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Abstract

In this paper we determine the noise properties needed for unconditional security for the ideal Kirchhoff-Law-Johnson-
Noise (KLJN) secure key distribution system using simple statistical analysis. It has already been shown using physical laws
that resistors and Johnson-like noise sources provide unconditional security. However real implementations use artificial
noise generators, therefore it is a question if other kind of noise sources and resistor values could be used as well. We
answer this question and in the same time we provide a theoretical basis to analyze real systems as well.
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Introduction

Communication security is getting more and more important in

many different applications including electronic banking, protect-

ing personal data, securing intellectual property of companies,

transmission of medical data and many more. The Kirchhoff-Law-

Johnson-Noise (KLJN) protocol was introduced as a low cost

unconditionally secure key exchange protocol using only passive

components: four resistors, two switches and interconnecting wires

[1]. The protocol is based only on the laws of classical physics and

has been introduced as an inexpensive alternative to quantum

communicators. The first real implementation has been shown a

few years after its discovery [2,3] and it has inspired the

development of another secret key exchanged method [4]. There

are many potential applications including securing computers,

algorithms and hardware (memories, processors, keyboards, mass

storage media) [5], key distribution over the Smart Grid [6],

ethernet cables [7], uncloneable hardware keys [8]. Several attack

methods has been discussed [9–14], however the ideal KLJN

system is found to be secure. Debates are still going on [15,16] and

recent papers discuss practical considerations for the applications

[17,18].

The KLJN key exchange protocol is rather simple. During the

communication a secret key is generated and shared between the

two communicating parties, Alice and Bob. The system consists of

two communicators and a transmission wire, see Fig. 1. Each

communicator includes two resistors RL and RH and two series

voltage noise sources VLA(t), VHA(t) and VLB(t), VHB(t) representing

the thermal noise of the resistors at Alice and Bob, respectively:

SL(f )~4kTRL ð1Þ

SH(f )~4kTRH ð2Þ

where SL( f ) is the power spectral density of the voltage noise

sources VLA(t), VLB(t) and SH( f ) is the power spectral density of the

voltage noise sources VHA(t), VHB(t); k is the Boltzmann constant

and T is the temperature.

A switch is used to select one of the resistors to be connected to

the wire connecting the two communicators, see Fig. 1. At the

beginning of each bit exchange, both Alice and Bob connect a

resistor (RH or RL) to the wire. If both, Alice and Bob connect the

higher value resistor, the voltage noise level will be high in the

wire. If they both connect the low value resistor, the voltage noise

will be low. If they connect different value resistors, the noise level

will be intermediate and this is invariant if the resistors are

swapped. [1,13]. This level can also be identified by the

eavesdropper, Eve, however she cannot determine who has

chosen the low value resistor. For this reason, this is the secure

state that can be used for key exchange.

Note that in real applications the noise would be too small,

therefore artificial noise generators are used to provide large

enough signals in a given frequency band. In this case, the noise

equivalent temperature is above 109 K [1]. On the other hand

generators can enhance the security and offer new schemes with

higher practical security in the non-ideal situations [17].

Results

According to the papers about the KLJN communication

method the artificial noise generators are only used to emulate

high temperatures, so they must generate Johnson-like noise.

Therefore the security proof based on physical laws remains valid

[1]. Our approach is in some sense opposite to the previous ones,
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when security has been proven for the given noise properties. Here

we determine what the requirements of noise properties for

unconditional security are. On the other hand, our analysis is

based on statistical methods instead of physical laws of thermo-

dynamics, therefore it can be more easily understandable for

computer engineers and software engineers.

Let us assume that the system is operated in the LH situation,

when Alice has switched on the lower value resistor and noise,

while Bob uses the higher value resistor and noise as shown in

Fig. 1.

In this case Eve measures the following voltage VE(t) and current

IE(t) (flowing from Bob’s side towards Alice) in the wire:

VE(t)~
VLA(t):RHzVHB(t):RL

RLzRH
ð3Þ

and

IE(t)~
VHB(t){VLA(t)

RLzRH
ð4Þ

where VLA(t) and VHB(t) are the voltage noise signals at Alice and

Bob, respectively. She can have two hypotheses: the correct one

and the opposite. She can calculate the statistics of Alice’s voltage

noise for both cases. Since she knows the resistor values and the

used voltage noise statistics, it is clear, that she will know that her

assumption is wrong, if she gets invalid values during her

calculations. For the correct assumption she must get correct

results of course. Let us see what happens in the case of the wrong

hypothesis. In this case Eve assumes that the high value resistor has

been chosen by Alice. Therefore she calculates Alice’s noise

voltage VA(t) as:

VA(t)~VE(t){IE(t):RH

~
VLA(t):RHzVHB(t):RL

RLzRH

z
VHB(t){VLA(t)

RLzRH

RH

ð5Þ

VA(t)~
VLA(t):2:RHzVHB(t): RH{RLð Þ

RLzRH
ð6Þ

VA(t)~VLA(t):
2:RH

RLzRH
zVHB(t):

RH{RL

RLzRH
ð7Þ

The variance is given by the sum of variances:

s2
A~s2

L
: 2:RH

RLzRH

� �2

zs2
H
: RH{RL

RLzRH

� �2

ð8Þ

where sA
2 is the variance of VA(t) and sL

2 and sH
2 are the

variances of the voltage noise VLA(t) and VHB(t), respectively.

