
 

 

Abstract— In the original CNN paradigm template values are 

defined as constants but several complex tasks can be efficiently 

solved by using nonlinear weights between the CNN cells. 

Unfortunately programmable nonlinear weights can not be 

implemented by using present day analog VLSI technology. In 

this paper a new emulated digital CNN-UM architecture will be 

presented which makes it possible to use zero and first order 

nonlinear templates during emulation. The new architecture is 

based on the Falcon emulated digital CNN-UM architecture and 

implemented on FPGAs. The computing precision of the 

architecture is configurable and the area/speed/accuracy 

tradeoffs are investigated. 

 
Index Terms— Reconfigurable architectures, Cellular neural 

networks, Nonlinear CNN template, Field programmable gate 

arrays 

 

I. INTRODUCTION 

HE Cellular Neural Network (CNN) was invented in 1988 

[1]. The nonlinear CNN paradigm was developed by 

Roska and Chua [2]. In case of nonlinear CNN the 

template values are defined by a nonlinear function of input 

variables (nonlinear B) and the output variables (nonlinear A). 

Most of image processing problems can be solved using linear 

CNN templates but using nonlinear CNN templates several 

complex image processing tasks can be solved more easily 

such as histogram generating [3], Hamming distance 

computing [3], grayscale skeletonization [4]. It is notably 

useful when the nonlinear CNN has just a nonlinear feed-

forward template, because less time is required to solve the 

problem. The linear CNN has several implementations the 

software, the emulated digital VLSI (ASIC/FPGA) and the 

analog VLSI implementation. However several studies proved 

the effectiveness of the nonlinear CNN templates it is not 

supported on the recent CNN implementations. Analog VLSI 

 
 

implementation of a programmable nonlinear CNN is difficult 

by using present day technologies, so the only way is using 

software simulation, but it has even lower performance than in 

the case of linear CNN. Emulated digital implementations can 

be very efficiently used in the emulation of linear CNN arrays 

[5]. Additionally the flexibility of the FPGA implementation 

can be exploited to handle nonlinear CNN templates. In the 

next section two classes of nonlinear templates will be 

introduced. After a brief introduction of the Falcon emulated 

digital CNN-UM architecture the required modifications are 

described to make it possible to use nonlinear CNN templates 

on this architecture. 

 

II. TYPES OF NONLINEARITY 

In case of nonlinear CNN some template values are defined 

by a nonlinear function. This value depends on the difference 

of the currently processed cell and the value of the cell 

belongs to the actual template element. Investigating the CNN 

Template Library two types of nonlinear templates were 

defined. These are the zero and the first order nonlinear 

templates. Classifications of the different nonlinear templates 

are shown in Table I. 

In case of the zero order nonlinear templates the nonlinear 

function contains horizontal segments only as shown in Fig1. 

Zero order nonlinear templates are used for example grayscale 

contour detection [6]. 

In case of the first order nonlinear templates the 

nonlinearity contains straight line segments as shown in Fig1. 

These kinds of nonlinear templates are used for example 

global maximum finding [7]. Naturally there are nonlinear 

templates where the template values are defined by two or 

more different nonlinearities, for example grayscale diagonal 

line detection [8]. 
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Fig. 1.  Zero and first order nonlinearity. 

TABLE I 

CLUSTERING OF NONLINEAR TEMPLATES 

ZERO ORDER NONLINEAR 

TEMPLATES 

FIRST ORDER 

NONLINEAR TEMPLATES 

Contour Extraction Gradient Intensity Estimation 

Game of Life DTCNN Shortest Path (Explore) 

Grayscale Diagonal Line 

Detector 
Gradient Detection 

Grayscale Line Detector 1-D Array Sorting 

Grayscale Mathematical 

Morphology 
Global Maximum Finder 

Grayscale Skeletonization 

(Selection) 

Hamming Distance 

Computation (Min. Distance) 

Hamming Distance Computation 

(Differences) 

Grayscale Skeletonization 

(Replacement) 

Histogramm Generation Tresholded Gradient 

J-Function of Shortest Path 

(Minimum Selection) 

J-Function of Shortest Path 

(Increased J-Function) 

Local Maxima Detector DepthClassification 

Majority Vote Taker 

Nonlinear Wave Metric 

Computation (Current 

Filling) 

Median Filter Spike Generation 4 

Parity Counting  

Sorthest Path (Select)  

III. THE FALCON ARCHITECTURE 

The original Falcon architecture has four main parts. These 

are the Memory Unit, the Template Memory, the Mixer, and 

the Arithmetic Unit. The Memory Unit stores a three line wide 

belt of the processed picture supposing nearest neighborhood 

templates. The Mixer stores the neighborhood of the currently 

processed cell. These elements are required to decrease the 

I/O bandwidth of the processor. The Template Memory stores 

the template values. And finally the Arithmetic Unit calculates 

the new state value of the cell. The architecture of the original 

Falcon processor is shown in Fig. 2. 
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Fig. 2.  The original Falcon architecture. 

