
Equivalence operators that are associative
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Abstract

We begin with a paradox of the equivalence relation, and we solve it by using
the neutral value of the negation. The so-called Pliant equivalence operator
fulfils the modified requirements of the fuzzy equivalence relations. After, we
study two models of the equivalence operator. We show that in the Pliant
operator case the natural extension of two expressions is equivalent. It has two
different types of transitivity. It is associative, and it can be extended to many
variables. On this basis, we can create the weighted form of the equivalence
operator.

Keywords: equivalence operator, symmetric difference operator, similarity
relation, indistinguishability, T-equivalence

1. Introduction

Fuzzy equivalence relations were introduced by Zadeh [7] as a generalization
of the concept of an equivalence relation. Since then, they have been widely
studied (e. g. to measure the degree of indistinguishability or similarity between
the objects of a given universe of discourse) and they have been shown to be
useful in different contexts such as fuzzy control, approximate reasoning and
fuzzy cluster analysis. Depending on the authors and the context in which
they appeared, they had alternative labels such as similarity relations [36],
indistinguishability operators [7, 14, 15, 24, 25, 26, 33], T-equivalences [2, 3]
and many-valued equivalence relations [12, 13]. In [11], the authors investigate
various properties of equivalence classes of fuzzy equivalence relations over a
complete residuated lattice.

Bodenhofer [6] in his article presented an alternative concept of fuzzy or-
derings. With his viewpoint of representation and construction, he adopted a
generalized approach. He stated an important relationship between fuzzy or-
dering and approximate similarity and also found a fundamental connection
between orderings and equivalence relations. In his article , he uses the classical
definitions to establish the new results.

Definition 1. An associative, commutative, and non-decreasing binary opera-
tion on the unit interval (i.e. a [0; 1]2 → [0; 1] mapping) which has 1 as neutral
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element is called triangular norm, for short, t-norm. A t-norm T is called
left-continuous if and only if all partial mappings T (x, .) and T (., x) are left-
continuous.

The continuous, strictly monotonously increasing Archimedean t-norm (t(x, y))
and t-conorm (s(x, y)) can be represented by additive generator functions that
have the following form

t(x, y) = f−1c (fc(x) + fc(y))

and

s(x, y) = f−1d (fd(x) + fd(y)).

The generator functions are determined up to a multiplicative factor [28].

Definition 2. For a left-continuous t-norm T, the residual implication (residuum)
→
T is defined as

→
T (x, y) = sup{u ∈ [0, 1] | T (u, x) ≤ y}

Lemma 1. (Fodor and Roubens [19], Gottwald [22], Hájek [23]). Consider
a left-continuous t-norm T. Then the following holds for all x, y, z ∈ [0, 1]:

1. x ≤ y if and only if
→
T (x, y) = 1;

2. T (x, y) ≤ z if and only if x ≤
→
T (y, z);

3. T (
→
T (x, y),

→
T (y; z)) ≤

→
T (x, z);

4.
→
T (1, y) = y,

5. T (x,
→
T (x, y)) ≤ y,

6. y ≤
→
T (x, T (x, y)) :

Furthermore,
→
T is non-increasing and left-continuous in the first argument

and non-decreasing and right-continuous in the second argument.

Analogously to the Boolean case, we can also use a residual implication to
define a concept of logical equivalence.

Definition 3. The bi-implication
↔
T of a left-continuous t-norm T is defined as

↔
T (x, y) = T (

→
T (x, y),

→
T (y, x)) :

Lemma 2. For a left-continuous t-norm T, the following assertions hold (for
all x, y, z ∈ [0; 1]):

1.
↔
T (x, y) = 1 if and only if x = y;

2.
↔
T (x, y) = min(

→
T (x, y),

→
T (y, x));

3.
↔
T (x, y) =

↔
T (y, x)
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4. T (
↔
T (x, y),

↔
T (x, y)) ≤

↔
T (x, y)

5.
↔
T (x, y) =

→
T (max(x, y),min(x, y))

In classical logic the simplest operation is the equivalence relation, but there
are problems introducing it in the continuous-valued case. An equivalence rela-
tion has to meet the following requirements:

In our article the negation operator plays an important role, and we denoted
it by η(x). Let us denote the fix point of the negation by ν∗ (i. e. ην∗(ν∗) = ν∗).
The developed equivalence operator depends on ν∗ and we denote it by eν∗(x, y)

1. eν∗ : [0, 1]× [0, 1]→ [0, 1] is a continuous mapping

2. eν∗(0, 0) = 1 eν∗(1, 1) = 1

3. eν∗(0, 1) = 0 eν∗(1, 0) = 0,

i.e. it must be compatible with two-valued logic. 2 and 3 can be generalized
to:

4. eν∗(x, x) = 1

5. eν∗(x, ην∗(x)) = 0

On the one hand, 4 is very natural and all theoreticians agree on it. On the
other, they forget that 5 should be as important as 4. Demanding that 4 and 5
be simultaneously satisfied leads to a paradox.

