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Abstract—Array computers can be useful in the solution of 

numerical spatio-temporal problems such as the state equation 

of the CNN or partial differential equations (PDE). IBM has 

recently introduced the Cell Broadband Engine (Cell BE) 

Architecture which contains 8 identical vector processors in an 

array structure. In the paper the implementation of CNN 

simulation kernel on the Cell BE is described. The simulation 

kernel is optimized, according to the special requirements of the 

Cell BE and can use linear and also nonlinear (piecewise linear) 

templates. The area/speed/power tradeoffs of our solution and 

different hardware implementations are also compared.  

I. INTRODUCTION  

The complexity and size of a computing system increase 

on a chip, due to the scaling down of the geometry of the 

basic building blocks, the transistors. This process however, 

has some architectural consequences, namely, the distribution 

of the critical signals or limitation of dissipated power. 
Array processing can be a good candidate to solve 

architectural problems (distribution of control signals on a 
chip) and to increase the computing power by using parallel 
computation. Different kind of architectures may be useful to 
organize parallel computation and execute a program. A 
heterogeneous array processor architecture is a good 
alternative for it. 

II. CELL PROCESSOR ARCHITECTURE 

A.  Cell Processor Chip 

A heterogeneous multi-processor architecture was 

designed from one general purpose 64-bit processor called 

Power Processor Element (PPE) and from 8 Synergistic 

Processor Elements (SPEs) as shown in Figure 1. The whole 

architecture consists of 241M transistors, and the chip area is 

235mm2. 

The operating system of PPE boosted up with Vector 

Multimedia Extension (VMX) technology provides a general 

programming/running environment, while the SPEs are 

SIMD1-only machines. High speed, 96 B/cycle, on-chip 

interconnection supports the effective data transfer between 

the processors. 

 

 
Figure 1.  The heterogeneous multi-core architecture − the power processor 

(PPE) and 8 Synergetic Processor Elements (SPEs) 

B. Cell Blade Systems 

Cell blade systems are built up from two Cell processor 
chips interconnected with a broadband interface. 

III. PROBLEM STATEMENT 

Our primary goal is to get an efficient CNN [1] [2] 

implementation on the Cell Broadband Engine Architecture 

[3] (CBEA, or informally, CELL). Consider the CNN model 

and its hardware effective discretization in time. 
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A. Linear templates 

The state equation of the original Chua-Yang model [1] is as 

follows: 
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where ukl, xij, and ykl are the input, the state, and the output 

variables. A and B are the feed-back and feed-forward 

templates, and zij is the bias term. Nr(i,j) is the set of 

neighboring cells of the (i,j)th cell. 

The discretized form of the original state equation (1) is 

derived by using the forward Euler form. It is as follows: 
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In order to simplify computation variables are eliminated as 

far as possible. First of all, the Chua-Yang model is changed 

to the Full Signal Range (FSR) [4] model. Here the state and 

the output of the CNN are equal. In cases when the state is 

about to go to saturation, the state variable is simply 

truncated. In this way the absolute value of the sate variable 

cannot exceed +1. The discretized version of the CNN state 

equation with FSR model is as follows: 
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Now the x and y variables are combined by introducing a 

truncation, which is simple in the digital world from 

computational aspect. In addition, the h and (1-h) terms are 

included into the A and B template matrices resulting 

templates BA ˆ,ˆ . 

By using these modified template matrices, the iteration 

scheme is simplified to a 3x3 convolution plus an extra 

addition: 
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B. Nonlinear templates 

Nonlinear CNN theory was invented by Roska and Chua 

[2]. In some interesting spatio-temporal problems (Navier-

Stokes equations) the nonlinear templates (nonlinear 

interactions) play key role. In general. the nonlinear CNN 

template values are defined by an arbitrary nonlinear function 

of input variables (nonlinear B template), output variables 

(nonlinear A template) or state variables. The survey of the 

nonlinear templates shows that in many cases the nonlinear 

template values depend on the difference of the value of the 

currently processed cell (Cij) and the value of the cell 

belonging to the current template element (Ckl). The CNN 

Template Library [11] contains zero- and first-order nonlinear 

templates. 

 In case of the zero-order nonlinear templates, the 

nonlinear functions of the template contain horizontal 

segments only as shown in Figure 2. This kind of nonlinearity 

can be used, e.g., for grayscale contour detection [11]. 

