
Nagy Z, Kék L, Kincses Z, Szolgay P CNN model on cell multiprocessor array. In: IEEE ECCTD 2007.

European conference on circuit theory and design. Konferencia helye, ideje: Sevilla, Spanyolország, 2007

Sevilla: IEEE, 2007. pp. 276-279.

DOI: 10.1109/ECCTD.2007.4529590

CNN Model on Cell Multiprocessor Array

Zoltán Nagy, László Kék+, Zoltán Kincses ++, Péter Szolgay+

Computer and Automation Research Institute, Hungarian Academy of Sciences, Budapest, Hungary

+Also with Dept. Information Technology, Pázmány Péter Catholic University, Budapest, Hungary

++ Dept. Image Processing and Neurocomputing, University of Pannonia, Veszprém, Hungary

Abstract—Array computers can be useful in the solution of

numerical spatio-temporal problems such as the state equation

of the CNN or partial differential equations (PDE). IBM has

recently introduced the Cell Broadband Engine (Cell BE)

Architecture which contains 8 identical vector processors in an

array structure. In the paper the implementation of CNN

simulation kernel on the Cell BE is described. The simulation

kernel is optimized, according to the special requirements of the

Cell BE and can use linear and also nonlinear (piecewise linear)

templates. The area/speed/power tradeoffs of our solution and

different hardware implementations are also compared.

I. INTRODUCTION

The complexity and size of a computing system increase

on a chip, due to the scaling down of the geometry of the

basic building blocks, the transistors. This process however,

has some architectural consequences, namely, the distribution

of the critical signals or limitation of dissipated power.
Array processing can be a good candidate to solve

architectural problems (distribution of control signals on a
chip) and to increase the computing power by using parallel
computation. Different kind of architectures may be useful to
organize parallel computation and execute a program. A
heterogeneous array processor architecture is a good
alternative for it.

II. CELL PROCESSOR ARCHITECTURE

A. Cell Processor Chip

A heterogeneous multi-processor architecture was

designed from one general purpose 64-bit processor called

Power Processor Element (PPE) and from 8 Synergistic

Processor Elements (SPEs) as shown in Figure 1. The whole

architecture consists of 241M transistors, and the chip area is

235mm2.

The operating system of PPE boosted up with Vector

Multimedia Extension (VMX) technology provides a general

programming/running environment, while the SPEs are

SIMD1-only machines. High speed, 96 B/cycle, on-chip

interconnection supports the effective data transfer between

the processors.

Figure 1. The heterogeneous multi-core architecture − the power processor

(PPE) and 8 Synergetic Processor Elements (SPEs)

B. Cell Blade Systems

Cell blade systems are built up from two Cell processor
chips interconnected with a broadband interface.

III. PROBLEM STATEMENT

Our primary goal is to get an efficient CNN [1] [2]

implementation on the Cell Broadband Engine Architecture

[3] (CBEA, or informally, CELL). Consider the CNN model

and its hardware effective discretization in time.

1 SIMD – Single Instruction Multiple Data

SPE SPE SPE

SPE

SPE

SPE

EIB (max 96 B/cycle)

SPE

64-bit

Power

archi-

tecture
SPE

A. Linear templates

The state equation of the original Chua-Yang model [1] is as

follows:

ijkl

jiNklC

klijkl

jiNklC

klijijij zutyxtx
rr

 
),()(

,

),()(

,)()(BA

,

(1)

where ukl, xij, and ykl are the input, the state, and the output

variables. A and B are the feed-back and feed-forward

templates, and zij is the bias term. Nr(i,j) is the set of

neighboring cells of the (i,j)th cell.

The discretized form of the original state equation (1) is

derived by using the forward Euler form. It is as follows:





















ijkl

jiNklC

klijkl

jiNklC

klij

ijij

zunyh

nxhnx

rr),()(

,

),()(

,)(

)()1()1(

BA
 (2)

In order to simplify computation variables are eliminated as

far as possible. First of all, the Chua-Yang model is changed

to the Full Signal Range (FSR) [4] model. Here the state and

the output of the CNN are equal. In cases when the state is

about to go to saturation, the state variable is simply

truncated. In this way the absolute value of the sate variable

cannot exceed +1. The discretized version of the CNN state

equation with FSR model is as follows:

x n

if v n

v k if v n

if v n

v n h x n

h x n u z

ij

ij

ij ij

ij

ij ij

ij kl

C kl N i j

kl ij kl

C kl N i j

kl ij

r r

()

()

() ()

()

() () ()

(),

() (,)

,

() (,)

 





  









  

  










 

 

1

1 1

1

1 1

1

A B

 (3)

Now the x and y variables are combined by introducing a

truncation, which is simple in the digital world from

computational aspect. In addition, the h and (1-h) terms are

included into the A and B template matrices resulting

templates BA ˆ,ˆ .

