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Fluctuation enhanced sensing (FES) is a promising method to improve the selectivity and 

sensitivity of semiconductor and nanotechnology gas sensors. Most measurement setups 

include high cost signal conditioning and data acquisition units as well as intensive data 

processing. However, there are attempts to reduce the cost and energy consumption of the 

hardware and to find efficient processing methods for low cost wireless solutions. In our paper 

we propose highly efficient signal processing methods to analyze the power spectral density of 

fluctuations. These support the development of ultra-low-power intelligent fluctuation 

enhanced wireless sensor nodes while several further applications are also possible. 
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Introduction 

Fluctuation enhanced sensing (FES) has become an active research area in 

the field of gas sensors since its introduction a few years ago [1]. Typically, 

measuring the DC value of sensor resistance is used to determine the gas 

concentration. In this case, each sensor is calibrated and prepared for a 

certain type of gas, therefore several sensors are used in parallel to detect 

and measure gas mixtures. The FES principle uses the time-dependent 

fluctuations of the sensors’ resistance as an information source. Measuring 

these fluctuations caused by adsorption-desorption and diffusion noise 
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provides enhanced selectivity and sensitivity, therefore it could be used to 

measure different gases or mixtures even with a single sensor. There are 

several examples of successful applications, including gas mixture detection, 

harmful gas and bacterial odor sensing using Taguchi sensors [2-4], 

increasing selectivity of nanotechnology gas sensors [5-9] and detecting 

scents using semiconductor sensors [10]. 

A typical measurement setup requires high cost signal conditioning and 

data acquisition units. Data processing is usually done offline by using high 

performance personal computers that perform complex calculations 

including spectral analysis, removal of external interferences and pattern 

recognition [5-7]. During the last few years, suggestions have been made to 

replace these complex systems by small, wireless data acquisition modules 

[11-13]. In addition, different methods with low processing needs have been 

simultaneously proposed [14, 15]. In the case of the binary fingerprint 

method [14], the power spectrum of the noise is divided into different 

regions. The signal power present in these regions is used to determine the 

components of a gas mixture. Different, band-pass and low-pass filter based 

units were designed to support this analysis method [16, 17]. 

Recently, we have developed a complete, standalone intelligent FES 

sensor node [13] based on the principle of measuring the variance of the 

noise at the outputs of eight first order low-pass filters with logarithmically 

distributed corner frequencies. These filters are used to estimate the power 

of the noise in different frequency regions [14]. In our current paper we 

propose two different power spectral density reconstruction methods using 

the same system and analyze their performance in detail. We also compare 

the performance of the proposed methods with Fourier-transformation 

based ones. Our measurement and analysis system contains the entire 

analogue and digital signal processing required for efficient universal 

spectral estimation in wireless sensing and sensor networks. Consequently, 

it has applications in several interdisciplinary fields other than FES as well. 
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System 

 

