Surface Science 286 (1993) 233-245 North-Holland

# Interaction of $CF_3I$ with Pt(111)

Z.-M. Liu, X.-L. Zhou, J. Kiss and J.M. White

Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712, USA

Received 2 October 1992; accepted for publication 16 December 1992

The interaction of CF<sub>3</sub>I with Pt(111) has been studied using temperature programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS), high resolution electron energy loss spectroscopy (HREELS) and work function change  $(\Delta\phi)$ . CF<sub>3</sub>I adsorbs molecularly at 85 K. Upon heating, all of the multilayer and part of the monolayer desorb at 100 and 168 K, respectively. The rest of the monolayer dissociates in two competitive channels. The first leads to CF<sub>3</sub> and atomic I and the second to CF<sub>2</sub> and halogens, with some evidence for IF. In the second, CF<sub>2</sub> radicals desorb promptly as they are formed (~ 150 K). When H(a) is present, reaction-limited HF desorption occurs at 220 K, a product attributed to decomposition of IF. In the presence of H(a), some CF(d3 is hydrogenated to form CF<sub>3</sub>H which desorbs at 174 K. The remainder is stabilized; most desorbs as radicals at 623 K, but a small amount dissociates to produce CF<sub>2</sub>, which desorbs with peaks at 750 and 850 K.

## 1. Introduction

Besides intrinsic interest, studying the surface chemistry of  $C_1$  fluorocarbons is motivated by technological applications and environmental problems. This work was also motivated by our desire to compare  $CF_x$  and  $CH_x$  fragments on metal surfaces. While numerous commercial surface cleaning, etching, and lubricating processes involve fluorocarbons, little surface science has been reported on the simplest of these – the  $C_1$ fluorocarbons. On well-characterized metals,  $CF_3I$  has been studied on Ni(100) [1,2], Ru(001) [3] and Ag(111) [4].  $CF_3CI$ , activated with low energy electrons and UV photons, has been studied on Pt(111) [5].

In this paper, we describe the thermal chemistry of CF<sub>3</sub>I on Pt(111) as reflected in TPD, XPS, HREELS and work function  $(\Delta\phi)$  changes. In one dissociative channel, the weakest bond, C-I, is easily cleaved to form CF<sub>3</sub> and I, which, at low coverage, can occur even at 100 K. The CF<sub>3</sub> is either stabilized by the substrate, resulting in CF<sub>3</sub> desorption and dissociation around 600 K, or reacts in the presence of H(a) to form CF<sub>3</sub>H, which desorbs at 174 K. There is a second dissociative channel, evidenced by low temperature  $CF_2$  desorption, which is attributed to a competitive intramolecular reaction that forms adsorbed IF.

## 2. Experimental

The experiments were carried out in three different ultrahigh vacuum chambers, which, where comparisons were possible, gave consistent results. One chamber was equipped with temperature programmed desorption (TPD), high resolution electron energy loss spectroscopy (HREELS) and Auger electron spectroscopy (AES) facilities [6]. The second chamber was equipped for X-ray and ultraviolet photoelectron spectroscopy (XPS and UPS) and TPD [7]. The third chamber was equipped for TPD and AES.

The Pt(111) crystals were cleaned routinely by  $Ar^+$  ion sputtering, oxidizing at 900–1000 in 5 ×  $10^{-8}$  Torr of oxygen to remove carbon, and annealing at 1200 K for several minutes to remove residual oxygen. The surface cleanliness was checked by AES or XPS. Trifluoromethyl iodide, CF<sub>3</sub>I, (97%, Aldrich Chemical Company, Inc.) was purified by several freeze-pump-thaw cycles under liquid nitrogen. The dosing temperature

varied in different measurements as indicated below.  $CF_3I$  was dosed through a 3 mm diameter tube that terminated approximately 1 cm from the Pt(111) sample. Prior to dosing, the sample was turned away from the doser and the  $CF_3I$ pressure increased to  $\Delta p = 5 \times 10^{-10}$  Torr at the ion gauge. To initiate dose, the sample was turned to face the doser. With this method of dosing, the absolute exposures in langmuir are unknown and only the relative exposures in dosing times are given.

During TPD (6 K/s), the sample was heated resistively and the temperature was monitored by a chromel-alumel thermocouple spot-welded to the back of the crystal. For XPS, a Mg K  $\alpha$  source was used to record F(1s) and  $I(3d_{5/2})$  core level spectra. The analyzer was set for 80 pass energy and 0.05 eV step size. HREELS measurements were carried out with a primary beam energy of  $6.1 \times 0.2$  eV and a resolution of 10–12 meV full width at half maximum (FWHM). In the HREELS annealing sets described below, the sample was flashed to the desired temperature and cooled to 105 K before the spectra were taken. Secondary electron onsets, measured in He(I) UPS, were used to determine the surface work function changes  $(\Delta \phi)$ .