In case of the first-order nonlinear templates, the 

nonlinearity of the template contains straight line segments as 

shown in Figure 2. This type of nonlinearity is used, e.g., in 

the global maximum finder template [11]. Naturally, there 

exists some nonlinear templates where the template elements 

are defined by two or more nonlinearities, e.g., the grayscale 

diagonal line detector [11]. 
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Figure 2.  Zero- (a) and first-order (b) nonlinearity 

IV. HOW TO MAP CNN ARRAY TO CELL PROCESSOR 

ARRAY? 

A. Linear Dynamics 

The computation of (4.1) and (4.2) on conventional CISC 

processors is rather simple. The appropriate elements of the 

state window and the template are multiplied and the results 

are summed. Due to the small number of registers on these 

architectures, 18 Load instructions are required, which slows 

down the computation. Most of the CISC architectures 

provide SIMD extensions to speed computation up, but the 

usefulness of these optimizations is also limited by the small 

amount of registers. 

The large (128-entry) register file of the SPE makes it 

possible to store the neighborhood of the currently processed 

cell and the template elements. The number of load 

instructions can be significantly decreased. 

The SPEs in the CELL architecture are SIMD-only units, 

hence the state values of the cells should be grouped into 

vectors. The size of the registers is 128bit and 32bit floating 

point numbers are used during the computation, accordingly, 

our vectors contain 4 elements. 

It seems to be obvious to pack 4 neighboring cells into 

one vector. However, constructing the vector which contains 

the left and right neighbors of the cells is somewhat 

complicated because 2 “rotate” and 1 “select” instructions are 

needed to generate the required vector ( see Figure 3. ).This 

limits the utilization of the floating-point pipeline because 3 

integer instructions (rotate and select) must be carried out 



before issuing a floating-point multiply-and-accumulate 

(MAC) instruction. 
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Figure 3.  Generation of the left neighborhood 

This limitation can be removed by slicing the CNN cell 

array into 4 vertical stripes and rearranging the cell values. In 

the above case, the 4-element vector contains data from the 4 

different slices as shown in Figure 4. This makes it possible 

to eliminate the shift and shuffle operations to create the 

neighborhood of the cells in the vector. The rearrangement 

should be carried out only once, at the beginning of the 

computation and can be carried out by the PPE. Though, this 

solution improves the performance of the simulation data, 

dependency between the successive MACs still cause 

floating-point pipeline stalls. In order to eliminate this 

dependency the inner loop of the computation must be rolled 

out. Instead of waiting for a result of the first MAC, the 

computation of the next group of cells is started. The level of 

unrolling is limited by the size of the register file. 

To measure the performance of the simulation a 256x256 

sized cell array was used and 10 forward Euler iterations 

were computed, using a diffusion template. Without 

unrolling, more than 13 million clock cycles are required and 

the utilization of the SPE is 35%. Most of the time, the SPE is 

stalled, due to data dependency. By unrolling the inner loop 

of the computation and computing 2, 4 or 8 sets of cells, the 

required clock cycles can be reduced to 3.5 million and the 

efficiency of the SPE is nearly 90%. 
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Figure 4.  Rearrangement of the state values 

To measure the performance of the optimized program 16 

iterations were computed on a 256x256 sized cell array. The 

number of required clock cycles is summarized in Figure 5. 

By using only one SPE, the computation is carried out in 3.3 

million clock cycles or 1.04ms, assuming 3.2GHz clock 

frequency. 

To achieve even faster computation multiple SPEs can be 

used. The data can be partitioned between the SPEs by 

horizontally striping the CNN cell array. The communication 

of the state values is required between the adjacent SPEs 

when the first or last line of the stripe is computed. Due to the 

row-wise arrangement of the state values, this communication 

between the adjacent SPEs can be carried out by a single 

DMA operation. 

By using 2 SPEs to perform the computation, the cycle 

count is reduced about by half, and nearly linear speedup can 

be achieved. However, in case of 4 or 8 SPEs the 

performance cannot be improved. When 4 SPEs are used, 

SPE number 2 requires more than 5 million clock cycles to 

compute its stripe. This is larger than the cycle count in case 

of a single SPE and the performance is degraded. 

The examination of the utilization of the SPEs shows that 

SPE 1 and SPE 2 stall, most of the time, for the completion of 

the memory operations (channel stall cycle). The utilization 

of these SPEs is less than 15%, while the other SPEs are of 

efficiency similar to that of in the case of a single SPE. 

