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Abstract—In this paper an image correlation algorithm is 

implemented on FPGA architecture for assisted movements of 

visually impaired persons or driving systems. Taking into 

account the limitations of FPGA devices and the special 

requirements of the correlation based image matching algorithm 

a semi-parallel implementation method is used. This provides an 

optimal trade-off between area and speed of the implemented 

algorithm. Several key issues are investigated and discussed 

related to the speed, area, and accuracy. 

I. INTRODUCTION  

In general, determination of the correlation coefficient 
between two images requires high computing power which is 
proportional to the size of the template image (kernel). It is 
desirable that the template image size should be large enough 
to contain relevant information. For real-time computation of 
the correlation coefficients, the majority of the operations can 

be executed on a CNN algorithm as described in [1]. 
However, analog CNN VLSI implementations have relatively 
low precision (7-8 bits) and sensitive to the changes of 
temperature and supply voltage. For these reasons an FPGA-
based implementation is chosen. 

II. CORRELATION: MATHEMATICAL BACKGROUNDS 

Similarity matching between two gray-scale images can be 
classified into feature-based and intensity based-methods. In 
case of the intensity based methods different metrics or 
procedures can be applied, such as: Euclidean distance, Sum 
of Absolute Differences (SAD), Mean Absolute Differences 
(MAD), Sum of Squared Differences (SSD) or Normalized 
Cross Correlation (NCC) [2].  

The NCC in (1) can be easily derived from the SSD: 
maximizing the correlation is equivalent to minimizing the 



sum of squared difference, which effectively gives more 
weight to large differences. Let us consider a test image 
Φ(m,n): R²→R with dimension M×N. 
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where K(p,q): R²→R denotes the template image 
(correlation kernel) with dimension P×Q (p ϵ[1,P], q ϵ [1,Q]),  

Λ(p,q): R²→R represents the actual image region from test 
image Φ(m,n) compared to the kernel K(p,q), with dimension 
P×Q, (p ϵ[1,P], q ϵ [1,Q]), respectively. 

K : is the mean intensity value of the template image 

Λ : is the mean intensity value of the test image.   

The test image is scanned pixel-by-pixel and overlapped 
by a kernel as a sliding window to calculate the matching 
degree for each pixel. The matching degree between the 
template K(p,q) and a region Λ(p,q) from the test image is 
obtained by computing the correlation coefficient, which 
indicates how well the pattern matches the contents of that 
region (compared image). Equation (1) can be rewritten as 
follows: 
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Using the above transformation in (2), the square root 
operation can be eliminated by replacing with a multiplication 
of the two images, while the division can be replaced by a 
multiplication of reciprocal expression. In this case we must 
consider that high values of correlation coefficient will result 
the situation where the two images are completely anti-
correlated. 

III. IMPLEMENTATION 

In this section the FPGA-based implementation of the 
correlation expression will be investigated according to (2). 
There are three different ways to implement the image 
correlation algorithm: a sequential, a semi-parallel and a 
massively/fully-parallel approaches.  

In the first case, the correlation coefficients CORR2(i,j) are 
computed serially by one processing element. Although, it has 
the smallest area requirement, it provides the slowest solution. 
Therefore it cannot be used for real-time implementations. In 
case of fully-parallel solution, the correlation coefficients are 
computed by a massively parallel array processor. Hereby, this 
solution gives the highest computing performance, but its area 
requirement will be quadratically increasing depending on the 
size of the kernel image. Therefore, this solution can only be 
applied in such cases where the size of the kernel image is 
sufficiently small [3]. In the third case, the semi-parallel 
solution provides a good trade-off between the first two 
implementations. Several processing units arranged in a row 

can calculate the correlation coefficients parallel in a row-wise 
order. Using this latter method the area requirement of the 
architecture is increased proportionally to the template size, so 
relatively large kernel images (64×64, 128×128) can be 
handled in nearly real-time. 

To implement the correlation formula in (2) the semi-
parallel solution was chosen. The overall architecture of this 
solution is shown in Fig. 1. The four main components are the 
Memory Controller unit, the Kernel Memory unit, the 
Correlator Core unit and the Mean Calculator unit. The 
Memory Controller unit provides an interface for an external 
memory, and transfer data to and from the Mean Calculator 
and Correlator Core units. The Kernel Memory unit stores the 

( , )K p q K  and 
2
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constants. 
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Figure 1.  Architecture of the overall system 

The Mean Calculator unit (Fig. 2) computes the mean 

intensity of the (i, j)th  element compared image (Λ ), using 
the cumulative sum method. In this method the row-wise sum 
of the compared image is computed first then the sum of these 
results is calculated column-wise. Finally these values should 
be divided by P×Q to get the mean intensity of Λ(p,q). Size of 
the template image is constant therefore the division can be 
done by the multiplication with the reciprocal of this value. 
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Figure 2.  The Mean Calculator unit 

The final correlation values CORR2(i,j) are calculated by 
the Correlator Core unit (Fig. 3). In the expression (2) the 



numerator and denumerator are computed in parallel way by 
this unit. According to the size of the kernel image a new 
correlation value is computed in every P clock cycles. 
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Figure 3.  TheCorrelator Core Unit 

The area requirement and also the performance of the 
proposed architecture were estimated. Supposing the size of 
the test image is 512×512, while the size of the kernel is 
changed from 16×16 to 256×256, the results are summarized 
on Table 1. 

TABLE I.  AREA AND SPEED ESTIMATION 

 
Kernel image size 

16x16 32x32 64x64 128x128 256x256 

Slice 576 1201 3116 9901 29811 

BRAM 41 81 167 344 714 

DSP 

(MAC) 
66 130 386 770 1538 

FPS 42 22 11 5 3 

 

Our results are compared to an existing fully-parallel 
implementation [3]. The comparison is made with a test image 
having 256×256 pixel size and a 20×20 pixel-sized kernel. In 
our proposed semi-parallel implementation the required 
processing time is about 7.2 ms, while the architecture in [3] 
the processing time is only 0.163 ms. However, our solution 
consumes only 82 DSP MAC slices, while in case of fully-

parallel implementation [3] 5-times more dedicated MAC 
blocks are required. 
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