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∗Computer and Automation Research Institute, Hungarian Academy of Sciences, Budapest, Hungary
nagyz@sztaki.hu, kek@sztaki.hu, szolgay@sztaki.hu

‡Dept. Image Processing and Neurocomputing, University of Pannonia, Veszprém, Hungary
kincsesz@vision.vein.hu
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Abstract—Array computers can be useful in the solution of
numerical spatiotemporal problems such as partial differen-
tial equations (PDE). IBM has recently introduced the Cell
Broadband Engine (Cell BE) Architecture, which contains 8
identical vector processors in an array structure. In the paper the
implementation of the 3-D Princeton Ocean Model on the Cell
BE is discussed. The area/speed/power tradeoffs of our solution
and different hardware implementations are also compared.

I. I NTRODUCTION

Performance of the general purpose computing systems
is usually improved by increasing the clock frequency and
adding more processor cores. However, to achieve very high
operating frequency very deep pipeline is required, which
cannot be utilized in every clock cycle due to data and control
dependencies. If an array of processor cores is used, the
memory system should handle several concurrent memory
accesses, which requires large cache memory and complex
control logic. In addition, applications rarely occupy allof the
available integer and floating point execution units fully.1

Array processing to increase the computing power by using
parallel computation can be a good candidate to solve architec-
tural problems (distribution of control signals on a chip).Huge
computing power is a requirement if we want to solve complex
tasks and optimize to dissipated power and area at the same
time. There are a number of different implementations of array
processors commercially available. The CSX600 accelerator
chip from Clearspeed Inc. [1] contains two main processor
elements, the Mono and the Poly execution units. The Mono
execution unit is a conventional RISC processor responsible
for program flow control and thread switching. The Poly
execution unit is a 1-D array of 96 execution units, which
work on a SIMD fashion. Each execution unit contains a 64bit
floating point unit, integer ALU, 16bit MAC (Multiply Accu-
mulate) unit, an I/O unit, a small register file and local SRAM
memory. Although the architecture runs only on 250MHz
clock frequency the computing performance of the array may

1This work was partially supported by the IBM Hungary under grant
number 68/K/2007.

reach 25GFlops. The Mathstar FPOA (Field Programmable
Object Array) architecture [2] contains different types of16bit
execution units, called Silicon Objects, which are arranged on
a 2-D grid. The connection between the Silicon Objects is
provided by a programmable routing architecture. The three
main object types are the 16bit integer ALU, 16bit MAC and
64 word register file. Additionally, the architecture contains
19Kb on-chip SRAM memories. The Silicon objects work
independently on a MIMD (Multiple Instruction Multiple
Data) fashion. FPOA designs are created in a graphical design
environment or by using MathStars Silicon Object Assembly
Language. The Tilera Tile64 architecture [3] is a regular array
of general purpose processors, called Tile Processors, arranged
on an 8×8 grid. Each Tile Processor is 3-way VLIW (Very
Long Instruction Word) architecture and has a local L1, L2
cache and a switch for the on-chip network. The L2 cache is
visible for all processors forming a large coherent shared L3
cache. The clock frequency of the architecture is in the 600-
900MHz range providing 192GOps peak computing power.
The processors work with 32bit data words but floating point
support is not described in the datasheets.

In this work we have concentrated on topographic IBM Cell
heterogeneous array processor architecture mainly because its
development system is open source. It is exploited here in
solving complex, time consuming problems.

II. CELL PROCESSORARCHITECTURE

A. Cell Processor Chip

The Cell Broadband Engine Architecture (CBEA) [4] is
designed to achieve high computing performance with better
area/performance and power/performance ratios than the con-
ventional multi-core architectures. The CBEA defines a hetero-
geneous multi-processor architecture where general purpose
processors called Power Processor Elements (PPE) and SIMD
Single Instruction Multiple Data processors called Synergistic
Processor Elements (SPE) are connected via a high speed on-
chip coherent bus called Element Interconnect Bus (EIB). The
CBEA architecture is flexible and the ratio of the different
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Fig. 1. Block diagram of the Cell processor

elements can be defined according to the requirements of the
different applications. The first implementation of the CBEA
is the Cell Broadband Engine (Cell BE or informally Cell)
designed for the Sony Playstation 3 game console, and it
contains 1 PPE and 8 SPEs. The block diagram of the Cell is
shown in Figure 1.

