

Abstract— In the original CNN paradigm template values are

defined as constants but several complex tasks can be efficiently

solved by using nonlinear weights between the CNN cells.

Unfortunately programmable nonlinear weights can not be

implemented by using present day analog VLSI technology. In

this paper a new emulated digital CNN-UM architecture will be

presented which makes it possible to use zero and first order

nonlinear templates during emulation. The new architecture is

based on the Falcon emulated digital CNN-UM architecture and

implemented on FPGAs. The computing precision of the

architecture is configurable and the area/speed/accuracy

tradeoffs are investigated.

Index Terms— Reconfigurable architectures, Cellular neural

networks, Nonlinear CNN template, Field programmable gate

arrays

I. INTRODUCTION

HE Cellular Neural Network (CNN) was invented in 1988

[1]. The nonlinear CNN paradigm was developed by

Roska and Chua [2]. In case of nonlinear CNN the

template values are defined by a nonlinear function of input

variables (nonlinear B) and the output variables (nonlinear A).

Most of image processing problems can be solved using linear

CNN templates but using nonlinear CNN templates several

complex image processing tasks can be solved more easily

such as histogram generating [3], Hamming distance

computing [3], grayscale skeletonization [4]. It is notably

useful when the nonlinear CNN has just a nonlinear feed-

forward template, because less time is required to solve the

problem. The linear CNN has several implementations the

software, the emulated digital VLSI (ASIC/FPGA) and the

analog VLSI implementation. However several studies proved

the effectiveness of the nonlinear CNN templates it is not

supported on the recent CNN implementations. Analog VLSI

implementation of a programmable nonlinear CNN is difficult

by using present day technologies, so the only way is using

software simulation, but it has even lower performance than in

the case of linear CNN. Emulated digital implementations can

be very efficiently used in the emulation of linear CNN arrays

[5]. Additionally the flexibility of the FPGA implementation

can be exploited to handle nonlinear CNN templates. In the

next section two classes of nonlinear templates will be

introduced. After a brief introduction of the Falcon emulated

digital CNN-UM architecture the required modifications are

described to make it possible to use nonlinear CNN templates

on this architecture.

II. TYPES OF NONLINEARITY

In case of nonlinear CNN some template values are defined

by a nonlinear function. This value depends on the difference

of the currently processed cell and the value of the cell

belongs to the actual template element. Investigating the CNN

Template Library two types of nonlinear templates were

defined. These are the zero and the first order nonlinear

templates. Classifications of the different nonlinear templates

are shown in Table I.

In case of the zero order nonlinear templates the nonlinear

function contains horizontal segments only as shown in Fig1.

Zero order nonlinear templates are used for example grayscale

contour detection [6].

In case of the first order nonlinear templates the

nonlinearity contains straight line segments as shown in Fig1.

These kinds of nonlinear templates are used for example

global maximum finding [7]. Naturally there are nonlinear

templates where the template values are defined by two or

more different nonlinearities, for example grayscale diagonal

line detection [8].

Implementation of Nonlinear Template Runner

Emulated Digital CNN-UM on FPGA

Z. Kincses* Z. Nagy† P. Szolgay‡
*†Department of Image Processing and Neurocomputing, University of Pannonia, Hungary

*e-mail: kincsesz@vision.vein.hu
†e-mail: nagyz@almos.vein.hu

‡Analogic and Neural Computing Laboratory, Computer and Automation Institute of HAS, Budapest,

Hungary

e-mail: szolgay@sztaki.hu

T

0.5

a

V
uij

-V
ukl

0.18-0.18

a

V
yij

-V
ykl

0.125

0.25

-1-2

Fig. 1. Zero and first order nonlinearity.

TABLE I

CLUSTERING OF NONLINEAR TEMPLATES

ZERO ORDER NONLINEAR

TEMPLATES

FIRST ORDER

NONLINEAR TEMPLATES

Contour Extraction Gradient Intensity Estimation

Game of Life DTCNN Shortest Path (Explore)

Grayscale Diagonal Line

Detector
Gradient Detection

Grayscale Line Detector 1-D Array Sorting

Grayscale Mathematical

Morphology
Global Maximum Finder

Grayscale Skeletonization

(Selection)

Hamming Distance

Computation (Min. Distance)

Hamming Distance Computation

(Differences)

Grayscale Skeletonization

(Replacement)

Histogramm Generation Tresholded Gradient

J-Function of Shortest Path

(Minimum Selection)

J-Function of Shortest Path

(Increased J-Function)