Lemma 3 (The paradox of the equivalence relation). There is no equivalence
relation which fulfils 4 and 5.

Proof. Let ν∗ be the fix point of ην∗(x). Then from 4, eν∗(ν∗, ν∗) = 1 and from
5 eν∗(ν∗, ην∗(ν∗)) = eν∗(ν∗, ν∗) = 0.

�

In this article, we solve this paradox and we use ν∗ ad a threshold by modi-
fying the requirements 1-3. All the results are derived using the Pliant system.

The question here is, which value is reasonable for eν∗(ν∗, ν∗)? If we recall
that the values represent uncertainties and we hesitate whether object A has the
property xA(= ν∗) and object B has the property xB(= ν∗), then we are also
not sure that A and B are equivalent from this point of view. Our suggestion is

eν∗(ν∗, ν∗) = ν∗.

i. e. in very noisy cases we cannot say whether these two are equivalent.
In the next section we give a brief description of the Pliant concept.
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2. Pliant systems

In Pliant systems, we focus on the DeMorgan systems which have infinitely
many negation operators. These types of operators are important because the
fix point of the negation (see Eq.(1) later) can be varied, this value can be
interpreted as a decision level and this kind of logic is very flexible. Such logic
is important in different areas. Cintula et al. [10] focus on fuzzy logic with an
additional involutive negation operator, but in our case we have infinitely many
negation operators that satisfy the DeMorgan identity [16, 18]. In my articles,
I showed that this operator class has important properties.

From an application’s point of view, strictly monotonously increasing oper-
ators are useful and they have many applications. This is why we will focus on
strictly monotonously increasing operators of the Pliant concept.

Triangular norms and conorms

Definition 4. We say that η(x) is a negation operator if η : [0, 1] → [0, 1] sat-
isfies the following conditions:

C1 : η : [0, 1]→ [0, 1] is continuous;
C2 : η(0) = 1, η(1) = 0;
C3 : η(x) < η(y) for x > y;
C4 : η(η(x)) = x.

From C1 and C3 it follows that there exists a fix point ν∗ ∈ [0, 1] of the negation,
where

η(ν∗) = ν∗. (1)

In the following, we construct a subset of t-norms and t-conorms which fulfil
some special conditions and we will call them pliant operators. These two classes
of operators will be denoted by c(x, y) (fuzzy AND operator) and d(x, y) (fuzzy
OR operator), not t(x, y) and s(x, y).

In the Pliant concept, we will characterize the operator class (strict t-norm
and strict t-conorm) for which various negation operators exist and build a
DeMorgan class, i. e. η(c(x, y)) = d(η(x), η(y)).

The fix point ν∗ or the neutral value ν∗ can be regarded as a decision thresh-
old. Operators with various negation operators are useful because the threshold
value can be varied.

The operators c(x, y) and d(x, y) build a DeMorgan system for ην∗(x), where
ην∗(ν∗) = ν∗ for all ν∗ε(0, 1) if and only if there exists an additive generator fc(x)
and fd(x) of c(x, y) and d(x, y), respectively

fc(x)fd(x) = 1, (2)
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where fc(x) and fd(x) are the generator functions of the strict t-norms and
t-conorms. A proof of this can be found in [18].

Knowing fc(x) or fd(x) means that we automatically know the other, since
they are the reciprocals of each other.

Definition 5. Such system where Eq. (2) holds is called a Pliant system.

Hence the general form of a pliant system is

oα(x, y) = f−1
(

(fα(x) + fα(y))
1/α
)

(3)

ην∗(x) = f−1
(
f2(ν∗)

f(x)

)
, (4)

where f(x) is the generator function of the strict t-norm and f : [0, 1]→ [0,∞]
is a continuous and strictly decreasing function. Depending on the sign of α,
the operator is conjunctive or disjunctive.

1.

If α > 0, then

oα(x, y) is a conjunctive operator (t-norm)

2.
If α < 0, then

oα(x, y) is a disjunctive operator (t-conorm)

Let c(x, y) = f−1 (f(x) + f(y)), then

d(x, y) = f−1

 1
1

f(x)
+

1

f(y)

 .

We can summarize the elements of the Pliant system (operators and their cor-
respondent weighted form) like so:

c(x) = f−1
(

n∑
i=1

f(xi)

)
c(w,x) = f−1

(
n∑
i=1

wif(xi)

)
(5)

d(x) = f−1

 1
n∑
i=1

1
f(xi)

 d(w,x) = f−1

 1
n∑
i=1

wi
f(xi)

 (6)

η(x) = f−1
(
f2(ν∗)
f(x)

)
, (7)

where f(x) is the generator function of the strict t-norm.
The Pliant system has been recently extended. In this system, the operator

class of the uninorms is called the aggregative operator [16]. A special case of
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the Pliant system is when the generator function is given by the Dombi operator.