The PPE is a conventional dual-threaded 64bit PowerPC
processor which can run existing operating systems without
modification and can control the operation of the SPEs. To
simplify processor design and achieve higher clock speed
instruction reordering is not supported by the PPE. The EIB is
not a bus as suggested by its name but a ring network which
contains 4 unidirectional rings where two rings run counter
to the direction of the other two. The dual-channel Rambus
XDR memory interface provides very high 25.6GB/s memory
bandwidth. I/O devices can be accessed via two Rambus
FlexIO interfaces where one of them (the Broadband Interface
(BIF)) is coherent and makes it possible to connect two Cell
processors directly.

The SPEs are SIMD only processors which are designed to
handle streaming data. Therefore they do not perform well in
general purpose applications and cannot run operating systems.
Block diagram of the SPE is shown in Figure 2.

The SPE has two execution pipelines: the even pipeline is
used to execute floating point and integer instructions while
the odd pipeline is responsible for the execution of branch,
memory and permute instructions. Instructions for the even
and odd pipeline can be issued in parallel. Similarly to the PPE
the SPEs are also in-order processors. Data for the instructions
are provided by the very large 128 element register file where
each register is 16byte wide. Therefore SIMD instructions of
the SPE work on 16byte-wide vectors, for example, four single
precision floating point numbers or eight 16bit integers. The
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Fig. 2. Block diagram of the Synergistic Processor Element

register file has 6 read and 2 write ports to provide data for the
two pipelines. The SPEs can only address their local 256KB
SRAM memory but they can access the main memory of the
system by DMA instructions. The Local Store is 128byte wide
for the DMA and instruction fetch unit, while the Memory
unit can address data on 16byte boundaries by using a buffer
register. 16byte data words arriving from the EIB are collected
by the DMA engine and written to the memory in one cycle.
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Fig. 3. IBM Blade Center QS20 architecture

The DMA engines can handle up to 16 concurrent DMA
operations where the size of each DMA operation can be
16KB. The DMA engine is part of the globally coherent
memory address space but we must note that the local store
of the SPE is not coherent.

B. Cell Blade Systems

Cell blade systems are built up from two Cell processor
chips interconnected with a broadband interface. They offer
extreme performance to accelerate compute-intensive tasks.
The IBM Blade Center QS20 (see Figure 3) is equipped with
two Cell processor chips, Gigabit Ethernet, and 4x InfiniBand
I/O capability. Its computing power is 400GFLOPS peak.
Further technical details are as follows:

• Dual 3.2GHz Cell BE Processor Configuration
• 1GB XDRAM (512MB per processor)
• Blade-mounted 40GB IDE HDD
• Dual Gigabit Ethernet controllers
• Double-wide blade (uses 2 BladeCenter slots)

Several QS20 may be interconnected in a Blade Center
house with max. 2.8TFLOPS peak computing power. It can
be reached by utilizing max. 7 Blades per chassis.

The second generation blade system is the IBM Blade
Center QS21 providing extraordinary computing density up
to 6.4 TFLOPS in a single Blade Center house.

III. O CEAN MODEL AND ITS IMPLEMENTATION

Several studies proved the effectiveness of the CNN-UM
solution of different PDEs [5] [6]. But the results cannot be
used in real life implementations because of the limitations of
the analog CNN-UM chips such as low precision, temperature

sensitivity or the application of non-linear templates. Some
previous results show that emulated digital architecturescan be
very efficiently used in the computation of the CNN dynamics
[7] [8] and in the solution of PDEs [9] [10] [11]. Using
the CNN simulation kernel described in [8] helped to solve
Navier-Stokes PDE on the Cell architecture. The details will
be presented here.