By using these modified template matrices, the iteration

scheme is simplified to a 3x3 convolution plus an extra

addition:

ijkl

jiNklC

klijij gnxnv
r

 


)(ˆ)1(
),()(

,A (4.1)

ijkl

jiNklC

klijij hzug
r

 
),()(

,B̂ (4.2)

B. Nonlinear templates

Nonlinear CNN theory was invented by Roska and Chua

[2]. In some interesting spatio-temporal problems (Navier-

Stokes equations) the nonlinear templates (nonlinear

interactions) play key role. In general. the nonlinear CNN

template values are defined by an arbitrary nonlinear function

of input variables (nonlinear B template), output variables

(nonlinear A template) or state variables. The survey of the

nonlinear templates shows that in many cases the nonlinear

template values depend on the difference of the value of the

currently processed cell (Cij) and the value of the cell

belonging to the current template element (Ckl). The CNN

Template Library [11] contains zero- and first-order nonlinear

templates.

 In case of the zero-order nonlinear templates, the

nonlinear functions of the template contain horizontal

segments only as shown in Figure 2. This kind of nonlinearity

can be used, e.g., for grayscale contour detection [11].

In case of the first-order nonlinear templates, the

nonlinearity of the template contains straight line segments as

shown in Figure 2. This type of nonlinearity is used, e.g., in

the global maximum finder template [11]. Naturally, there

exists some nonlinear templates where the template elements

are defined by two or more nonlinearities, e.g., the grayscale

diagonal line detector [11].

-0.5

0.18-0.18

0.5

b

v
uij

-v
ukl v

yij
-v

ykl

0.25

-0.125

-2 -1

a

 (a) (b)

Figure 2. Zero- (a) and first-order (b) nonlinearity

IV. HOW TO MAP CNN ARRAY TO CELL PROCESSOR

ARRAY?

A. Linear Dynamics

The computation of (4.1) and (4.2) on conventional CISC

processors is rather simple. The appropriate elements of the

state window and the template are multiplied and the results

are summed. Due to the small number of registers on these

architectures, 18 Load instructions are required, which slows

down the computation. Most of the CISC architectures

provide SIMD extensions to speed computation up, but the

usefulness of these optimizations is also limited by the small

amount of registers.

The large (128-entry) register file of the SPE makes it

possible to store the neighborhood of the currently processed

cell and the template elements. The number of load

instructions can be significantly decreased.

The SPEs in the CELL architecture are SIMD-only units,

hence the state values of the cells should be grouped into

vectors. The size of the registers is 128bit and 32bit floating

point numbers are used during the computation, accordingly,

our vectors contain 4 elements.

It seems to be obvious to pack 4 neighboring cells into

one vector. However, constructing the vector which contains

the left and right neighbors of the cells is somewhat

complicated because 2 “rotate” and 1 “select” instructions are

needed to generate the required vector (see Figure 3.).This

limits the utilization of the floating-point pipeline because 3

integer instructions (rotate and select) must be carried out

before issuing a floating-point multiply-and-accumulate

(MAC) instruction.

s1 s2 s3 s4 s5 s6 s7 s8

s4 s5 s6 s7

s1 s2 s3s4 s5 s6 s7s8

Rotate

Select

Central cells

Left

neighborhood
Figure 3. Generation of the left neighborhood

This limitation can be removed by slicing the CNN cell

array into 4 vertical stripes and rearranging the cell values. In

the above case, the 4-element vector contains data from the 4

different slices as shown in Figure 4. This makes it possible

to eliminate the shift and shuffle operations to create the

neighborhood of the cells in the vector. The rearrangement

should be carried out only once, at the beginning of the

computation and can be carried out by the PPE. Though, this

solution improves the performance of the simulation data,

dependency between the successive MACs still cause

floating-point pipeline stalls. In order to eliminate this

dependency the inner loop of the computation must be rolled

out. Instead of waiting for a result of the first MAC, the

computation of the next group of cells is started. The level of

unrolling is limited by the size of the register file.

To measure the performance of the simulation a 256x256

sized cell array was used and 10 forward Euler iterations

were computed, using a diffusion template. Without

unrolling, more than 13 million clock cycles are required and

the utilization of the SPE is 35%. Most of the time, the SPE is

stalled, due to data dependency. By unrolling the inner loop

of the computation and computing 2, 4 or 8 sets of cells, the

required clock cycles can be reduced to 3.5 million and the

efficiency of the SPE is nearly 90%.

s1 s2 s3 s10 s11 s12 s13 s20 s21 s22 s23 s30 s31 s32 s33 s40

s1 s11 s21 s31 s2 s12 s22 s32 s3 s13 s23 s33
Rearranged

state values

State values

Left

neighborhood

Right

neighborhood

Central cells

Figure 4. Rearrangement of the state values

To measure the performance of the optimized program 16

iterations were computed on a 256x256 sized cell array. The

number of required clock cycles is summarized in Figure 5.

