
Kincses Z, Vörösházi Zs, Nagy Z, Szolgay P, Laviniu T, Gacsádi A Investigation of area and speed trade-offs

in FPGA implementation of an image correlation algorithm In: Corinto F, Pazienza GE

DOI: 10.1109/CNNA.2012.6331455

13th International Workshop on Cellular Nanoscale

Networks and their Applications (CNNA), Turin, Italy

Aug. 29-31, 2012: CNNA 2012. Konferencia helye,

ideje: Torino, Olaszország, 2012.08.29-2012.08.31. Los

Alamitos: IEEE, 2012. pp. 1-5.

Investigation of area and speed trade-offs in FPGA

implementation of an image correlation algorithm

Z. Kincses1, Zs.Vörösházi2,
1Institute of Informatics, University of Szeged

Szeged, H-6701

kincsesz@inf.u-szeged.hu
2Dept. of Electrical Engineering, University of Pannonia

Veszprém, H-8200

voroshazi@virt.uni-pannon.hu

Z. Nagy3, P. Szolgay3, S. Gacsádi4,
3Cellular Sensory and Optical Wave Computing Laboratory,

Hungarian Academy of Sciences

Budapest, H-1111
4Department of Electronics and Telecommunications,

University of Oradea, Romania

410087

Abstract—In this paper an image correlation algorithm is

implemented on FPGA architecture for assisted movements of

visually impaired persons or driving systems. Taking into

account the limitations of FPGA devices and the special

requirements of the correlation based image matching algorithm

a semi-parallel implementation method is used. This provides an

optimal trade-off between area and speed of the implemented

algorithm. Several key issues are investigated and discussed

related to the speed, area, and accuracy.

I. INTRODUCTION

In general, determination of the correlation coefficient
between two images requires high computing power which is
proportional to the size of the template image (kernel). It is
desirable that the template image size should be large enough
to contain relevant information. For real-time computation of
the correlation coefficients, the majority of the operations can

be executed on a CNN algorithm as described in [1].
However, analog CNN VLSI implementations have relatively
low precision (7-8 bits) and sensitive to the changes of
temperature and supply voltage. For these reasons an FPGA-
based implementation is chosen.

II. CORRELATION: MATHEMATICAL BACKGROUNDS

Similarity matching between two gray-scale images can be
classified into feature-based and intensity based-methods. In
case of the intensity based methods different metrics or
procedures can be applied, such as: Euclidean distance, Sum
of Absolute Differences (SAD), Mean Absolute Differences
(MAD), Sum of Squared Differences (SSD) or Normalized
Cross Correlation (NCC) [2].

The NCC in (1) can be easily derived from the SSD:
maximizing the correlation is equivalent to minimizing the

sum of squared difference, which effectively gives more
weight to large differences. Let us consider a test image
Φ(m,n): R²→R with dimension M×N.

1 1

2 2

1 1 1 1

(,) (,)

(,)

(,) (,)

QP

p q

Q QP P

p q p q

K p q K p q

CORR i j

K p q K p q

 

   

      
   



      
   



 

 (1)

where K(p,q): R²→R denotes the template image
(correlation kernel) with dimension P×Q (p ϵ[1,P], q ϵ [1,Q]),

Λ(p,q): R²→R represents the actual image region from test
image Φ(m,n) compared to the kernel K(p,q), with dimension
P×Q, (p ϵ[1,P], q ϵ [1,Q]), respectively.

K : is the mean intensity value of the template image

Λ : is the mean intensity value of the test image.

The test image is scanned pixel-by-pixel and overlapped
by a kernel as a sliding window to calculate the matching
degree for each pixel. The matching degree between the
template K(p,q) and a region Λ(p,q) from the test image is
obtained by computing the correlation coefficient, which
indicates how well the pattern matches the contents of that
region (compared image). Equation (1) can be rewritten as
follows:

 
2

2

2 2

(,) (,)

(,)

(,) (,)

K p q K p q

CORR i j

K p q K p q

      
   



      
   

 (2)

Using the above transformation in (2), the square root
operation can be eliminated by replacing with a multiplication
of the two images, while the division can be replaced by a
multiplication of reciprocal expression. In this case we must
consider that high values of correlation coefficient will result
the situation where the two images are completely anti-
correlated.

III. IMPLEMENTATION

In this section the FPGA-based implementation of the
correlation expression will be investigated according to (2).
There are three different ways to implement the image
correlation algorithm: a sequential, a semi-parallel and a
massively/fully-parallel approaches.

