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We present introductory considerations and analysis toward computing applications based on the re-

cently introduced deterministic logic scheme with random spike (pulse) trains [Phys. Lett. A 373 
(2009) 2338-2342]. Also, in considering the questions, "why random?" and "why pulses?", we show 

that the random pulse based scheme provides the advantages of realizing multivalued deterministic 

logic. Pulse trains are realized by an element called orthogonator. We discuss two different types of 
orthogonators, parallel (intersection-based) and serial (demultiplexer-based) orthogonators. The last 

one can be slower but it makes sequential logic design straightforward. We propose generating a 

multidimensional logic hyperspace [Physics Letters A 373 (2009) 1928–1934] by using the zero-
crossing events of uncorrelated Gaussian electrical noises available in the chips. The spike trains in 

the hyperspace are non-overlapping, and are referred to as neuro-bits. To demonstrate this idea, we 

generate 3-dimensional hyperspace bases using the zero-crossing events of 2 uncorrelated Gaussian 
noise sources. In such a scenario, the detection of different hyperspace basis elements may have 

vastly differing delays. We show that it is possible to provide an identical speed for the detection of 

all the hyperspace bases elements using correlated noise sources, and demonstrate this for the 2 
neuro-bits situations.  The key impact of this paper is to demonstrate that a logic design approach us-

ing such neuro-bits can yield a fast, low power and environmental variation tolerant means of de-

signing computer circuitry. It also enables the realization of multi-valued logic, and also significantly 
increasing the complexity of computer circuits by allowing several neuro-bits to be transmitted on a 

single wire. 

Keywords: noise; random pulse train; computing. 

1. Introduction 

Recently, a new deterministic, multivalued logic scheme based on the functioning of the 

brain was introduced [1]. The logic utilized random spike (pulse) trains and a hyper-space 

scheme [2] similar to the quantum Hilbert space was developed. The key ideas in [1] was 
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the use of an encoding of data symbols using orthogonal spike trains, allowing for the 

transfer of multiple symbols simultaneously by superposition. The random spike trains 

corresponding to different hyper-space elements are non-overlapping (orthogonal). Each 

spike train can be thought of as a sequence of values (which can be “1” or “0”) in N con-

tiguous timeslots. Two spike trains are said to be non-overlapping if they do not have a 

“1” value in the same timeslot. This was shown to outperform a quantum search algo-

rithm [2]. The hyperspace in [2] was a utilization of the generic hyperspace elements in-

troduced for noise-based logic [3] with continuum noises, and it was shown to be as rich 

as a carrier of information as the quantum Hilbert space [2]. The key idea of [2] was to 

obtain, from a fixed number N of orthogonal continuum noise sources, an exponential 

number of orthogonal noise hyperspace elements.  These results are partial answers to 

questions about whether computing hardware could be driven by noise in order to reduce 

energy dissipation [4]. 

In this paper we make the first step toward the realization of digital logic using the 

scheme introduced in [1]. First we discuss why spike-based logic is feasible, and how 

random spike train based logic signals can be beneficial. 

Bollapalli et al [5] used two non-orthogonal sinusoidal signals to represent logic 

states, and demonstrated the realization of AC-voltage-based (binary) logic. This is the 

first step toward a multi-valued logic system, where the base vectors are orthogonal si-

nusoidal signals with different frequencies and/or 



 /2 phase shift. The advantage of this 

sinusoidal scheme is that in the binary valued logic case it is about 100 times faster than 

the noise-based binary logic scheme [3], provided that the amplitude of the sinusoids are 

well beyond the background noise. However, the last condition guarantees that the sinus-

oidal scheme [5] cannot offer the lowest possible power dissipation. 

In this paper, we demonstrate that random spike trains can be practically utilized to 

implement logic. We demonstrate how orthogonal spike trains can be derived from ran-

dom (possibly overlapping) source spike trains, using a simple circuit called an 

orthogonator. We demonstrate two kinds of orthogonators (demultiplexer-based and in-

tersection-based) and show that by using intersection-based orthogonators and N random 

spike trains, we can generate an exponentially larger hyperspace basis of orthogonal 

spike trains. Each such spike train represents a neuro-bit. The first coincident spike of any 

neuro-bit can identify it, resulting in a fast and resilient logic family. In recent times, 

computer circuits are plagued with the problem of processing variations [6]. Using the 

concepts outlined in this paper, variation tolerant circuits can be designed, while speed is 

retained. Furthermore, the logic approach described in this paper makes it easy to imple-

ment multi-valued logic functions, something that traditional digital VLSI design simply 

cannot achieve in practice. Additionally, the logic approach of this paper lends itself to 

extremely low power design using sub-threshold operation [7, 8], on account of its high 

resilience to processing and environmental variations (which are aggravated in sub-

threshold design). 