Fig. 1. Block diagram of the low power FES device 

Fig. 1 contains the block diagram of the intelligent sensor node. The 

processing unit is a low-power high-performance mixed signal 

microcontroller (C8051F410). The unit is designed to process the noise of 

semiconductors (Taguchi) or nanotechnology based sensors. The excitation 

of the sensor is provided by a current generator with selectable current 

levels. A 1 Hz high-pass filter is used to remove the DC component of the 

sensor output, and an amplification of 1000 is applied to ensure proper 

signal levels. This signal is fed into a bank of first order passive RC low-pass 

filters. We estimated the power spectra of the noise by measuring only the 

average output power level of each filter. We used eight filters with the 

following logarithmically distributed nominal corner frequencies: 10 Hz, 

27 Hz, 72 Hz, 193 Hz, 518 Hz, 1389 Hz, 3728 Hz and 10000 Hz. The outputs 

of the filters are selected using a built-in analogue multiplexer of the 

microcontroller and then digitized by a precision 12-bit analogue-to-digital 

converter. An aggregate sampling frequency of 8 kHz was used, resulting a 

1 kHz effective sampling frequency for each filter. Note that while this 

frequency does not satisfy the sampling theorem, we need to measure the 

output power level of the output only, which can be measured even by 

undersampling, since the signal and the sampling time instants are 

uncorrelated. The output variance of each filter can be sent to a host com-

puter via USB or wireless link for further processing. However, our aim was 

to find efficient signal processing algorithms for recognizing gas 

concentration and gas mixtures directly by the sensor node itself. The power 

consumption of the system, the effect of the precision of the filters and the 

effect of measurement length are evaluated in our previous publication [13].  
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Methods 

Our proposed data processing method is based on the principle of 

approximating the resistance fluctuation’s power spectral density (PSD) 

using the measured power of the adjacent frequency bands at the outputs of 

the low-pass filter bank. We have examined the sensitivity and selectivity of 

the sensor node and evaluated the PSD reconstruction methods theoretically 

and by numerical simulations as well. 

Estimation of each filter’s output power 

We estimated the output power (variance) of each filter for signals with 

different power spectral densities. In order to calculate the variance, one can 

use the following equation:  
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where X(f) is the PSD of the signal’s output noise, σi2 is the variance of ith fil-

ter’s output, and fmax is the bandwidth of the system. Since we wanted our 

method to work for arbitrary spectral dependence, we used numerical 

integration to calculate the result. The parameters of the integration are: Δf 

= 0.1 Hz, fmax = 1 MHz. 

We also used numerically simulated measurements in order to 

approximate the output variance of the filter. By performing multiple 

measurements, we could also approximate the standard deviation (SD) of 

each measured variance. In order to be able to work with arbitrary spectral 

densities, we used Fourier-transformation based methods to generate an 

arbitrary signal as well as to implement low-pass and high-pass filters. Each 

signal was generated using a sampling frequency of 100 kHz, the duration 

was 10 s [13]. The output of each filter was resampled at 1 kHz to simulate 

the operation of the sensor node. Each variance value was calculated using 

10000 samples. 
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PSD reconstruction methods 

The direct method for spectrum reconstruction assumes ideal low-pass and 

high-pass filters, thus power present in the ith frequency band is equal to σi
2- 

σi-1
2. Based on this assumption the reconstructed PSD amplitude is given by: 
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where fi is the cut-off frequency of the ith filter and fh is the cut-off frequency 

of the high-pass filter. The x coordinates of the spectrum are given by the 

geometric mean of the beginning and the end of selected band:  
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While implementing this method is really simple, it does not take the 

transfer function of the applied filters into account. For this reason, we used 

an alternative method, the 1/f normalized method. 

Assuming, that we have a 1/f noise at the output of the sensor, we can 

calculate the expected variances at the output of each filter according to the 

following formula:  
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Note that this noise is generated by 1/f filtering of a white noise with 

variance of 1 V2 and bandwidth of fmax. As in the case of direct method, we 

can also calculate the power of the ith frequency band: σNi
2- σNi-1

2. Since the 

PSD of the measured noise will differ from the reference noise, the measured 

power in this band will be different from this value. The ratio between the 

power levels will be approximately equal to the ratio between the two PSD-s 

in this band. According to the previous assumption, we give the PSD 

approximation by the following formula:  
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where the frequencies fi* are calculated in the same way as given in Eq. (3). 

The eight values of σNi2 can be calculated and stored in a look-up table in 

the microcontroller. As a result, the second method does not require 

significantly more resources than the first one. In Fig. 2 we compare the 

performance of the two methods in case of 1/f noise. We can observe, as 

expected, that the weighted method gives exactly the 1/f spectrum. Note 

that the direct method also gives a good approximation of the spectrum. By 

multiplying the PSD values with the frequency we can enlarge the deviation 

from the ideal 1/f spectrum. In the case of the first frequency band of the 

direct method, the deviation is significant. Thus, we can conclude that the 

results of the simulations are in accordance with the theoretical results. 