The operator system of Dombi

The Dombi operators [16] form a pliant system and the operators are:

cα(x) = 1

1+

(
n∑
i=1

(
1−xi
xi

)α)1/α cα(w,x) = 1

1+

(
n∑
i=1

wi
(

1−xi
xi

)α)1/α (8)

dα(x) = 1

1+

(
n∑
i=1

(
1−xi
xi

)−α
)−1/α dα(w,x) = 1

1+

(
n∑
i=1

wi
(

1−xi
xi

)−α
)−1/α (9)

c̄α(x) = 1

1+

(
1
n

n∑
i=1

(
1−xi
xi

)α)1/α d̄α(x) = 1

1+

(
1
n

n∑
i=1

(
1−xi
xi

)−α
)−1/α (10)

ην∗(x) =
1

1 +
(

1−ν∗
ν∗

)2
x

1−x

, (11)

where ν∗ ∈]0, 1[, with generator functions

fc(x) =

(
1− x
x

)α
fd(x) =

(
1− x
x

)−α
, (12)

where α > 0. The operators c, d and η fulfil the De Morgan identity for all ν.
In the next part, we will use the notation c̄1(x) = c̄(x) and d̄1(x) = d̄(x)

3. Symmetric difference and equivalence operators

In Boolean algebra, we may use several equivalent expressions to represent
the symmetric difference

x M1 y = (x ∧ ȳ) ∧ (y ∧ x̄) (13)

x M2 y = (x ∨ y) ∧ (y ∧ x) (14)

From the very beginning [8], the symmetric difference, i. e. the representation
of the exclusive or, has been an important operation. However, to date there
have been relatively few articles on it. One notable article is by Alsina and
Trillas [1].
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In fuzzy logic, one can model the symmetric difference based on conjunction,
disjunction (t-norm, t-conorm) and negation operators in the unit interval [0, 1].
That is,

s(1)(x, y) = d(c(x, η(x)), c(y, η(x))) or (15)

s(2)(x, y) = c(d(x, y), η(c(x, y))), (16)

where d is the disjunctive operator (t-conorm), c is the conjunctive operator
(t-norm) and η is a strong negation. The symmetric difference operator is
important because using this operator we can introduce metrics, and with these
metrics we can measure the similarity. From an application point of view, it is
very useful in problems involving matching and image retrieval [5, 27, 34, 35, 37]

Using the Pliant operators, we proved the following proposition.

Proposition 1. The weighted Pliant difference operator is

sν∗(u, x; v, y) = f−1
(

1

2

f2(ν∗) + f(x)f(y)

uf(y) + vf(x)

)
, (17)

where f(x) is the generator function of the strict t-norm and f : [0, 1]→ [0,∞]
is a continuous and strictly decreasing function.

Proof. Proof can be found in [17].

Special cases
If u = 0 and v = 1, then

ssν∗ (0, x; 1, y) = f−1
(

1
2

(
f2(ν∗)
f(x) + f(y)

))
= c̄(η(x), y). (18)

If u = 1 and v = 0, then

ssν∗ (1, x; 0, y) = f−1
(

1
2

(
f2(ν∗)
f(y) + f(x)

))
= c̄(x, η(y)) (19)

If u = 1
2 and v = 1

2 , then

s
(
1
2 , x; 1

2 , y
)

= f−1
(
f2(ν∗)+f(x)f(y)

f(x)+f(y)

)
. (20)

The most common way of introducing the equivalence relation is by using the
implication operator. In classical logic, the equivalence is defined by

x ≡ y if and only if (x→ y) ∧ (y → x), (21)

which can be translated by using

x→ y = x ∨ y (22)

Then we get

x ≡1 y = (x̄ ∨ y) ∧ (ȳ ∨ x) or (23)

x ≡2 y = (x ∧ y) ∨ (x̄ ∧ ȳ). (24)
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In the classical two-valued logic, (23) and (24) are equivalent.
Because (23) and (24) are simply the negation of (13) and (14), respectively,

we can define them by their negated form. That is,

(x ∧ ȳ) ∨ (x̄ ∨ y) = (x̄ ∨ y) ∧ (x ∨ ȳ)

(x ∨ y) ∧ (x ∧ y) = (x ∧ y) ∨ (x̄ ∨ ȳ)

Given the symmetric difference operator, it is not hard to construct an equiv-
alence operator using the negation operator.
In our notation,

e(1)ν∗ (x, y) = ην∗(s(1)ν∗ (x, y)), (25)

e(2)ν∗ (x, y) = ην∗(s(2)ν∗ (x, y)). (26)