The remainder of this paper is organized as follows. Section 2 describes why random 

spikes are utilized in our logic approach, illustrating the resilience and speed that can 

result from this choice. The key circuit required to realize this new logic approach is the 

orthogonator. Section 3 describes the design of two kinds of orthogonators. Section 4 

presents results from initial experiments that we have conducted to compare the outputs 

of the two orthogonators. We discuss the properties of the resulting neuro-bits, and show 

how such orthogonators may be used to generate hyperspace elements. In Section 5, we 

outline how elementary gates and set operations are performed using random spike trains. 
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Section 6 elaborates on the reason why a stochastic spike train is superior to a periodic 

one, while Section 7 concludes the paper. 

2. Why random and why spikes? 

At the moment, there is no complete answer to the questions if periodic signals or noise 

should be used to generate the pulse sequences and if spikes are the most advantageous. 

We have some partial answers below. The fact that the brain uses stochastic spike trains 

may be a further indication that this is the way to go. 

 

However, there is an answer for the case of the ultimate lower limit of energy dissipation 

to process a bit, assuming ideal devices for amplification and switching – or in other 

words, controlled potential barriers without parasitic elements. In this case, the lowest 

energy dissipation for a single gate is reached by noise because the "noise clock" signal 

can be dissipation-free, using simply the thermal noise of a resistor distributed in a fre-

quency-dispersion-free line [4]. In order to keep power dissipation at a minimum, the 

amplifier stages for making the local reference basis signals will amplify this noise so 

that a given amplification stage has just barely enough supply voltage to handle that am-

plitude of noise. The subsequent stages with greater noise signal amplitudes will use cor-

respondingly greater supply voltages. The zero crossings events of the amplified noise 

make the local hyperspace reference vectors. On the other hand, using a periodic clock 

signal means increased energy dissipation. We do not believe that making of the spike 

train random always reduces energy dissipation. However, there are proven examples 

when it does. Whenever a special-purpose operation can utilize stochastic spike trains, we 

can reduce computational or communication complexity. A recent paper [9] shows such 

an example in the context of communication. 

 

Furthermore, the spike-noise based logic scheme [1] has an important advantage 

compared to continuum-noise-based logic with superposition of orthogonal elements: to 

determine a logic value, that is, to correlate it with the different reference base values, the 

spike-based scheme does not need time averaging and therefore results in a significant 

speed-up. Due to the orthogonality of base (reference) spike trains, simple coincidence 

detection of a single spike can identify any reference spike train uniquely [1]. This prop-

erty, when utilized with a multivalued logic scheme, may be the key explanation for the 

fact that the brain can perform efficiently with slow and random spike trains and can rec-

ognize/analyze complex situations very fast. 

Finally, in answer to the question: why stochastically timed spike trains are present 

(like in the brain) instead of periodically timed spike trains, we show that random spike 

trains area more resilient to circuit delays, while periodic spike trains are particularly sus-

ceptible to delays that may arise from processing and environmental variations. This dis-

cussion is continued in further detail in Section 6. We conclude in Section 7, with some 

suggestions for future work in this area. 

3. Orthogonator types 

To construct the M-dimensional orthogonal bases of the hyperspace, we need orthogonal 

spike trains. In [1], the base elements were generated from partially overlapping random 

neural spikes by a neural circuit called an orthogonator. The order of the orthogonator 

can be related to M, since an N-th order orthogonator generates 12 N=M  outputs. Here 
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we will call the orthogonator circuit of [1] as a "intersection-based orthogonator" and, in 

the present paper, we present a new kind of orthogonator as follows: 

i) Demultiplexer-based orthogonator: It has a single input which is fed by a single 

(infinite) spike sequence. In an M-th order orthogonator a demultiplexer will dis-

tribute the subsequent spikes to M output wires in a cyclic way as follows: 

M)(r+=p mod11   

where p (1≤p≤M) is the index number of the output wire on which the r-th input 

pulse will emerge. The resulting spike trains in the M separate output wires are or-

thogonal by construction. Moreover, when the M-th wire outputted its k-th spike, we 

know that the previous M-1 spikes were outputted on the other M-1 wires (one spike 

for each wire). All the M spikes mentioned above belong to the k-th spike package 

of size M of the original spike train. Thus the advantage of a demultiplexer-based 

orthogonator is that it makes easy/natural to construct sequential logic operations 

and networks. Each such spike train (of any wire) represents one element of an M-

dimensional reference basis  )(tV ki  (i=1...M) at a given "computer time" 



tk  (even 

though the physical time moments of the actual spikes in the k-th spike package are 

different). Another advantage is that the average pulse rate on the output wires is 

identical. 

ii) Intersection-based orthogonator: Such a circuitry [1] has N parallel inputs driven by 

parallel, partially overlapping random spikes trains. The orthogonator generates all 

combinations of the available set-theoretical intersections of the input spikes. As a 

result there are 12 N=M  output wires with non-overlapping spike trains [3]. The 

advantage of the intersection-based orthogonator is that it may be faster and it can 

transform a set of partially overlapping spike trains into a set of orthogonal spike 

trains. On the other hand, the construction of sequential logic operations and net-

works from spike trains generated from intersection-based orthogonators is less ob-

vious and to provide similar pulse rates on the output wires is a nontrivial task, see 

below in Section 4.2. 