Local Maxima Detector DepthClassification

Majority Vote Taker

Nonlinear Wave Metric

Computation (Current

Filling)

Median Filter Spike Generation 4

Parity Counting

Sorthest Path (Select)

III. THE FALCON ARCHITECTURE

The original Falcon architecture has four main parts. These

are the Memory Unit, the Template Memory, the Mixer, and

the Arithmetic Unit. The Memory Unit stores a three line wide

belt of the processed picture supposing nearest neighborhood

templates. The Mixer stores the neighborhood of the currently

processed cell. These elements are required to decrease the

I/O bandwidth of the processor. The Template Memory stores

the template values. And finally the Arithmetic Unit calculates

the new state value of the cell. The architecture of the original

Falcon processor is shown in Fig. 2.

Memory Unit

Mixer
Template

Memory

Arithmetic Unit

State In

State In ConstOut

ConstIn

TemplSelOut

TemplSelIn

LeftOut
LeftIn

RightOut
RightIn

Fig. 2. The original Falcon architecture.

IV. THE MODIFIED FALCON ARCHITECTURE

To implement the nonlinear template runner emulated

digital CNN-UM architecture the original Falcon structure

was modified as follows. The Memory, the Mixer and the

ALU are the same as with the original Falcon processor. But

the Template memory was changed to be able to handle the

nonlinear templates and their nonlinearity. These changes will

be introduced in the next two subsections. As known the

actual nonlinear template values are defined by the nonlinear

function of the difference of the currently processed cell and

the value of the cell belongs to the actual template element. So

not only are the data from the Memory is needed but also the

data from the Mixer are required to define the actual nonlinear

template value so the outputs of the mixer was also connected

to the Template memory.

V. ZERO ORDER NONLINEAR TEMPLATE MEMORY

In the original Falcon processor the template operations are

performed row-wise. A RAM belongs to every column of a

template in the Template memory. The actual template values

are read out from the RAMs and transmit to the input of the

ALU. In the Template memory of the modified Falcon

processor also a RAM belongs to every column of the

template but the values of the segments of the nonlinearity are

stored in the RAMs. So in case of n segments the RAMs are n

times larger. In the example the nonlinearity was partitioned

into four segments as shown in Fig. 3. The segments are

loaded into the RAMs as shown in Table II. We act upon this

way because the two MSB bit of the difference which

mentioned above is used to address the RAMs. In general the

number of segments is power of two and more MSB bits are

required.

21-2 -1

-2

-1

2

1

u
ij
-u

kl

a

AC BD

Fig. 3 Example zero order nonlinearity.

TABLE II

THE CONTENT OF THE RAMS

Address

(Segments)

RAM1 RAM2 RAM3

0(A) -1 -1 -1

1(B) -2 -2 -2

2(C) 2 2 2

3(D) 1 1 1

4(A) -1 0 -1

5(B) -2 0 -2

6(C) 2 0 2

7(D) 1 0 1

8(A) -1 -1 -1

9(B) -2 -2 -2

10(C) 2 2 2

11(D) 1 1 1

The zero order Falcon processor is shown in Fig. 4. It

contains three RAMs where the values of the segments of the

nonlinearity are stored. The three subtractors are used to

compute the difference for addressing as mentioned above.

The task of the Shift registers is to timing the data from the

Mixer and the Memory.

RAM

2

Shift

Reg

3

-

S
1

S
2

S
3

T
1

T
2

T
3

State Out(2)

- -Shift

Reg

1

S
1

S
2

S
3

Shift

Reg

2
RAM

3

Shift Reg 4

RAM

1

Addr1 Addr2 Addr3

Fig. 4. The zero order nonlinear template memory.

VI. FIRST ORDER NONLINEAR TEMPLATE MEMORY

In this case the nonlinear characteristic is defined by a set

of pice-wise linear function. So in the case of the Template

memory of the first order Falcon processor six RAMs are

required. The RAM1, RAM2 and RAM3 store the gradient of

the function in the section of nonlinearity. The RAM4, RAM5

and RAM6 store the constant shift of the function in the actual

section of nonlinearity. The readout of these RAMs is the

same as the case of the zero order nonlinear template memory.

To get the nonlinear template value the constant value should

be added to the product of the address used for readout and

the adequate gradient value. So in this case three adders and

three multipliers are required, which raise the latency of the

Template memory. So the Shift registers are longer to

eliminate this additional latency. The first order nonlinear

template memory is shown in Fig. 5.