Proposition 2. The weighted Pliant equivalence operator is

eν∗(u, x; v, y) = f−1
(

2 f2(ν∗)
vf(x) + uf(y)

f2(ν∗) + f(x)f(y)

)
(27)

when u = 1 and v = 0

eν∗(0, x; 1, y) = f−1
(

2 f2(ν∗)
f(y)

f2(ν∗) + f(x)f(y)

)
when u = 0 and v = 1

eν∗(1, x; 0, y) = f−1
(

2 f2(ν∗)
f(x)

f2(ν∗) + f(x)f(y)

)
.

when u = 1
2 and v = 1

2 ,

eν∗
(
1
2 , x; 1

2 , y
)

= f−1
(

f(x)+f(y)
f2(ν∗)+f(x)f(y)

)
, (28)

where f(x) is the generator function of the strict t-norm and f : [0, 1]→ [0,∞]
is a continuous and strictly decreasing function.
When u = 1

2 and v = 1
2 , then we will denote eν∗( 1

2 , x; 1
2 , y) by eν∗(x, y).

Proof. The proof is based on Eqs. (7), (17), (25) and (26).

�

Proposition 3. The mean Pliant equivalence operator is the same as the Pliant
equivalence operator. That is,

eν∗(x, y) = ēν∗(x, y).

Proof. Because sν∗(x, y) = s̄ν∗(x, y), their negated forms are equivalent [17].
That is,

eν∗(x, y) = ην∗(sν∗(x, y)) = ην∗(s̄ν∗(x, y)) = ēν∗(x, y).
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Proposition 4. The following identity is valid:

e(1)ν∗ (x, y) = e(2)ν∗ (x, y) (29)

Proof. Because sν∗,1(x, y) = sν∗,2(x, y) (see [17]), their negated forms are the
same.

In a continuous-valued logic, (23) and (24) are not necessarily equal.
Let c(x, y) = xy, d(x, y) = x+ y − xy and η(x) = 1− x

((1− x) + y − (1− x)y) (1− y + x− (1− y)x) 6= xy+(1−x)(1−y)−xy(1−y)(1−y)

�

In the article by Bustince et al. [9], proposition 33 states that e1(x, y) is an
equivalence operator. Here, we show that e1(x, y) is the same operator as that
in the classical definition.

Definition 6. The Pliant equivalence operator is

eν∗(x, y) = f−1
(
f2(ν∗)

f(x) + f(y)

f2(ν∗) + f(x)f(y)

)
, (30)

when f(ν∗) = 1, then eν∗(x, y) = e(x, y) and

e(x, y) = f−1
(
f(x) + f(y)

1 + f(x)f(y)

)
.

Definition 7. We will say x and y are threshold equivalent iff

eν∗(x, y) > ν∗.

When two facts are probably true, their equivalence is probably true and
the same holds for the converse.

Remark 1. From this result we can infer that two values are in the same ν∗
equivalence class if either x > ν∗ and y ≥ ν∗ or x < ν∗ and y < ν∗.

The Pliant equivalence operator (30) satisfies the threshold property.

Proposition 5. The following inequalities are true:

eν∗(x, x) > ν∗ eν∗(ην∗(x), x) < ν∗ x 6= ν∗ (31)
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Proof. Using the definition of eν∗(x, y), we have to prove that

f−1
(

2f(x)

f2(ν∗) + f2(x)

)
> ν∗ (32)

and

f−1

f2(ν∗)
f(x) + f2(ν∗)

f(x)

f2(ν∗) + f2(ν∗)
f(x) f(x)

 =

(
1

2

(
f(x) +

f2(ν∗)

f(x)

))
< ν∗. (33)

From the fact that f is a strictly decreasing function, we get, from (32) and
(33), that

2f(ν∗)f(x) < f2(ν∗) + f(x)

�

Proposition 6. If x > ν∗ and y > ν∗, then eν∗(x, y) > ν∗;
and if x < ν∗ and y < ν∗, then eν∗(x, y) < ν∗.

Proof. If x > ν∗ and y > ν∗, then f(x) < f(ν∗) and f(y) < f(ν∗).
Because f(ν∗)− f(x) > 0

f(ν∗)(f(ν∗)− f(x)) > f(y)(f(ν∗)− f(x)) (34)

From this we see that

f(ν∗)(f(x) + f(y)) < f2(ν∗) + f(x)f(y)

Hence,

eν∗(x, y) = f−1
(
f2(ν∗)

f(x) + f(y)

f2(ν∗) + f(x)f(y)

)
> ν∗

�

Proposition 7. The following threshold property is valid for the Pliant equiv-
alence operator

eν∗(x, y) > ν∗ iff (x < ν∗ and y < ν∗) or (x > ν∗ and y > ν∗)
(35)

Proof. By definition,

eν∗(x, y) = f−1
(
f2(ν∗)

f(x) + f(y)

f2(ν∗) + f(x)f(y)

)
> ν∗

From this, we get

f(ν∗)(f(x)f(y)) < f2(ν∗) + f(x)f(y).