4. Demonstration: generating the neuro-bits and hyperspace base using logic 

In this section, we compare the results obtained by demultiplexer-based and intersection-

based orthogonators, using computer simulations. We compare 1/f and white noise as 

possible sources of the noise spike trains, and also show how the properties of the hyper-

space basis elements vary (in terms the mean and RMS of fluctuations of the inter-spike 

intervals in all cases). It is important to note, that because the zero crossing time distribu-

tion of bandlimited white and 1/f noises is an unsolved math problem, computer simula-

tion is the only way to study this issue. 

4.1. Generation by a demultiplexer-based orthogonator heading  

The demonstration of a second-order demultiplexer-based orthogonator can be seen in 

Figure 1.  
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Figure 1. Second-order demultiplexer-based orthogonator driven by zero-crossing events of band-limited white 

noise. Upper plot: the original spike train. Lower plots: the orthogonal sub-trains at the three outputs. 

The random spikes generated by the zero crossing events of a band-limited white noise 

(top plot of Figure 1) are cyclically demultiplexed to three output wires (bottom 3 plots of 

Figure 1). 

In Table 1, the statistical values in a second-order demultiplexer-based orthogonator, 

the mean interspike intervals ( ) and their rms fluctuation values (  ) are shown for the 

case of band-limited white noise and band-limited 1/f noise. It is obvious from the data in 

Table 1 that spike trains generated by white noise have superior properties compared to 

1/f noise in regarding the mean frequency of spikes and the fluctuations of their locations 

whenever these quantities matter. 

S(f) 
 , source spike 

train 

 , source 

spike train 

 , output 

spike trains 

 , output 

spike trains 

White 

(5MHz -10GHz) 
90ps 58ps 267ps 100ps 

1/f 

(2.5MHz -

10GHz) 

225ps 469ps 681ps 768ps 

Table 1.  Results of statistics with the second-order demultiplexer-based orthogonator, using 65536 simulation 
points. The numeric frequency and time data scaled up to practical values. 

 

4.2. Base generation by a intersection-based orthogonator and homogenizing their 

outputs 

In Figure 2, a second-order intersection-based orthogonator is demonstrated. Two band-

limited Gaussian white base noises used to generate the original spike trains by their ze-

ro-crossing events. The upper two plots show the original input spike trains of the two 

inputs A and B. The lower three plots correspond to the three orthogonal outputs: AB , 
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BA  and  BA . It is obvious that the pulse frequencies of different output types ( AB  ver-

sus BA  and  BA ) are very different, which can be disadvantageous for practical appli-

cations because different bit values (basis spike trains) may have different speed since the 

first pulse in these bases occurs at widely varying time instants. However, we note that 

some applications may prefer to use the fastest possible rate for high-value bits and lower 

speed at low-value bits as described below. This feature can be utilized to advantage in 

practical applications. Also, note that in all cases, using N original spike trains can result 

in 2
N
 – 1 basis elements. 

The difference in pulse frequencies between the derived pulse trains can however be 

reduced or eliminated by using correlated noises to generate the input spike trains. Such 

an operation is able to “homogenize” spike frequencies at the different outputs while the 

orthogonality is maintained. Figure 2 shows example simulation data for homogenized 

spike frequencies of a second-order orhogonator. The correlation between the two noises 

generating the input spikes is generated by using a third common mode noise, which is 

added to the original noises. The noise amplitude of the common noise is 0.945, while the 

non-correlated noises have an amplitude of 0.055. 

 
Figure 2. Second-order intersection-based orthogonator driven by the zero-crossing events of two independent 

band-limited white noises. Upper two plots: the original input spike trains, lower plots: the three different types 

of orthogonal sub-trains at three outputs. 

It is interesting to note that without homogenization, the slow (AB) bit can be used for the 

lower bit values and the faster ones for the higher values. Thus, in a short time, coinci-

dences between the signal spikes and the fast reference trains' spikes will quickly provide 

a rough output. Then the accuracy of the output will gradually be refined by subsequent 

coincidences between the signal spikes and spikes of the relevant low-bit-value reference 

spikes. 