 

Fig. 2. Comparing the result of the presented methods in the case of 1/ f  noise. 

On the right side the PSD is multiplied by the frequency to enlarge the 

deviations. Note that the theoretical values of the reconstructed PSD are 

interpreted only in eight points, we connected them only to increase the 

readability of the figure.   

On Fig. 3 we examine the performance of the two methods in case of 1/fα 

noises. While the normalized method does not give the exact PSD values, it 

still performs much better than the direct method. For this reason, in the 

following sections of the paper we will only use the normalized method. 
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Fig. 3. Comparing the performance of the two methods in the case of 1/ f  1 .2 

(left) and 1/f   0 .8 (right). The vertical scale is logarithmic. 

Evaluation of the required number of filters 

In order to test the resolution of the spectral reconstruction method we 

added a plateau (or peak) to 1/f noise PSD as defined by Eq. (6) and 

illustrated on Fig. 4. The maximum deviation from the 1/f noise occurs at fc, 

the center frequency of the plateau (316 Hz), the width of the peak is Δf 

(158 Hz) and the amplitude is two times higher than the amplitude of 1/f 

noise at the center frequency (A = 1).  
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Fig. 4. The PSD of the noise used to test the resolution of the spectral 

reconstruction method. 

On the left side of Fig. 5 we can observe the result of the reconstruction 

using eight filters. We can see that the peak in the reconstruction is 

significantly wider than the original one due to the moderate roll-off of the 
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low pass filters. In the case of sixteen filters, the width does not decrease, 

however, we get the wide peak with much higher resolution. 

The slow decay of first order filters (20 dB/decade) is the major limiting 

factor of the resolution of the method. To increase the resolution one may 

use higher order filters, deconvolution based methods or even more 

complex algorithms [18]. However, these methods would significantly 

increase the complexity and power consumption of the sensor node. 

 

Fig. 5. The reconstruction of a plateau (peak) in the PSD. Both the PSD and 

the reconstruction is multiplied by f to i ncrease the readability of the figure. 

On the left 8 filters were used, while on the right 16 filters.  

Results and discussion 

In the next section we analyze the performance of the proposed 1/f 

normalized PSD reconstruction method. We perform test using 1/fα noises 

with different exponents, test the effect of different peak heights and widths 

and we also test our method by simulating signals with PSD identical of 

different published measurement results.  

Reconstructing artificial noises with different PSD-s 

On the left side of Fig. 6 we demonstrate the performance of the normalized 

method in the case of different 1/fα noises. The exponents of the noises were 

0.8, 0.9, 1.0, 1.1, and 1.2 respectively. The error bars were calculated based 

on 20 simulations each, showing the standard deviation of the variance. In 

the case of the first band, the error is higher than in the case of higher 
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frequency bands, but still very low. This low error value can give us the 

opportunity to reduce the length of the measurement and to save power. 

 

Fig. 6. On the left the reconstruction of different 1/ fα noises is illustrated. On 

the right the result of the PCA analysis for the same noises is shown .  

In our previous work [5-7] we have used PCA based pattern recognition 

methods in order to distinguish between different kinds of gases. In the 

referred works the PCA was calculated from the averaged spectrums, each of 

them consisting of around 2000 points. Our reconstruction method provides 

only 8 points as an input for the PCA analysis. However, as seen on the right 

side of Fig. 6, these 8 points give enough information to distinguish between 

different noise exponents while the processing time is reduced radically. 

In addition, we have examined the effect of amplitude of the peak. The 

parameters A for the peaks were −0.5, 0.0, 0.5, 1.0, and 2.0 respectively. As 

can be seen in Fig. 7 the different PSD-s can be clearly distinguished from 

each other both by spectral recognition, and by PCA analysis. 