By using only one SPE, the computation is carried out in 3.3

million clock cycles or 1.04ms, assuming 3.2GHz clock

frequency.

To achieve even faster computation multiple SPEs can be

used. The data can be partitioned between the SPEs by

horizontally striping the CNN cell array. The communication

of the state values is required between the adjacent SPEs

when the first or last line of the stripe is computed. Due to the

row-wise arrangement of the state values, this communication

between the adjacent SPEs can be carried out by a single

DMA operation.

By using 2 SPEs to perform the computation, the cycle

count is reduced about by half, and nearly linear speedup can

be achieved. However, in case of 4 or 8 SPEs the

performance cannot be improved. When 4 SPEs are used,

SPE number 2 requires more than 5 million clock cycles to

compute its stripe. This is larger than the cycle count in case

of a single SPE and the performance is degraded.

The examination of the utilization of the SPEs shows that

SPE 1 and SPE 2 stall, most of the time, for the completion of

the memory operations (channel stall cycle). The utilization

of these SPEs is less than 15%, while the other SPEs are of

efficiency similar to that of in the case of a single SPE.

Investigating the required memory bandwidth shows that one

SPE requires 7.2Gb/s memory I/O bandwidth and the

available 25.6Gb/s bandwidth is not enough to support all 4

SPEs.

0.0E+00

2.0E+06

4.0E+06

6.0E+06

8.0E+06

1.0E+07

1.2E+07

1.4E+07

SPE

1/1

SPE

2/1

SPE

2/2

SPE

4/1

SPE

4/2

SPE

4/3

SPE

4/4

SPE

8/1

SPE

8/2

SPE

8/3

SPE

8/4

SPE

8/5

SPE

8/6

SPE

8/7

SPE

8/8

C
lo

c
k

 c
y

c
le

s

Single cycle Dual cycle

Nop cycle Stall due to branch miss

Stall due to prefetch miss Stall due to dependency

Stall due to waiting for hint target Channel stall cycle
Figure 5. Intruction histogram in case of one and multiple SPEs

To reduce this high bandwidth requirement pipelining

technique can be used. In this case the SPEs are chained one

after the other, and each SPE computes a different iteration

step, using the results of the previous SPE. Only the first and

last SPE in the pipeline should access main memory. Due to

the ring structure of the Element Interconnect Bus (EIB),

communication between the neighboring SPEs is very

efficient. The performance of the implemented CNN

simulator is summarized in Figure 6.

44
82

148
242

1

33

1867

64
123

237
429

1

104

4177

0

1

10

100

1000

10000

1 SPE 2 SPEs 4 SPEs 8 SPEs Core 2

Duo*

Falcon** Falcon***

S
p

e
e

d
u

p

Linear template Nonlinear template
Figure 6. Performance of the implemented CNN simlator on the CELL

architecture compared to other architectures (CNN cell array size: 256x256,
16 forward Euler iterations, *Core 2 Duo T7200 @2GHz, **Falcon

Emulated Digital CNN-UM implemented on Xilinx Virtex-4 FPGA

(XC4VSX55) @500MHz 1 PE, ***Falcon Emulated Digital CNN-UM
implemented on Xilinx Virtex-4 FPGA (XC4VSX55) @500MHz 56 PE)

B. Nonlinear Dynamics

To make using zero- and first-order nonlinear templates

possible on a conventional scalar processor or on the CELL

processor, the nonlinear functions belonging to the templates

should be stored in Look Up Tables (LUTs).

In case of conventional scalar processors, each kind of

nonlinearity should be partitioned into segments, according to

the number of intervals it contains. The parameters of the

nonlinear function and the boundary points should be stored

in LUTs for each nonlinear template element. In case of the

zero-order nonlinear templates, only one parameter should be

stored in the LUT, while in the case of the first-order

nonlinearity, the gradient value and the constant shift of the

current section should be stored. By using this arrangement,

for zero-order nonlinear templates, the difference of the value

of the currently processed cell and the value of the cell

belonging to the current template element should be

compared to the boundary points. The result of this

comparison is used to acquire the adequate nonlinear value.

In case of the first-order nonlinear template, additional

computation is required. After identifying the proper interval

of nonlinearity, the difference should be multiplied by the

gradient value and added to the constant.

Since the SPEs on the CELL processor are vector

processors, the values of the nonlinear function and the

boundary points are also stored as a 4-element vector. In each

step four differences are computed in parallel and all

boundary points must be examined to determine the four

nonlinear template elements. To get an efficient

implementation, optimization techniques similar to that of the

linear template implementation (double buffering,

vectorization, loop unrolling) can be used.