The communication can only be secure if sA = sH, otherwise

Eve will know that Alice connected the low value resistor and

voltage generator to the wire. Substituting this into Eq. (8) yields:

s2
H

s2
L

1{
RH{RL

RLzRH

� �2
 !

~
2:RH

RLzRH

� �2

ð9Þ

s2
H

s2
L

~
2:RHð Þ2

RLzRHð Þ2{ RH{RLð Þ2

~
4:R2

H

R2
Lz2:RL

:RHzR2
H{ R2

H{2:RL
:RHzR2

L

� �
ð10Þ

s2
H

s2
L

~
RH

RL
ð11Þ

or in other form

sH

sL
~

ffiffiffiffiffiffiffi
RH

RL

r
ð12Þ

Therefore the noise amplitude must depend on the resistance as in

the case of thermal noise; it must be proportional to the square

root of the resistance. Otherwise the communication is certainly

unsecure.

In the following we check how the security depends on the

probability distribution of the noise. When the eavesdropper

makes the correct assumption, she can calculate the noise signal

that Alice is using exactly; therefore she gets the correct probability

distribution of course. When she makes the wrong assumption

then she obtains:

VA(t)~VL(t):
2:RH

RLzRH

zVH(t):
RH{RL

RLzRH

ð13Þ

The probability density pA(x) of VA(t) is given by the convolution

of the probability densities of the two independent terms in Eq.

(13). If p(x) is the probability density function with unity variance,

a~sL
: 2:RH

RLzRH

ð14Þ

and

Figure 1. The KLJN secure communication system.
doi:10.1371/journal.pone.0096109.g001
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b~sH
:RH{RL

RLzRH
ð15Þ

then

s2
A~a2zb2 ð16Þ

where sA2 is the variance of VA(t), and

pA(x)~

ð?
{?

1

a
p

x’
a

� �
: 1

b
p

x{x’
b

� �
dx’ ð17Þ

If Eq. (12) is satisfied, then sA = sH, that is needed for secure

communication. Furthermore pA(x) measured by Eve must also be

identical to the probability density function pH(x) of the noise

voltages VHA(t) and VHB(t), otherwise Eve can detect that her

assumption is wrong. Therefore using Eqs. (16) and (17) pA(x) can

be expressed as.

pA(x)~pH(x)~
1

sH
p

x

sH

� �
~

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2zb2

q p
xffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2zb2
q

0
B@

1
CA ð18Þ

and finally we get

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2zb2

q p
xffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2zb2
q

0
B@

1
CA~

ð?
{?

1

a
p

x’
a

� �
: 1

b
p

x{x’
b

� �
dx’. (19)

Discussion

Eq. (19) is valid for normal distribution only [19], therefore we

can conclude that the noise sources VLA(t), VLB(t) and VHA(t), VHB(t)

must have normal distribution and the ratio of their amplitude

must be equal to the square root of the ratio of the corresponding

resistor values. In other words, Johnson-like noise must be used for

the secure key exchange in the KLJN system. Note that although

several other distributions – for example Cauchy-distribution –

satisfy the condition that the convolution in Eq. (19) does not

change the type of distribution, however the finite variance

required by energetic considerations is only provided by normal

distribution.

It is easy to see that for example random numbers with uniform

distribution can’t be used for secure communication. In this case

Eq. (17) gives a trapezoidal probability density function for pA(x) as

shown on Fig. 2, therefore its deviation from pH(x) can be very

easily detected. We have developed a simple software application

written in LabVIEW that can be used to simulate the KLJN

protocol [20]. Normal or uniform distribution can be selected and

the values of RL, RH, amplitude of VLA(t), VLB(t) and VHA(t), VHB(t)

can be arbitrarily chosen. The application performs Eve’s

calculation of VA(t) for both hypotheses, and plots the correspond-

ing measured amplitudes and probability densities.

Limitations and Open Questions

We have presented a mathematical statistical approach to

determine the noise properties and resistor values required for

secure communication and the results are in agreement with the

original physical approach [1]. On the other hand our work does

not address the question of complete security.

Considerable additional work could be carried out to investigate

several attack types with similar approach. For example, in

practical applications the effect of resistor inaccuracies, wire

resistances can also be analyzed using our method; Eq. (8) can be

applied to find the difference between the observed and expected

variances, sA
2 and sH

2, respectively. This means that the

information leak due to these inaccuracies can be estimated. On

the other hand, if the desired security level is given, the required

resistor values and accuracy of the components can be obtained.

Furthermore one can consider correlation properties, band-

width of the noise sources that is important in practical

applications and discussed in several publications.

Conclusions

In this paper we have shown a mathematical statistical

approach to find out what kind of noise sources are required for

secure communications in the Kirchhoff-Loop-Johnson-Noise

unconditionally secure key exchange system. In agreement with

the results can be found in the literature we found that the noise

amplitude must scale with the square root of the corresponding

resistor value and Gaussian noise sources must be used.

Note that our approach can serve as a starting point to

quantitatively analyze several attack types in practical applications.
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