Simulation of compressible and incompressible fluids is
one of the most exciting areas of the solution of PDEs
because these equations appear in many important applications
in aerodynamics, meteorology, and oceanography. Modeling
ocean currents plays a very important role both in medium-
term weather forecasting and global climate simulations. In
general, ocean models describe the response of the variable
density ocean to atmospheric momentum and heat forcing. In
the simplest barotropic ocean model a region of the oceans
water column is vertically integrated to obtain one value for
the vertically different horizontal currents. The more accurate
models use several horizontal layers to describe the motionin
the deeper regions of the ocean. Such a model is the Princeton
Ocean Model (POM) [12] being a sigma coordinate model in
which the vertical coordinate is scaled on the water column
depth.
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wherex,y are the conventional 2-D Cartesian coordinates;σ =
z−η
H+η

, D ≡ H +η, where H(x,y) is the bottom topography and
η(x, y, t) is the surface elevation. TheU andV terms are the
horizontal and vertical velocities,T is the temperature andS
is the salinity. Theω denotes the transformed vertical velocity
according to theσ coordinates. TheFx and theFy values are
the horizontal viscosity and diffusion terms. The solutionof
equations (1)-(7) is based on the freely available Fortran source
code of the POM [12]. The discretization in space is done
according to the Arakawa-C differencing scheme where the
variables are located on a staggered mesh. The mass transports
U andV are located at the center of the box boundaries facing
the x andy directions, respectively. All other parameters are
located at the center of mesh boxes. The horizontal grid uses
curvilinear orthogonal coordinates.

The equations, governing the dynamics of coastal circu-
lation, contain fast moving external gravity waves and slow
moving internal gravity waves. It is desirable in terms of com-
puter economy to separate the vertically integrated equations
(external mode) from the vertical structure equations (internal
mode). This technique, known as mode splitting permits the
calculation of the free surface elevation with little sacrifice in
computational time by solving the velocity transport separately
from the three-dimensional calculation of the velocity andthe
thermodynamic properties.

The external mode calculation is responsible for computing
surface elevation and the vertically averaged velocities.The in-
ternal mode computes horizontal and vertical velocities (U, V ),
temperature (T ) and salinity (S). During the calculation the
former uses short time step, whereas the latter uses longer time
step. Using this method many external steps are evaluated for
every long internal time step. These results are used for the
internal mode computation.

The velocity external mode equations are obtained by in-
tegrating the internal mode equations over the depth, thereby
eliminating all vertical structure. Thus, by integrating Equa-
tions (1)-(3) fromσ = −1 to σ = 0 the following equations

can be obtained:
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The overbars denote vertically integrated velocities suchas

U ≡
0
∫

−1

Udσ. The wind stress components are -< wu(0) >

and -< wv(0) >, and the bottom stress components are -
< wu(−1) > and -< wv(−1) >. U , V are the horizontal
velocities, f is the Coriolis parameter,g is gravitational
acceleration,ρ0 and ρ′ are the reference and in situ density,
respectively.

IV. I MPLEMENTATION ON CELL PROCESSOR ARRAY

The large (128-entry) register file of the SPE makes it
possible to store the neighborhood of the currently processed
cell during the solution of the governing equations. The
number of load instructions can be decreased significantly.

Since the SPEs cannot address the global memory directly,
the users application running on the SPE is responsible to carry
out data transfer between the local memory of the SPE and the
global memory via DMA transactions. By using the original
Fortran source code a new C based solution is developed which
is optimized for the SPEs of the Cell architecture. Since the
relatively small local memory of the SPEs does not allow to
store all the required data, an efficient buffering method is
required. In our solution a belt of 5 rows is stored in the
local memory from the array: 3 rows are required to form the
local neighborhood of the currently processed row, one line
is required for data synchronization, and one line is required
to allow overlap of the computation and communication.
Depending on the size of the users code the 256Kbyte local
memory of the SPE can approximately store data for a 128
cell wide array.