 

Fig. 7. The spectral reconstruction in the case of different PSD peak 

amplitudes.  
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Moreover, we have tested the reconstruction algorithm for peaks with 

different widths. Δf values of 15 Hz, 30 Hz, 70 Hz, 157 Hz and 300 Hz were 

used. As it is displayed on Fig. 8, wide peaks with high power can be rather 

accurately recognized. In the case of narrow peaks, the frequency bands 

close to them differ from the reference values; this difference is slightly 

higher than the SD of the variance. However the PCA point groups in the case 

of narrow peaks overlap (Fig. 9). As a result, we conclude that PCA analysis 

in its current form may not be the best classification method for the current 

application. At the same time, the points of the reconstructed PSD are 

suitable as an input data for more elaborated pattern recognition methods 

like support vector machine [15, 19, 20]. 

 

Fig. 8. The effect of the bandwidth of the peaks.  

 

Fig. 9. The PCA analysis of the effect of the bandwidth of the peaks.  

Reconstruction examples of measured spectra 

In order to test our algorithm, we have generated noises based on the PSD of 

noise depending on bacterial odors [14 Fig. 6]. As illustrated in Fig. 10 the 

reconstruction can detect the presence of bacteria and distinguish between 
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different bacterium types. The groups of dots can also be distinguished in 

the calculated PCA plots. 

 

Fig. 10. Reconstruction of PSD in the case of bacteria odor sensing on the left, 

and the results of the PCA algorithm on the right. 

In the second analysis we generated the test noise with similar PSD that 

had been previously observed in a carbon nanotube gas sensors in 50 ppm 

CO and 50 ppm N2O environments. Our goal was to contrast the performan-

ce of the gas detection compared to the PCA based method described in [5]. 

For each measurement point we calculated the PSD of the noise by averaging 

100 spectra consisting of 4096 samples per spectrum. The sampling 

frequency was 10 kHz and we used the spectrum components over 100 Hz 

for the PCA analysis. The result of the analysis for the simulated signals is 

shown on the left side of Fig. 11. Our method uses the same measurement 

length (40.96 s) while the sampling frequency was 1 kHz per filter. As it can 

be seen on the right side of Fig. 11, our method performs as well as the 

original one. Note that while the value of PCA components cannot be directly 

compared to each other since they used input data with different orders of 

magnitude, the signal-to-noise ratio can be compared based on the results. 
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Fig. 11. Comparing the performance of pattern reco gnition method 

introduced in [5] (left side) with our PSD reconstruction method (right side) 

in the case of simulated noises corresponding to a carbon nanotube sensor in 

50 ppm CO and 50 ppm N2O environments. 

Conclusion 

In the present paper we investigated two spectral reconstruction methods 

that use output signals of an analogue low-pass filter bank. The 

reconstruction methods were designed to be used with our recently 

presented low power wireless sensor node and optimized to estimate PSDs 

similar to the PSD of 1/f noises. We tested the performance of the methods 

using different spectral densities and found that – although the resolution is 

rather limited – even slightly different spectral densities can be 

distinguished. This feature supports low power FES measurements in small 

devices. Moreover, the output data of the PSD reconstruction can be used as 

an input for different pattern recognition algorithms. We compared the per-

formance to previously used pattern recognition methods, and we found 

that the same precision requires at least 50 times less operations and 20 

times less memory size. Since our algorithm can be implemented by using 

only 16 or 32 bit integer arithmetic, combined with the low memory needs, 

it can be embedded into ultra-low-power microcontrollers, while the FFT 

based method exceeds the possibilities of the hardware. 

The 1/f normalized method is fine-tuned for processing 1/f like noises, 

but by modifying Eq. (4) and (5) it can be applied for other signal types as 

well. The possible applications include gas mixture detection, bacterial odor 

and scent sensing by very low power intelligent sensor nodes. Note that 



R. Mingesz, G. Vadai and Z. Gingl 

reliability testing, vibration monitoring or other tasks requiring spectral 

analysis done by power efficient compact devices might also be supported. 
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