Hence,
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f(y)

f(ν∗)
− 1 <

f(x)

f(ν∗)

(
f(y)

f(ν0)
− 1

)
.

If f(y)
f(ν∗)

− 1 > 0, then f(x)
f(ν∗)

> 1, and if f(y)
f(ν∗)

− 1 < 1, then f(x)
f(ν∗)

< 1.

�

Proposition 8. The Pliant equivalence operator has the following properties:
1. eν∗(x, y) = eν∗(y, x) commutativity

2. eν∗(1, 1) = 1, eν∗(0, 0) = 1

eν∗(0, 1) = 0, eν∗(1, 0) = 0 compatibility, i. e. compatible
with the two-valued logic case

3. eν∗(1, x) = x eν∗(x, 1) = x boundary conditions are fulfilled

eν∗(0, x) = ην∗(x) eν∗(x, 0) = ην∗(x)
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4. a) eν∗(ν∗, ν∗) = ν∗ fix point property

4. b) eν∗(ν∗, x) = ν∗

eν∗(x, ν∗) = ν∗

5. a) arg min
x

eν∗(x, x) =ν∗ minimum property of the equiva-
lence operator

5. b) arg max
x

eν∗(x, ην∗(x)) =ν∗ maximum property of the equiva-
lence operator

6. eν∗(ην∗(x), ην∗(y)) = eν∗(x, y) invariance property with nega-
tion

7. eν∗(x, ην∗(x)) = c̄(x, ην∗(x)) connection between equivalence
and the conjunctive operators
when x = y

8. ην∗(eν∗(x, y)) = eν∗(ην∗(x), y) = sν∗(x, y) relationship between equivalence
operator and symmetric differ-
ence operator

ην∗(eν∗(x, y)) = eν∗(x, ην∗(y)) = sν∗(x, y)

9. eν∗(x, eν∗(y, z)) = eν∗(eν∗(x, y), z) associativity

10. sup (c(x, y)) ≤ inf (eν∗(x, y)) B. Moser [30]

11. c(x, y) ≤ eν∗(x, y) M. Ćirić [11] property

Proof.

1. The proof of 1 is obvious.

2. eν∗(1, 1) = f−1
(
f2(ν∗)

2f(1)
f2(ν∗)+f2(1)

)
= 1, because f(1) = 0, f−1(0) = 1

eν∗(0, 0) = f−1
(
f2(ν∗)

2
f2(ν∗)
f(0)

+f(0)

)
= 1, because f(0) =∞, f−1(0) = 1

eν∗(0, 1) = eν∗(1, 0) = f−1
(
f2(ν∗)

f(0)+f(1)
f2(ν∗)+f(0)f(1)

)
= 0, because f(0) =∞

3. eν∗(1, x) = f−1
(
f2(ν∗)

f(x)+f(1)
f2(ν∗)+f(x)f(1)

)
= x
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eν∗(0, x) = eν∗(ην∗(1), x) = eν∗(1, ην∗(x)) = ην∗(x)

eν∗(0, ην∗(x)) = f−1
(
f2(ν∗)

f(0)+
f2(ν∗)
f(x)

f2(ν∗)+
f2(ν∗)
f(x)

f(0)

)
=

= f−1
(
f2(ν∗)

f(x)+
f2(ν∗)
f(0)

f2(ν∗)+
f2(ν∗)f(x)

f(0)

)
= x

4. a) eν∗(ν∗, ν∗) = ν∗

f−1
(
f2(ν∗)

2f(ν∗)
2f2(ν∗)

)
= ν∗

4. b) f−1
(
f2(ν∗)

f(x)+f(y)
f2(ν∗)+f(x)f(y)

)
= ν∗ if and only if

f(y) (f(x)− f(ν∗)) = f(ν∗) (f(x)− f(ν∗))

5. a) arg min (eν∗(x, x)) = argmax
(

f(x)
f2(ν∗)+f2(x)

)
=

arg min
(
f2(x)
f(x) + f(x)

)
= ν∗

5. b) arg max (eν∗(x, ην∗(x))) = argmin

(
f(x)+

f2(ν∗)
f(x)

f2(ν∗)+
f2(ν∗)

f2(x)
f(x)

)
= ν∗

6. f−1
(
f(ν∗)

f2(ν∗)
f(x)

+
f2(ν∗)
f(y)

f2(ν∗)+
f2(ν∗)f(ν∗)
f(x),f(y)

)
= f−1

(
f(ν∗)

f(x)+f(y)
f2(ν∗)+f(x)f(y)