The SPEs in the Cell architecture are SIMD-only units
hence the state values of the cells should be grouped into
vectors. The size of the registers is 128bit and 32bit floating
point numbers are used during the computation. Accordingly,
our vectors contain 4 elements. Let’s denote the state valueof
the ith cell by si.
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It seems obvious to pack 4 neighboring cells into one vec-
tor {s5, s6, s7, s8}. However, constructing the vector which
contains the left{s4, s5, s6, s7} and right {s6, s7, s8, s9}
neighbors of the cells is somewhat complicated because 2
”rotate” and 1 ”select” instructions are needed to generatethe
required vector (see Figure 4 ). This limits the utilizationof the
floating-point pipeline because 3 integer instructions (rotate
and select) must be carried out to generate the left and right
neighborhood of the cell, before a floating point instruction
can be issued.

This limitation can be removed by slicing the CNN cell
array into 4 vertical stripes and rearranging the cell values.
In the above case, the 4-element vector contains data from
the 4 different slices as shown in Figure 5. This makes it
possible to eliminate the shift and shuffle operations to create
the neighborhood of the cells in the vector. The rearrangement
should be carried out only once, at the beginning of the
computation and can be carried out by the PPE. Though, this
solution improves the performance of the simulation data, data
dependency between the floating-point instructions may still
cause pipeline stalls. In order to eliminate this dependency the
inner loop of the computation must be rolled out. Instead of
waiting for the result of the first floating-point instruction, the
computation of the next group of cells is started. The level of
unrolling is limited by the size of the register file.

To achieve even faster computation multiple SPEs can
be used. The data can be partitioned between the SPEs by
horizontally striping the cell array. The communication of
the state values is required between the adjacent SPEs when
the first or last line of the stripe is computed. Due to the
row-wise arrangement of the state values, this communication

TABLE I
COMPARISON OF DIFFERENTCNN OCEAN MODEL IMPLEMENTATIONS:
2GHZ CORE 2 DUOPROCESSOR, EMULATED DIGITAL CNN RUNNING

ON CELL PROCESSORS

CNN Implementation
Parameters Core2Duo CELL (6 SPEs)

Iteration time in 2D (ms) 8.2 0.103
Iteration time in 3D (ms) 1117 12.98
Computation time of a
72 hour simulation (s) 1962.7 23.16

Power (W) 65 85
Area (mm2) 143 253

(CNN cell array size: 128×128×32)

between the adjacent SPEs can be carried out by a single DMA
operation. Additionally, the ring structure of the EIB is well
suited for the communication between neighboring SPEs.

V. PERFORMANCE COMPARISONS

For testing and performance evaluation purposes a simple
initial setup was used which is included in the Fortran source
code of the POM. This solves the problem of the flow through
a channel which includes an island or a seamount at the center
of the domain. The size of the modeled ocean is 1024km,
the north and south boundaries are closed, the east and west
boundaries are open, the grid size is 128×128×32 and the
horizontal grid resolution is 8km. The simulation was ran using
6s internal timestep and 180s external timestep, the simulated
time interval was 72 hours. Experimental results of the average
iteration time are summarized in Table I.

The achievable performance of the Cell using different
number of SPEs is compared to the performance of the Intel
Core 2 Duo T7200 2GHz scalar processor. Comparison of
the required computation time of one iteration in external
(2D) and internal (3D) mode show that the external mode
computations can be carried out 126 times faster. The result
is significant saving on computation time. Performance of the
six-SPE solution is compared to the performance of a high
performance microprocessor. The external mode calculations
on the Cell processor are 79-time faster than on the Core 2 Duo
microprocessor, while in the internal mode 86-time speedup
can be achived. During a 72 hours simulation using both
internal and external mode calculations 85-time speedup was
measured.

VI. CONCLUSION

Complex spatio-temporal dynamical problems are analyzed
by a topographic array processor. The Cellular Nonlinear
Circuits were successfully used to solve the 3-D Princeton
Ocean Model and significant performance improvement was
achieved. Our solution was optimized according to the special
requirements of the Cell architecture. Performance comparison
showed that about 17-time speedup can be achieved with
respect to a high performance microprocessor in the single
SPE solution, while the speedup is 85-time higher when all
the 6 SPEs are utilized.
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