The performance of the implementation on the CELL

architecture was tested by running the global maximum

finder template on a 256x256 image for 16 iterations. The

achievable performance of the CELL using different number

of SPUs is compared to the performance of the Intel Core 2

Duo T7200 2GHz scalar processor and the nonlinear Falcon

Emulated Digital CNN-UM architecture. The results are

shown in Figure 6.

TABLE I. COMPARISON OF DIFFERENT CNN IMPLEMANTATIONS:
2GHZ CORE 2 DUO PROCESSOR, EMULATED DIGITAL CNN RUNNING ON

CELL PROCESSORS AND ON VIRTEX FPGAS, AND Q-EYE ANALOG VLSI CHIP

Parameters
CNN Implementations

Core 2

Duo
Q-Eye FPGA CELL

Speed (linear

template, µs)

27033.6 250 14.48 111.8

Speed (nonlinear

template, µs)

84691.4 - 20.27 197.33

Power (W) 65 0.1 20 85

Area (mm2) 143 - ~389 253

(CNN cell array size: 176x144, 16 forward Euler iterations)

V. CONCLUSION AND FUTURE WORK

Basic CNN simulation kernel was successfully

implemented on the CELL architecture. Using this kernel

both linear and nonlinear CNN arrays can be simulated. The

kernel was optimized according to the special requirements of

the CELL architecture.

The comparison of the different CNN implementation can

be seen on Table 1. The comparison of the performance of

the single SPE solution to a high performance microprocessor

showed that about 44 times speedup can be achieved. By

using all the 8 SPEs about 242 times speedup can be

achieved. Compared to emulated digital architectures one

SPE can outperform a single Falcon Emulated Digital CNN-

UM core. When using nonlinear templates the performance

advantage of the CELL architecture is much higher. In a

single SPE configuration 64 times speedup can be achieved

while using 8 SPEs the performance is 429 times higher.

In the future we would like to extend the capabilities of

the simulator to handle large neighborhood templates.

Additionally the CELL architecture is going to be used to

simulate spatio-temporal dynamical problems like PDEs (for

example Navier-Stokes equations).

ACKNOWLEDGMENT

The authors would like to thank Professor Tamás Roska
for many helpful discussions and suggestions.

REFERENCES

[1] T. Roska and L. O. Chua, “The CNN Universal Machine: an Analogic
Array Computer”, IEEE Transaction on Circuits and Systems-II,
vol. 40, pp. 163-173, 1993.

[2] T. Roska and L. O. Chua, "Cellular Neural networks with nonlinear and
delay-type template elements and non-uniform girds," Int. J. Circuit
Theory and Applications, vol. 20, pp. 469-481, 1992

[3] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer,
 and D. Shippy. Introduction to the cell multiprocessor.
IBM Journal of Research and Development [Online]
 http://www.research.ibm.com/journal/rd/494/kahle.html, 2005.

[4] S. Espejo et.al. "A VLSI-Oriented Continuous-Time CNN Model", Int.
Journal of Circuit Theory and Applications, vol. 24, 341-356, 1996.

[5] P. Szolgay, G. Vörös, and Gy. Erőss “On the Applications of the
Cellular Neural Network Paradigm in Mechanical Vibrating System”,
IEEE. Trans. Circuits and Systems-I, Fundamental Theory and
Applications, vol. 40, no. 3, pp. 222-227, 1993.

[6] Z. Nagy and P. Szolgay, “Numerical solution of a class of PDEs by
using emulated digital CNN-UM on FPGAs”, Proc. Of 16th European
Conf. On Circuits Theory and Design, Cracow, vol. II, pp. 181-184,
September 1-4, 2003.

[7] Z. Nagy and P. Szolgay, “Configurable Multi-layer CNN-UM Emulator
on FPGA”, IEEE Transaction on Circuit and Systems I: Fundamental
Theory and Applications, vol. 50, pp. 774-778, 2003.

[8] Z. Nagy and P. Szolgay, “Solving Partial Differential Equations on
Emulated Digital CNN-UM Architectures”, Functional Differential
Equations, vol. 13, No. 1, pp. 61-87 (2006)

[9] P. Kozma, P. Sonkoly, and P. Szolgay, “Seismic Wave Modeling on
CNN-UM Architecture”, Functional Differential Equations, vol. 13,
No. 1, pp. 43-60 (2006)

[10] Z. Nagy, Zs. Vörösházi, and P. Szolgay, “Emulated Digital CNN-UM
Solution of Partial Differential Equations”, Int. J. CTA, vol. 34, No. 4,
pp. 445-470 (2006)

[11] CNN Software Library (CSL) Templates (Version 1.1) [Online]
Available: http://lab.analogic.sztaki.hu/Candy/csl.html