)
7. f−1

(
f2(ν∗)

f(x)+
f2(ν∗)
f(x)

f2(ν∗)+f(x)
f2(ν∗)
f(x)

)
= f−1

(
1
2

(
f(x) + f2(ν∗)

f(x)

))
8. f−1

(
f2(ν∗)

f2(ν∗)+
f(x)+f(y)

f2(ν∗)+f(x)f(y)

)
= f−1

(
f2(ν∗)

f2(ν∗)
f(x)

+f(y)

f2(ν∗)+
f2(ν∗)
f(x)

f(y)

)
9. eν∗(x, c(y, z)) =

= f−1
(
f2(ν∗)

f(x)+f2(ν∗)
f(y)+f(z)

f2(ν∗)
+f(y)f(z)

f2(ν∗)+f(x)f2(ν∗)
f(y)+f(z)

f2(ν∗)+f(y)f(z)

)
=

= f−1
(

f2(ν∗)(f(x)+f(y)+f(z))+f(x)f(y)f(z)
f2(ν∗)f2(ν∗)f(x)f(y)+f(x)f(z)+f(y)f(z)

)
=

= f−1
(

f2(ν∗)
f(x)+f(y)

f2(ν∗)+f(x)f(y)
+f(z)

f2(ν∗)+f(z)f2(ν∗)
f(x)+f(y)

f2(ν∗)+f(x)f(y)

)
= eν∗(eν∗(x, y), z)

10. In Moser’s article [30], this property has a crucial rule and it is the so-
called FP property.

sup
(
f−1 (f(x) + f(y))

)
≤ inf

(
f−1

(
f2(ν∗)

f(x) + f(y)

f2(ν∗) + f(x)f(y)

))
, so

13



inf
(
f(x) + f(y)

)
≥ sup

f(ν∗)

f(x)
f(ν∗)

+ f(y)
f(ν∗)

1 f(x)
f(ν∗)

f(y)
f(ν∗)


Let X = f(x)

f(ν∗)
and Y = f(y)

f(ν∗)
. Then we have

inf(X + Y ) ≥ sup
(
X + Y

1 +XY

)

1 ≥ sup
( 1

1 +XY

)
11. f−1 (f(x) + f(y)) ≤ f−1

(
f2(ν∗)

f(x)+f(y)
f2(ν∗)+f(x)f(y)

)
f2(ν∗) + f(x)f(y) ≥ f2(ν∗)

�

Because e(x, y) is associative, there is an additive generator function of the
operator based on Aczél’s theorem:

eν∗(x, y) = E−1 (E(x) + E(y)) (36)

Proposition 9. We show that E(x) has the form

E(x) = ln

(
f(ν∗) + f(x)

f(ν∗)− f(x)

)
(37)

Proof. From (36), we get

E−1(x) = f−1
(
f(ν∗)

ex − 1

ex + 1

)
.

Using (36), we have

eν∗(x, y) = f−1

f(ν∗)

f(ν∗)+f(x)
f(ν∗)−f(x)

f(ν∗)+f(y)
f(ν∗)−f(y) − 1

f(ν∗)+f(x)
f(ν∗)−f(x)

f(ν∗)+f(y)
f(ν∗)−f(y) + 1

 =

= f−1
(
f2(ν∗)

f(x) + f(y)

f2(ν∗) + f(x)f(y)

)
.

�

14



Remark 2. Because eν∗(x, y) is associative, we can extend it to n variables.
By definition,

eν∗(x) = E−1

(
n∑
i=1

E(xi)

)
= f−1

f(ν∗)

n∏
i=1

f(ν∗)+f(xi)
f(ν∗)−f(xi) − 1

n∏
i=1

f(ν∗)+f(xi)
f(ν∗)−f(xi) + 1


Then we get

e(x) = f−1

f(ν∗)

n∏
i=1

(f(ν∗) + f(xi))−
n∏
i=1

(f(ν∗)− f(xi))

n∏
i=1

(f(ν∗) + f(xi)) +
n∏
i=1

(f(ν∗)− f(xi))


Remark 3. The weighted form of the equivalence operator is, by definition,

e(w,x) = E−1

(
n∑
i=1

wiE(xi)

)
= f−1

f(ν∗)

n∏
i=1

(
f(ν∗)+f(xi)
f(ν∗)−f(xi)

)wi
− 1

n∏
i=1

(
f(ν∗)+f(xi)
f(ν∗)−f(xi)

)wi
+ 1


Hence,

e(w,x) = f−1

f(ν∗)

n∏
i=1

(f(ν∗) + f(xi))
wi −

n∏
i=1

(f(ν∗)− f(xi))
wi

n∏
i=1

(f(ν∗) + f(xi))wi +
n∏
i=1

(f(ν∗)− f(xi))wi

 . (38)

Transitivity of the equivalence operator

The composition of two relations is defined in the following way:

(R ◦ S)(x, y) =
∨
a

c(R(x, a), S(a, y))

The composition of one relation is when c(x, y) is a strict monotonously increas-
ing t-norm:

(R ◦R)(x, y) =
∨
a

f−1 (f(R(x, a)) + f(R(a, y)))

Definition 8. The R relation is t-transitive (composition) if and only if

R ◦R ≤ R

15



Proposition 10. The Pliant equivalence eν∗(x, y) is t-transitive (in our case
c-transitive).