IV. THE MODIFIED FALCON ARCHITECTURE 

To implement the nonlinear template runner emulated 

digital CNN-UM architecture the original Falcon structure 

was modified as follows. The Memory, the Mixer and the 

ALU are the same as with the original Falcon processor. But 

the Template memory was changed to be able to handle the 

nonlinear templates and their nonlinearity. These changes will 

be introduced in the next two subsections. As known the 

actual nonlinear template values are defined by the nonlinear 

function of the difference of the currently processed cell and 

the value of the cell belongs to the actual template element. So 

not only are the data from the Memory is needed but also the 

data from the Mixer are required to define the actual nonlinear 

template value so the outputs of the mixer was also connected 

to the Template memory. 

V. ZERO ORDER NONLINEAR TEMPLATE MEMORY 

In the original Falcon processor the template operations are 

performed row-wise. A RAM belongs to every column of a 

template in the Template memory. The actual template values 

are read out from the RAMs and transmit to the input of the 

ALU. In the Template memory of the modified Falcon 

processor also a RAM belongs to every column of the 

template but the values of the segments of the nonlinearity are 

stored in the RAMs. So in case of n segments the RAMs are n 

times larger. In the example the nonlinearity was partitioned 

into four segments as shown in Fig. 3. The segments are 

loaded into the RAMs as shown in Table II. We act upon this 

way because the two MSB bit of the difference which 

mentioned above is used to address the RAMs. In general the 

number of segments is power of two and more MSB bits are 

required. 
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Fig. 3 Example zero order nonlinearity. 



 

TABLE II 

THE CONTENT OF THE RAMS 

Address 

(Segments) 

RAM1 RAM2 RAM3 

0(A) -1 -1 -1 

1(B) -2 -2 -2 

2(C) 2 2 2 

3(D) 1 1 1 

4(A) -1 0 -1 

5(B) -2 0 -2 

6(C) 2 0 2 

7(D) 1 0 1 

8(A) -1 -1 -1 

9(B) -2 -2 -2 

10(C) 2 2 2 

11(D) 1 1 1 

The zero order Falcon processor is shown in Fig. 4. It 

contains three RAMs where the values of the segments of the 

nonlinearity are stored. The three subtractors are used to 

compute the difference for addressing as mentioned above. 

The task of the Shift registers is to timing the data from the 

Mixer and the Memory. 
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Fig. 4.  The zero order nonlinear template memory. 

VI. FIRST ORDER NONLINEAR TEMPLATE MEMORY 

In this case the nonlinear characteristic is defined by a set 

of pice-wise linear function. So in the case of the Template 

memory of the first order Falcon processor six RAMs are 

required. The RAM1, RAM2 and RAM3 store the gradient of 

the function in the section of nonlinearity. The RAM4, RAM5 

and RAM6 store the constant shift of the function in the actual 

section of nonlinearity. The readout of these RAMs is the 

same as the case of the zero order nonlinear template memory. 

To get the nonlinear template value the constant value should 

be added to the product of the address used for readout and 

the adequate gradient value. So in this case three adders and 

three multipliers are required, which raise the latency of the 

Template memory. So the Shift registers are longer to 

eliminate this additional latency. The first order nonlinear 

template memory is shown in Fig. 5. 

RAM

3

Shift

Reg

3

-

S
1
S

2
S

3
T

1
T

2
T

3

State Out(2)

- -

Shift

Reg

1

+

S
1

S
2

S
3

Shift

Reg

2

RAM

6

Shift Reg 4

RAM

5

Addr1 Addr1 Addr3

Mult1 Mult2Mult3

RAM

1

RAM

4

RAM

2

Addr2 Addr3Addr2

+ +

 
Fig. 5.  The first order nonlinear template memory. 



 

VII. TESTING 

A. The implementation of the Falcon processor on the 

FPGA 

The Falcon processor was implemented on the Celoxica 

RC203 development platform board for testing [9]. This 

board contains a Virtex-II 3000 FPGA [10] chip 4 Mb SRAM 

and connects to the computer with a parallel port. To 

implement this processor on the FPGA the Handel-C high 

level hardware description language and DK Design Suite [9] 

were used from Celoxica Inc. To build a real image 

processing system interfaces are needed to the memory, the 

parallel port and the video in and out. To store the partial 

results of the calculation the processor can access the ZBT 

memory through the ZBT interface. The work of the Memory 

Arbitration unit is to decide which unit can use the memory. 

The FIFOs match the bit width of the ZBT memory and the 

functional elements. The Parallel Port interface is used to 

connect to the parallel port and to configure the processor. 