In the first case, the correlation coefficients CORR2(i,j) are
computed serially by one processing element. Although, it has
the smallest area requirement, it provides the slowest solution.
Therefore it cannot be used for real-time implementations. In
case of fully-parallel solution, the correlation coefficients are
computed by a massively parallel array processor. Hereby, this
solution gives the highest computing performance, but its area
requirement will be quadratically increasing depending on the
size of the kernel image. Therefore, this solution can only be
applied in such cases where the size of the kernel image is
sufficiently small [3]. In the third case, the semi-parallel
solution provides a good trade-off between the first two
implementations. Several processing units arranged in a row

can calculate the correlation coefficients parallel in a row-wise
order. Using this latter method the area requirement of the
architecture is increased proportionally to the template size, so
relatively large kernel images (64×64, 128×128) can be
handled in nearly real-time.

To implement the correlation formula in (2) the semi-
parallel solution was chosen. The overall architecture of this
solution is shown in Fig. 1. The four main components are the
Memory Controller unit, the Kernel Memory unit, the
Correlator Core unit and the Mean Calculator unit. The
Memory Controller unit provides an interface for an external
memory, and transfer data to and from the Mean Calculator
and Correlator Core units. The Kernel Memory unit stores the

(,)K p q K and
2

(,)K p q K 
  values which considered as

constants.

j)
(i

,
Λ

To External Memory

P
a

rt
ia

l
O

u
tp

u
t

R
e

s
u

lt

P
a

rtia
l In

p
u

t R
e

s
u

lt

j)
(i

,
Λ

j)
(i

,


2
C

O
R

R
(i

,j
)

j)
(i

,


Mean Calculator

Unit
Correlator Core

Memory Controller Unit

Kernel

(Internal

Memory)

Figure 1. Architecture of the overall system

The Mean Calculator unit (Fig. 2) computes the mean

intensity of the (i, j)th element compared image (Λ), using
the cumulative sum method. In this method the row-wise sum
of the compared image is computed first then the sum of these
results is calculated column-wise. Finally these values should
be divided by P×Q to get the mean intensity of Λ(p,q). Size of
the template image is constant therefore the division can be
done by the multiplication with the reciprocal of this value.

Delay Line (1×M)

Delay Line (1×P)

Delay Line (1×Q)

−

Λ(i,j)

P
a

rt
ia

l
In

p
u

t
R

e
s
u

lt

ACC

+

×

P
a

rt
ia

l
O

u
tp

u
t

R
e

s
u

lt

1/(P×Q)

Φ(i,j)

−

Figure 2. The Mean Calculator unit

The final correlation values CORR2(i,j) are calculated by
the Correlator Core unit (Fig. 3). In the expression (2) the

numerator and denumerator are computed in parallel way by
this unit. According to the size of the kernel image a new
correlation value is computed in every P clock cycles.

Λ(1)

P×Q Register Array

K(1,q)

K(2,q)

MAC MAC MAC

MAC MAC MAC DIV

DLY

CORR
2
(i,j)

K
2

− − −

Λ(i,j)

Λ(i,j)

Λ(i,j)

K(p,q)

Λ(2)

Λ(q)

×Shift Register [2×(1×P)] ×

1/(P×Q)

Figure 3. TheCorrelator Core Unit

The area requirement and also the performance of the
proposed architecture were estimated. Supposing the size of
the test image is 512×512, while the size of the kernel is
changed from 16×16 to 256×256, the results are summarized
on Table 1.

TABLE I. AREA AND SPEED ESTIMATION

Kernel image size

16x16 32x32 64x64 128x128 256x256

Slice 576 1201 3116 9901 29811

BRAM 41 81 167 344 714

DSP

(MAC)
66 130 386 770 1538

FPS 42 22 11 5 3

Our results are compared to an existing fully-parallel
implementation [3]. The comparison is made with a test image
having 256×256 pixel size and a 20×20 pixel-sized kernel. In
our proposed semi-parallel implementation the required
processing time is about 7.2 ms, while the architecture in [3]
the processing time is only 0.163 ms. However, our solution
consumes only 82 DSP MAC slices, while in case of fully-

parallel implementation [3] 5-times more dedicated MAC
blocks are required.

ACKNOWLEDGMENT

This research project supported by the János Bolyai
Research Scholarship of the Hungarian Academy of Sciences
and OTKA Grant No. K84267.

REFERENCES

[1] T. Laviniu, A. Gacsádi, I Gavriluţ V. Tiponuţ “A CNN Based
Correlation Algorithm to Assist Visually Impaired Persons” Signals,
Circuits and Systems (ISSCS), Iasi, Romania, 10th International
Symposium on pp. 1–4, June 2011

[2] Donald G. Bailey “Design for Embedded Image Processing on FPGAs”
2011, Wiley-IEEE Press

[3] Almudena L., Luis E. “High performance FPGA-based image
correlation” J. Real-Time Image Proc., Vol. 2, Special Issue, pp. 223-
233, Springer, 2007