Proof. By definition,

(eν∗◦eν∗)(x, y) = f−1

(∧
a

f(eν∗(x, a)) + f(eν∗(a, y))

)
≤ f−1

(
f2(ν∗)

f(x) + f(y)

f2(ν∗) + f(x)f(y)

)
= eν∗(x, y)

Because f is strictly decreasing, we need to show that∨
a

f(x) + f(a)

f2(ν∗) + f(x)f(y)
+

f(y) + f(a)

f2(ν∗) + f(y)f(a)
≥ f(x) + f(y)

f2(ν∗) + f(x)f(y)

Let X = f(x)
f(ν∗)

, Y = f(y)
f(ν∗)

, A = f(a)
f(ν∗)

, X, Y,A ∈ [0,∞]

∧
A

(
X +A

1 +XA
+

Y +A

1 + Y A

)
≥ X + Y

1 +XY

Let us introduce the function

FX(A) =
X +A

1 +XA

FX(A) is strictly increasing when X ≤ 1 and strictly decreasing when X > 1.
As FX(0) = X and FX(∞) = 1

X , we have that

min
A

(FX(A)) = min

(
X,

1

X

)
Next, we have to prove that

a) X + Y ≥ X+Y
1+XY

b) X + 1
Y ≥

X+Y
1+XY

c) 1
X + 1

Y ≥
X+Y
1+XY

a), b) and c) are trivial.

�

Definition 9. eν∗(x, y) is threshold transitive if eν∗(x, y) ≥ ν∗ and eν∗(y, z) ≥
ν∗. Then eν∗(x, z) ≥ ν∗.

Proposition 11. eν∗(x, y) is threshold transitive.

16



Proof. From the definition,

eν∗(x, y) = f−1
(
f2(ν∗)

f(x) + f(y)

f(x)f(y)

)
We can write eν∗(x, y) in the following way:

eν∗(x, y) = f−1

f(ν∗)

f(x)
f(ν∗)

+ f(y)
f(ν∗)

1 + f(x)f(y)
f2(ν∗)

 ≥ ν∗
Since f(x) is a strictly decreasing function, using the notation X = f(x)

f(ν∗)
,

Y = f(y)
f(ν∗)

and Z = f(z)
f(ν∗)

, we need to prove that if

X + Y ≤ 1 +XY (39)

Y + Z ≤ 1 + Y Z (40)

then

X + Z ≤ 1 +XZ, (41)

where X,Y, Z ≥ 0.
The inequalities (39) can be rewritten as:

Y − 1 ≤ X(Y − 1)

This is valid iff

1 ≤ Y and 1 ≤ X, (42)

or

0 ≤ X ≤ 1 and 0 ≤ Y ≤ 1 (43)

From (39), if 1 ≤ X, then 1 ≤ Y from (40), if 1 ≤ Y , then 1 ≤ Z
so (41) is valid. In this way, we can prove the case when X ≤ 1.

�

4. Equivalence and symmetric difference operators in the Dombi op-
erator case

Let us use the generator function in the Dombi operator case:

f(x) =

(
1− x
x

)α
and f−1(x) =

1

1 + x
1
α

17



and let

K1(w,x) =

n∏
i=1

((1− ν∗)αxαi + να∗ (1− xi)α)
wi

K2(w,x) =

n∏
i=1

((1− ν∗)αxαi − να∗ (1− xi)α)
wi

then

e(α)ν∗ (w,x) =
1

1 + 1−ν∗
ν∗

(
K1−K2

K1+K2

) 1
α

=
ν∗(K1 +K2)

1
α

ν∗(K1 +K2)
1
α + (1− ν∗)(K1 −K2)

1
α

When α = 1 and ν∗ = 1
2

K1(w,x) = 1 and K2(w,x) =
∏

(1− 2xi)
wi

e(w,x) =
1

2

(
1 +

∏
(1− 2xi)

wi
)

When n = 2,

K1 = ((1− ν∗)αxα + να∗ (1− x)α)w1((1− ν∗)αyα + να∗ (1− y)α)w2

K2 = ((1− ν∗)αxα − να∗ (1− x)α)w1((1− ν∗)αyα − να∗ (1− y)α)w2

e(α)ν∗ (w1, x;w2, y) =
ν∗(K1 +K2)

