≤ (1 + η)2|T ′

N (x0)|
(1 + η)γ0

n
+O(ρn).

Since here
|T ′

N (x0)|
Nπ

= ωEN (x0) ≤ ωS(x0),

it follows that (use Vn/N as test polynomials)

lim sup
n→∞, n∈N

(n+ 2[εn])

N
λ(n+2[εn])/N (ν, 0) ≤ (1 + η)3(1 + 2ε)γ0πωS(x0).

Now ε, η > 0 are arbitrary, hence we can conclude

lim inf
n→∞

nλn(ν, 0) ≤ γ0πωS(x0), (23)

and a comparison with (11) shows that we must have γ0 ≥ γ/ωS(x0).
This proves

lim inf
n→∞

nλn(ν, 0) ≥
γ

ωS(x0)
,

and the proof is complete.

The lower estimate in the general case

As before, fix a small η > 0, let

lim inf
n→∞

nλn(µ, x0) = γ0,
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and select N ⊂ N such that for n ∈ N there are polynomials Pn of degree n
with Pn(x0) = 1 and with property (17). Choose for this η again the number a
so that (12)–(13) are satisfied. By Nikolskii’s inequality [3, Theorem 4.2.6], we
have Pn = O(n) on [x0 − a, x0 + a].

We say that a property holds quasi-everywhere on S if the set of points on
S where it does not hold is of zero capacity. Now µ ∈ Reg implies (see (3))
that for quasi-every z ∈ S we have

lim
n→∞

(
sup
Qn ̸≡0

|Qn(z)|
∥Qn∥L2(µ)

)1/n

= 1. (24)

For τ > 0 and M ∈ N

FM,τ :=

{
z ∈ S sup

Qn ̸≡0

|Qn(z)|
∥Qn∥L2(µ)

≤ (1 + τ)n; n ≥ M

}
,

are compact sets, FM,τ ⊂ FM+1,τ and for a fix τ > 0 their union for all M is
S \H, where H is of zero capacity (see (24)). Hence (see [12, Theorem 5.1.3,b])
cap(FM,τ ) → cap(S) as M → ∞. Choose τ > 0 so that (21) is satisfied, and
then for a fixed θ > 0 choose M so large that cap(FM,τ ) > cap(S)− θ, and set
S′
θ = FM,τ . By Ancona’s theorem [1] there are regular compact subsets Sθ ⊆ S′

θ

such that cap(S′
θ \ Sθ) is arbitrarily small, and then we choose such an Sθ for

which cap(Sθ) > cap(S)− θ.
Now repeat the proof in the preceding subsection with S replaced by Sθ.

There is again a set E ⊂ [−1/4, 1/4] consisting of finitely many intervals such
that E contains Sθ in its interior and

∥Qn∥L∞(E) ≤ (1 + τ)2n∥Qn∥L2(µ) (25)

for all polynomials Qn of sufficiently large degree n. Indeed, this follows from
the definition of Sθ, from its regularity and from the Bernstein-Walsh lemma
([17, p. 77] or [12, Thm. 5.5.7]). The conclusion that the proof gives with this
change is that (c.f. (23))

lim inf
n→∞

nλn(ν, 0) ≤ γ0πωSθ
(x0), (26)

and a comparison with (11) shows that we must have γ0 ≥ γ/ωSθ
(x0), i.e.

lim inf
n→∞

nλn(ν, 0) ≥
γ

ωSθ
(x0)

.

Here θ > 0 is arbitrary, and, as θ → 0, we have ωSθ
(x0) → ωS(x0) (see [15,

Lemma 4.2]), so finally we can conclude

lim inf
n→∞

nλn(ν, 0) ≥
γ

ωS(x0)
,

and that completes the proof.
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