 
Noncorrelated source Correlated source 

        

A  28 18 28 19 
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90ps 58ps 90ps 61ps 

B  
28 

90ps 

19 

61ps 

28 

90ps 

19 

61ps 

AB  
697 

2.24ns 

678 

2.18ns 

52 

167ps 

46 

148ps 

BA  
29 

93ps 

20 

64ps 

58 

186ps 

53 

170ps 

BA  
30 

96.4ps 

21 

67.5ps 

59 

190ps 

54 

174ps 

Table 2. Computer simulation results on the second order intersection-based orthogonator driven by non-

correlated or specifically correlated noises in order to homogenize pulse rates, using 65536 points. Simulated 
numeric frequency data scaled up to practical values 

In Table 2, the statistical values in the intersection-based second-order orthogonators 

(Figures 2 and 3), the mean interspike intervals ( ) and their RMS fluctuation values (

 ) are shown for the case of non-correlated (Figure 2) and correlated (Figure 3) input 

noises. 

 

Figure 3. Second-order intersection-based orthogonator driven by the zero-crossing events of two strongly 

correlated band-limited white noises. Upper two plots: the original input spike trains, lower plots: the three 

different types of orthogonal sub-trains at three outputs. 

5. Common Logic Operations using Random Spike Trains 

Computation using the random spike trains proceeds along the lines of [1], [2]. Assuming 

we have M orthogonal spike trains, each of these M basis elements can be treated as a 

point in a multi-variable space. Assume that there are K input wires (1, 2, … i … K) for a 

gate, each with iM  possible values, where M
i

M  . Then, elementary set operations 

are performed using the ideas of [1]. In this case, we assume that all values of the 



K  in-
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put wires are members of the same hyperspace. In the case of elementary logic gates, the 

gate operations proceed along the lines of [2]. In this case, the gates have correlators for 

each input, which determine the value of the input in a multi-variable space. Based on the 

input values, the gate drives out an appropriate output, possibly from a different hyper-

space than the hyperspace of the inputs. 

In both the above discussions, the operations are performed extremely quickly since 

the first coincident spike of any neuro-bit can identify it, resulting in an extremely fast 

logic family. Thus elementary gate operations (complementation, logical AND, logical 

OR etc) or elementary set operations (membership tests, set union or intersection) can be 

done extremely fast even though the hyperspace is extremely large. We conjecture that 

the brain may be using such a logic approach, allowing it to do many complex reasoning 

and recognition operations extremely fast. 

A lengthy spike train allows the representation of large amounts of data using the hy-

perspace. Also, a lengthy spike train allows the generation of increased certainty in the 

conclusion, while the first coinciding spike allows for a fast conclusion to be drawn. In-

creased spike frequency can generally allow faster processing at the cost of power.  

6. Why noise spikes and why not periodic? 

Here we present an answer to the question: why should we use stochastically timed spike 

trains generated by a demultiplexer-based orthgonator (like in the brain) instead of peri-

odically timed spike trains? Such a periodic arrangement would provide the best filling 

with the uniform spike trains having the highest spike frequency. 

The answer is straightforward: In the periodic case, the generated orthogonal (that is, 

non-overlapping) periodic spike sequences would have the same pattern; they would be 

the time-shifted versions of each other. Thus, two different basis elements would result in 

aliasing if one of them is appropriately delayed, resulting in an unreliable circuit. Fur-

thermore, generating periodic spike trains in reality is harder, since random spike trains 

are more natural.  While we are using the noisy spike train, each orthogonal vector repre-

sents a unique fingerprint, with a minimal likelihood of aliasing among different basis 

elements. This property appears to be a fundamentally important feature of noise-based 

logic. 

7. Conclusions 

In this paper, we have described a logic approach based on a hyperspace constructed 

from orthogonal (non-overlapping) spike trains. The key strength of this approach is its 

significant speed, high resilience, its ability to implement multi-valued logic and its abil-

ity to transfer several neuro-bits on the same wire simultaneously. We believe that these 

features allow this approach to be a key enabling approach for a new class of computing 

circuits, which can address the problems being faced by the traditional digital design ap-

proaches in use today. We have demonstrated orthogonator circuits, which can be used ot 

generate such orthogonal spike trains from the zero-crossings of white noise sources. We 

show how an orthogonal hyperspace can be constructed from two noise sources, via an 

illustrative example. In practice, several practical issues need to be addressed in order to 

validate this approach, such as environmental noise, wiring delays. By carefully selecting 

the magnitude of our pulses, the noise issue can be addressed. Wiring delays can be ad-

dressed by ensuring that different circuit paths in the design have small differential delay 

values. In the future, we plan to design a digital circuit using this approach for validation 

purposes, and compare the resulting circuit with existing design methodologies. 
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