The VGA interface is used to connect the monitor as the 

output of the processor and the Camera interface is used to 

connect the Camera as the input of the processor. These 

interfaces are part of the Platform Abstraction Layer (PAL) 

API from Celoxica. The real operable system on FPGA is 

shown in Fig. 6. 
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Fig. 6.  The real operable system on FPGA XC2V1000/XC2V3000. 

B. Area requirement 

Similarly to the original Falcon processor the precision and 

the number of fraction bits of the state value, the constant 

value (which is determined by the feed forward equation) and 

the template value also can be configured in the case of the 

zero and first order nonlinear Falcon processor. The large 

number of possible configurations does not make it possible to 

investigate all cases. We just want to represent how the area 

requirement changes in case of different bit width and 

precision of data. In this test the precision of gij is set to 10 bit 

and the number of fraction bits is set to 6. The precision of the 

template values are set to 9 and the number of fraction bits is 

set to 7, which seems to be enough for most applications. The 

area requirements of the zero (A) and first (B) order processor 

in case of different state width are shown in the Fig. 7. 

 The investigation shows that the general resource 

requirement of the zero and the first order Falcon processor 

depends on the precision of the state value linearly. Although 

the requirement of the dedicated resource of these processors 

also depends on the precision of the state value. If the 

precision of the template values are changed, a similar 

behavior can be observed. In the next step it was investigated 

how many zero (A) and first (B) order Falcon processor can 

be placed on different kind of FPGAs if the precision of the 

state value is increased from 4 to 36. The results are shown in 

Fig. 8. 

 

General resource requirement

0

500

1000

1500

2000

2500

4 8 12 16 20 24 28 32 36

Flip-Flops(A) Flip-Flops(B) 4 Input LUTs(A)

4 Input LUTs(B) Slice(A) Slice(B)

 

Dedicated resource requirement

0

5

10

15

20

4 8 12 16 20 24 28 32 36

Block RAMs(A) Block RAMs(B)

Multipliers(A) Multipliers(B)

 
Fig. 7.  The area requirement of the zero (A) and first (B) order Falcon 

processor (template width: 9 bit, constant width:10 bit) 
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Fig. 8.  The number of implementable zero (A) and first (B) order Falcon 

processors on different FPGAs. (template width: 9 bit, constant width:10 bit) 

C. The speed of the processors 

The performance of the zero and first order Falcon 

processors are compared to the software simulation. During 

the comparison 18 bit state and 9 bit template precision is 

used. The performance of the software simulation was 

measured on an Athlon64 3200+ processor running on 2GHz 

clock frequency. The measured computing performance of 

this processor was 2 million cell iteration/s in the case of zero 

order nonlinear templates while 1.5 million cell iteration/s was 

measured in the first order case. 

In the case of Virtex-II 3000 FPGA nineteen zero order 

processors can be implemented. The maximum clock 

frequency of the processor is limited to 133MHz by the speed 

of the memories on our RC203 card. The cumulative 

computing performance of these processors is 842 million cell 

iteration/s, which is 421 times faster than the software 

simulation. If the currently available largest FPGA the  

Virtex-4 SX55 is used 39 processors can be implemented 

and 400MHz clock frequency can be achieved. The resulting 

computing performance of the processor array is 5.2 billion 

cell iteration/s, which is 2600 times faster than the software 

simulation. 

Implementation of the first order nonlinear Falcon 

processor requires additional flip-flop and LUT resources 

compared to the zero order case. However these elements can 

be packed more densely and in our test case smaller amount of 

slices is required. This makes it possible to implement 16 

processors on the Virtex-II 3000 and 40 processors on the 

Virtex-4 SX55 FPGA. The maximum clock frequency of the 

first order nonlinear processor is not affected by the higher 

order nonlinearity thus 133MHz and 400MHz clock 

frequency can be achieved on the Virtex-II 3000 and Virtex-4 

SX55 respectively. The computing performance of the first 

order processors is similar to the zero order case. However the 

performance of the conventional microprocessor is smaller in 

this case thus our processors provide higher speedup. Finally 

the computing performance of the zero (A) and first (B) order 

Falcon processors was compared to the software simulation in 

case of Virtex-II 3000 and Virtex 4 SX55. This is shown in 

Fig. 9. 
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Fig. 9.  The comparison of the computing performance of the zero (A) and 

first (B) order Falcon processors on different FPGAs to the software 

simulation. 

VIII. CONCLUSION 

The original Falcon processor was redesigned to be able to 

handle the zero and first order nonlinear template and its 

nonlinearity. To compute the zero and the first order template 

elements the template memory is significantly modified. In the 

zero order case the area requirement of the new processor 

does not increase significantly while in the first order case 

additional dedicated resources (MULT18x18) are required. 

The new architectures are implemented on our RC203 

prototyping board and 421 times speedup is measured 

compared to an AMD Athlon64 3200+ microprocessor. Using 

the currently available largest FPGA even 2600 times higher 

performance can be achieved which makes our architecture 

ideal for real-time image processing tasks. 
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