RAM

3

Shift

Reg

3

-

S
1
S

2
S

3
T

1
T

2
T

3

State Out(2)

- -

Shift

Reg

1

+

S
1

S
2

S
3

Shift

Reg

2

RAM

6

Shift Reg 4

RAM

5

Addr1 Addr1 Addr3

Mult1 Mult2Mult3

RAM

1

RAM

4

RAM

2

Addr2 Addr3Addr2

+ +

Fig. 5. The first order nonlinear template memory.

VII. TESTING

A. The implementation of the Falcon processor on the

FPGA

The Falcon processor was implemented on the Celoxica

RC203 development platform board for testing [9]. This

board contains a Virtex-II 3000 FPGA [10] chip 4 Mb SRAM

and connects to the computer with a parallel port. To

implement this processor on the FPGA the Handel-C high

level hardware description language and DK Design Suite [9]

were used from Celoxica Inc. To build a real image

processing system interfaces are needed to the memory, the

parallel port and the video in and out. To store the partial

results of the calculation the processor can access the ZBT

memory through the ZBT interface. The work of the Memory

Arbitration unit is to decide which unit can use the memory.

The FIFOs match the bit width of the ZBT memory and the

functional elements. The Parallel Port interface is used to

connect to the parallel port and to configure the processor.

The VGA interface is used to connect the monitor as the

output of the processor and the Camera interface is used to

connect the Camera as the input of the processor. These

interfaces are part of the Platform Abstraction Layer (PAL)

API from Celoxica. The real operable system on FPGA is

shown in Fig. 6.

Paralel

Port

Inerface

Camera

Interface

Celoxica

PAL

VGA

Interface

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

Falcon

Celoxica

PAL

Celoxica

PAL

GAPU

Z
B

T
 I
n

te
r
fa

c
e

M
e
m

o
r
y
 A

r
b

it
r
a
ti

o
n

 U
n

it

P
a
r
a

le
l

P
o

r
t

to
 H

o
s
t

V
G

A
 D

A
C

V
id

e
o

In
p

u
t

P
r
o

c
e
s

s
o

r

Z
B

T
 S

R
A

M
0

Z
B

T
 S

R
A

M
1

Fig. 6. The real operable system on FPGA XC2V1000/XC2V3000.

B. Area requirement

Similarly to the original Falcon processor the precision and

the number of fraction bits of the state value, the constant

value (which is determined by the feed forward equation) and

the template value also can be configured in the case of the

zero and first order nonlinear Falcon processor. The large

number of possible configurations does not make it possible to

investigate all cases. We just want to represent how the area

requirement changes in case of different bit width and

precision of data. In this test the precision of gij is set to 10 bit

and the number of fraction bits is set to 6. The precision of the

template values are set to 9 and the number of fraction bits is

set to 7, which seems to be enough for most applications. The

area requirements of the zero (A) and first (B) order processor

in case of different state width are shown in the Fig. 7.

 The investigation shows that the general resource

requirement of the zero and the first order Falcon processor

depends on the precision of the state value linearly. Although

the requirement of the dedicated resource of these processors

also depends on the precision of the state value. If the

precision of the template values are changed, a similar

behavior can be observed. In the next step it was investigated

how many zero (A) and first (B) order Falcon processor can

be placed on different kind of FPGAs if the precision of the

state value is increased from 4 to 36. The results are shown in

Fig. 8.

General resource requirement

0

500

1000

1500

2000

2500

4 8 12 16 20 24 28 32 36

Flip-Flops(A) Flip-Flops(B) 4 Input LUTs(A)

4 Input LUTs(B) Slice(A) Slice(B)

Dedicated resource requirement

0

5

10

15

20

4 8 12 16 20 24 28 32 36

Block RAMs(A) Block RAMs(B)

Multipliers(A) Multipliers(B)

Fig. 7. The area requirement of the zero (A) and first (B) order Falcon

processor (template width: 9 bit, constant width:10 bit)

Number of implementable processors

0

10

20

30

40

50

60

70

4 8 12 16 20 24 28 32 36

Virtex-II 3000(A) Virtex-II 3000(B)

Virtex 4 SX55(A) Virtex 4 SX55(B)

Fig. 8. The number of implementable zero (A) and first (B) order Falcon

processors on different FPGAs. (template width: 9 bit, constant width:10 bit)

C. The speed of the processors

The performance of the zero and first order Falcon

processors are compared to the software simulation. During

the comparison 18 bit state and 9 bit template precision is

used. The performance of the software simulation was

measured on an Athlon64 3200+ processor running on 2GHz

clock frequency. The measured computing performance of

this processor was 2 million cell iteration/s in the case of zero

order nonlinear templates while 1.5 million cell iteration/s was

measured in the first order case.