1
α

ν∗(K1 +K2)
1
α + (1− ν∗)(K1 −K2)

1
α

When n = 2 and ν∗ = 1
2 ,

K1 = (xα + (1− x)α)w1(yα + (1− y)α)w2

K2 = (xα − (1− x)α)w1(yα − (1− y)α)w2

e(α)(w1, x;w2, y) =
(K1 +K2)

1
α

(K1 +K2)
1
α + (K1 −K2)

1
α

When n = 2, ν∗ = 1
2 and α = 1 (see Figure 2)

K1 = 1, K2 = (2x− 1)w1(2y − 1)w2

e(w1, x;w2, y) =
1

2
(1 + (2x− 1)w1(2y − 1)w2)

18



When n = 2, ν∗ = 1
2α = 1, w1 = 1 and w2 = 1 (1)

e(x, y) =
1

2
(1 + (2x− 1)(2y − 1)) = xy + (1− x)(1− y)

Definition 10. The weighted equivalence of x and y is

eν∗(x,y) =

n∑
i=1

wieν∗(xi, yi), (44)

where wi ≥ 0 and
∑n
i=1 wi = 1.

And a special case:

eD(x,y) =

n∑
i=1

wi(1 + (2xi − 1)u(2yi − 1)v)

This is none other than the strong equality index when wi = 1
n ∀i.

Figure 1: Asymmetric equivalence operator when n = 2, α = 1, ν∗ = 1/2u = 1/2 and v = 1/2

The asymmetric equivalence operator equation is (as in Equation 27)

e(α)ν∗ (u, x; v, y) =
1

1 +
(

2ν2α∗
v(1−x)αyα+u(1−y)αxα

(1−ν∗)2αxαyα+ν2α
∗ (1−x)α(1−y)α

)
When α = 1, then

eν∗(u, x; v, y) =
1

1 +
(

2ν2∗
v(1−x)+u(1−y)

(1−ν∗)2xy+ν2
∗(1−x)(1−y)

)
19



Figure 2: Asymmetric equivalence opera-
tor when ν∗ = 1/3, α = 1, u = 1/2 and
v = 1/2

Figure 3: Asymmetric equivalence opera-
tor when ν∗ = 2/3, α = 1, u = 1/2 and
v = 1/2

see Figures 2, 3.

When ν∗ = 1
2 and α = 1,

e(u, x; v, y) =
1

1 +
(
v(1−x)+u(1−y)
xy+(1−x)(1−y)

)
5. Summary

It was an interesting open problem to determine (independently of the defini-
tion of equivalence) which t-norms and t-conorms and strong negation operators
of two variables are associative operations on the unit interval. In this article,
we showed that the Pliant operators have just this property.

We demonstrated that the two different operators e1(x, y), e2(x, y) are equiv-
alent. After, we proved that the desired properties of the equivalence exist. We
showed that the Pliant equivalence is associative and it has other nice proper-
ties. Then we gave a parametrical form of these operators to illustrate their
flexibility in problem solving. We gave a parametrical form of the equivalence
operator. When α = 1, the equivalence operator is a very simple expression
and it has many possible applications, such as in image processing and signal
processing. With this, we can also measure the degree of overlap.
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11/1/KONV-2012-0073

21



[1] A. Alsina ”On the symmetric difference of fuzzy sets” Fuzzy Sets and
Systems, vol. 153, issue 2, pp. 181–194, 2005

[2] B. De Baets, R. Mesiar, ”T-partitions”, Fuzzy Sets and Systems, vol.
97, pp. 211–223, 1998

[3] B. De Baets, R. Mesiar, ”Metrics and T-equalities” Journal of Math-
ematical Analysis and its Applications, vol. 267, pp. 531–547, 2002

[4] B. De Baets, R. Mesiar, ”Pseudo-metrics and T-equivalences”, Journal
Fuzzy Mathemathics, vol. 5, issue 2, pp. 471–481, 1997

[5] I. Bloch, ”On fuzzy distances and their use in image processing under
imprecision”. Pattern Recognition, vol. 32, issue 11, 1999

[6] U. Bodenhofer ”Representations and constructions of similarity-based
fuzzy orderings” Fuzzy Sets Systems, vol. 137, issue 1, pp. 113–136, 2003

[7] D. Boixader, J. Jacas, J. Recasens, ”Transitive closure and betweenness
relations” Fuzzy Sets and Systems, vol. 120, pp. 415–422, 2001

[8] G. Boole, ”The Mathematical Analysis of Logic” Macmillan, Barclay,
and Macmillan, Cambridge, 1847

[9] H. Bustince Sola, J. Fernández, J. Sanz, M. Baczyński, R. Mesiar ”Con-
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