Investigating the required memory bandwidth shows that one 

SPE requires 7.2Gb/s memory I/O bandwidth and the 

available 25.6Gb/s bandwidth is not enough to support all 4 

SPEs. 
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Figure 5.  Intruction histogram in case of one and multiple SPEs 

To reduce this high bandwidth requirement pipelining 

technique can be used. In this case the SPEs are chained one 

after the other, and each SPE computes a different iteration 

step, using the results of the previous SPE. Only the first and 

last SPE in the pipeline should access main memory. Due to 

the ring structure of the Element Interconnect Bus (EIB), 

communication between the neighboring SPEs is very 

efficient. The performance of the implemented CNN 

simulator is summarized in Figure 6.  
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Figure 6.  Performance of the implemented CNN simlator on the CELL 

architecture compared to other architectures (CNN cell array size: 256x256, 
16 forward Euler iterations, *Core 2 Duo T7200 @2GHz, **Falcon 

Emulated Digital CNN-UM implemented on Xilinx Virtex-4 FPGA 



(XC4VSX55) @500MHz 1 PE, ***Falcon Emulated Digital CNN-UM 
implemented on Xilinx Virtex-4 FPGA (XC4VSX55) @500MHz 56 PE) 

B. Nonlinear Dynamics 

To make using zero- and first-order nonlinear templates 

possible on a conventional scalar processor or on the CELL 

processor, the nonlinear functions belonging to the templates 

should be stored in Look Up Tables (LUTs). 

In case of conventional scalar processors, each kind of 

nonlinearity should be partitioned into segments, according to 

the number of intervals it contains. The parameters of the 

nonlinear function and the boundary points should be stored 

in LUTs for each nonlinear template element. In case of the 

zero-order nonlinear templates, only one parameter should be 

stored in the LUT, while in the case of the first-order 

nonlinearity, the gradient value and the constant shift of the 

current section should be stored. By using this arrangement, 

for zero-order nonlinear templates, the difference of the value 

of the currently processed cell and the value of the cell 

belonging to the current template element should be 

compared to the boundary points. The result of this 

comparison is used to acquire the adequate nonlinear value. 

In case of the first-order nonlinear template, additional 

computation is required. After identifying the proper interval 

of nonlinearity, the difference should be multiplied by the 

gradient value and added to the constant. 

Since the SPEs on the CELL processor are vector 

processors, the values of the nonlinear function and the 

boundary points are also stored as a 4-element vector. In each 

step four differences are computed in parallel and all 

boundary points must be examined to determine the four 

nonlinear template elements. To get an efficient 

implementation, optimization techniques similar to that of the 

linear template implementation (double buffering, 

vectorization, loop unrolling) can be used. 

The performance of the implementation on the CELL 

architecture was tested by running the global maximum 

finder template on a 256x256 image for 16 iterations. The 

achievable performance of the CELL using different number 

of SPUs is compared to the performance of the Intel Core 2 

Duo T7200 2GHz scalar processor and the nonlinear Falcon 

Emulated Digital CNN-UM architecture. The results are 

shown in Figure 6.  

TABLE I.  COMPARISON OF DIFFERENT CNN IMPLEMANTATIONS: 
2GHZ CORE 2 DUO PROCESSOR, EMULATED DIGITAL CNN RUNNING ON 

CELL PROCESSORS AND ON VIRTEX FPGAS, AND Q-EYE ANALOG VLSI CHIP 

Parameters 
CNN Implementations 

Core 2 

Duo 
Q-Eye  FPGA CELL  

Speed (linear 

template, µs) 

27033.6 250 14.48 111.8 

Speed (nonlinear 

template, µs) 

84691.4 - 20.27 197.33 

Power (W) 65 0.1 20 85 

Area (mm2) 143 - ~389 253 

(CNN cell array size: 176x144, 16 forward Euler iterations) 

V. CONCLUSION AND FUTURE WORK 

Basic CNN simulation kernel was successfully 

implemented on the CELL architecture. Using this kernel 

both linear and nonlinear CNN arrays can be simulated. The 

kernel was optimized according to the special requirements of 

the CELL architecture. 

The comparison of the different CNN implementation can 

be seen on Table 1. The comparison of the performance of 

the single SPE solution to a high performance microprocessor 

showed that about 44 times speedup can be achieved. By 

using all the 8 SPEs about 242 times speedup can be 

achieved. Compared to emulated digital architectures one 

SPE can outperform a single Falcon Emulated Digital CNN-

UM core. When using nonlinear templates the performance 

advantage of the CELL architecture is much higher. In a 

single SPE configuration 64 times speedup can be achieved 

while using 8 SPEs the performance is 429 times higher. 

In the future we would like to extend the capabilities of 

the simulator to handle large neighborhood templates. 

Additionally the CELL architecture is going to be used to 

simulate spatio-temporal dynamical problems like PDEs (for 

example Navier-Stokes equations). 
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