In the case of Virtex-II 3000 FPGA nineteen zero order

processors can be implemented. The maximum clock

frequency of the processor is limited to 133MHz by the speed

of the memories on our RC203 card. The cumulative

computing performance of these processors is 842 million cell

iteration/s, which is 421 times faster than the software

simulation. If the currently available largest FPGA the

Virtex-4 SX55 is used 39 processors can be implemented

and 400MHz clock frequency can be achieved. The resulting

computing performance of the processor array is 5.2 billion

cell iteration/s, which is 2600 times faster than the software

simulation.

Implementation of the first order nonlinear Falcon

processor requires additional flip-flop and LUT resources

compared to the zero order case. However these elements can

be packed more densely and in our test case smaller amount of

slices is required. This makes it possible to implement 16

processors on the Virtex-II 3000 and 40 processors on the

Virtex-4 SX55 FPGA. The maximum clock frequency of the

first order nonlinear processor is not affected by the higher

order nonlinearity thus 133MHz and 400MHz clock

frequency can be achieved on the Virtex-II 3000 and Virtex-4

SX55 respectively. The computing performance of the first

order processors is similar to the zero order case. However the

performance of the conventional microprocessor is smaller in

this case thus our processors provide higher speedup. Finally

the computing performance of the zero (A) and first (B) order

Falcon processors was compared to the software simulation in

case of Virtex-II 3000 and Virtex 4 SX55. This is shown in

Fig. 9.

Speed of the processor

0

1000

2000

3000

4000

5000

6000

4 8 12 16 20 24 28 32 36

Virtex-II 3000(A) Virtex-II 3000(B)

Virtex 4 SX55(A) Virtex 4 SX55(B)

Fig. 9. The comparison of the computing performance of the zero (A) and

first (B) order Falcon processors on different FPGAs to the software

simulation.

VIII. CONCLUSION

The original Falcon processor was redesigned to be able to

handle the zero and first order nonlinear template and its

nonlinearity. To compute the zero and the first order template

elements the template memory is significantly modified. In the

zero order case the area requirement of the new processor

does not increase significantly while in the first order case

additional dedicated resources (MULT18x18) are required.

The new architectures are implemented on our RC203

prototyping board and 421 times speedup is measured

compared to an AMD Athlon64 3200+ microprocessor. Using

the currently available largest FPGA even 2600 times higher

performance can be achieved which makes our architecture

ideal for real-time image processing tasks.

REFERENCES

[1] Chua, L.O., Yang, L., Cellular Neural Networks: Theory, IEEE

TRAMs. on Circuits and Systems, 1988, (35): 1257-1272.

[2] T. Roska and L. O. Chua, "Cellular Neural networks with nonlinear and

delay-type template elements and non-uniform girds," Int. J. Circuit

Theory and Applications, vol. 20, pp. 469-481, 1992

[3] P. L. Venetianer, K. R. Crounse, P. Szolgay, T. Roska, and L. O. Chua,

“Analog Combinatorics and Cellular Automata – Key Algorithms and

Layout Design using CNN”, Proceedings of the International Workshop

on Cellular Neural Networks and their Applications CNNA, 1994, pp.

249-256, Rome.

[4] P. L. Venetianer, F. Werblin, T. Roska, and L. O. Chua, “Analogic

CNN Algorithms for Some Image Compression and Restoration

Tasks”, IEEE Transactions on Circuits and Systems, 1995, Vol. 42, No.

5.

[5] Nagy, Z., Szolgay P., Configurable Multi-Layer CNN-UM Emulator on

FPGA, IEEE Transactions on Circuits and Systems I: Fundamental

Theory and Applications, 2003, (50): 774-778.

[6] T. Boros, K. Lotz, A. Radványi, and T. Roska, “Some Useful New

Nonlinear and Delay-type Templates”, Research report of the

Analogical and Neural Computing Laboratory, Computer and

Algorithmic Research Institute, Hungarian Academy of Science, 1991,

(MTA SzTAKI), DNS-1-1991, Budapest.

[7] L. O. Chua, T. Roska, T. Kozek, and Á. Zarándy, “The CNN Paradigm

– A Short Tutorial ”, Cellular Neural Networks, T. Roska, and J.

Vandewalle, editors, John Wiley and Sons, New York, 1993, pp. 1-14.

[8] CNN Software Library, ANALOGIC Computers LTD, Budapest, 2000.

[9] Xilinx Inc. Homepage: www.xilinx.com

[10] Celoxica Homepage: www.celoxica.com