## 3. Results

## 3.1. $CF_3I / Pt(111)$

#### 3.1.1. TPD

Fig. 1 summarizes the TPD results for a multilayer of CF<sub>3</sub>I dosed on Pt(111) at 85 K. The inset shows, for the temperature region from 85–230 K (see below), the detailed CF<sub>2</sub><sup>+</sup>, CF<sup>+</sup> and F<sup>+</sup> desorption features (with the parent CF<sub>3</sub>I fragmentation contribution subtracted). The relative abundances of ions derived from CF<sub>3</sub>I fragmentation in our mass spectrometer are CH<sub>3</sub>I<sup>+</sup>:I<sup>+</sup>: CH<sub>3</sub><sup>+</sup>: CF<sub>2</sub><sup>+</sup>: CF<sup>+</sup>: F<sup>+</sup> = 22: 32: 77: 8: 11: 1.2, compared to 100:95:77:7:12:1.5 in the literature [8]. The profiles in the inset differ from CF<sub>3</sub><sup>+</sup>. From these data and the mass fragmentation patterns of relevant species [8], we conclude that the TPD products, up to 1185 K, are parent



Fig. 1. TPD spectra of different species (indicated on each curve) for a multilayer  $CF_3I$  on Pt(111) dosed at 85 K. The TPD heating rate was 6 K/s. The inset shows the detailed  $CF_2^+$ ,  $CF^+$  and  $F^+$  desorption features (with the parent  $CF_3I$  fragmentation subtracted).

CF<sub>3</sub>I, HF, CHF<sub>3</sub>, atomic I and CF<sub>x</sub> (x = 2, 3) radicals. Note that for CHF<sub>3</sub> the most abundant fragment is CHF<sub>2</sub><sup>+</sup> (m/e = 51) and the parent ion, CHF<sub>3</sub><sup>+</sup> (m/e = 70), is barely detectable [8]. No other products were found, e.g. no evidence for CF<sub>4</sub>, CH<sub>2</sub>F<sub>2</sub>, CH<sub>3</sub>F, F<sub>2</sub>, PtF<sub>x</sub> (x = 1-4) and compounds containing two or more carbons.

Fig. 2 shows TPD spectra of parent  $CF_3I^+$  as a function of dosing time (designated on each curve). No parent molecule desorbs for doses shorter than 200 s, indicating complete C-I bond dissociation. For longer doses, there is a peak at 168 K, which intensifies and saturates near 400 s. Above 400 s dose, an unsaturable peak, continuing the monotonic total peak area increase (fig. 6), grows in at 100, along with a small saturable peak at 136 K. We assign the peaks at 100 and 168 K to the multilayer and monolayer parent desorption, respectively. Here, we define one monolayer (ML) as the maximum exposure that gave no multilayer peak. Since the peak at 136 K increases significantly by introducing a small amount of atomic iodine (not shown) and since



Fig. 2. TPD spectra of parent  $CF_3I$  for different  $CF_3I$  exposures (indicated as the dosing time on each curve) on Pt(111) at 85 K. The TPD heating rate was 6 K/s.

XPS data show noticeable  $CF_3I$  dissociation below 135 K, we attribute this peak to parent desorption influenced by atomic iodine.

Fig. 3 shows the TPD of  $CF_2^+$  and its fragment  $CF^+$  (with the parent  $CF_3I$  fragmentation sub-tracted) as a function of dosing time (designated



Fig. 3. TPD spectra of  $CF_2^+$  and  $CF^+$  (with the parent  $CF_3I$  fragmentation subtracted) as a function of  $CF_3I$  exposure. The experimental conditions were the same as in fig. 2.



Fig. 4. TPD spectra of HF of  $CHF_3$  as a function of  $CF_3I$  exposure. The experimental conditions were the same as in fig. 2.

on each curve). As for the parent, the  $CF_2^+$  and  $CF^+$  signals are negligible below 250 s. For a 250 s dose, both peak at 163 and, with increasing dose, they intensify and shift to 150 K. At saturation, the desorption onset is around 100 K. Since these two ion signals do not trace the parent desorption and since there is no  $CF_3^+$  signal after  $CF_3I$  fragmentation is subtracted, we conclude that the 150 K peak is due to  $CF_2$  desorption. Noting that there is  $CHF_3$ , but no  $CH_2F_2$ , desorption (nor  $CD_2F_2$  in a coadsorption experiment with predosed D, see below), we conclude that these  $CF_2$  radicals, unlike  $CF_3$  fragments, desorb promptly when formed and have no opportunity to react with adsorbed surface hydrogen.

Fig. 4 shows the TPD of HF and CHF<sub>3</sub>, monitored at m/e = 20 and 51 (CHF<sub>2</sub><sup>+</sup>, the most abundant fragment of CHF<sub>3</sub>), respectively, as a function of dosing time (designated on each curve). Unlike CF<sub>2</sub>, HF appears at low doses. At 25 s, it desorbs with a broad peak at 318 K and a narrow peak at 415 K. At 50 s, the peak at 318 K shifts down to 255 K and the intensity of the 415 K peak decreases. Above 100 s, only one peak (220 K) is observed and it is saturated. Since atomic F on Pt(111) desorbs above 600 K [9], the detection of HF cannot be attributed to F desorption and subsequent reaction with background H<sub>2</sub>. Rather, it is made on the surface involving surface H (from background) and F. The HF desorption is reaction-limited because dosed molecular HF on Pt(111) desorbs at lower temperature (130 K [10]). While the reaction of surface H with F, which might be released from IF (see below) dissociation, can account for the low temperature HF desorption peak, the origin of high temperature HF is not clear. We speculate that  $CHF_x$  ( $x \le 2$ ) dissociation might account for it, since there is no surface hydrogen available above 400 K.

For CHF<sub>3</sub>, there is only one desorption peak at 174 K, attributed to hydrogenation of CF<sub>3</sub> by H(a) adsorbed from the background, and it appears only above 200 s. When deuterium is coadsorbed, the same desorption feature for CDF<sub>3</sub> is observed (see below). Considering the fact that the adsorbed H(a) from background is still available at 220 but there is no more CF<sub>3</sub>H formation and desorption, we suggest that there is some strongly bound CF<sub>3</sub> which desorbs at 623 K and is difficult to hydrogenate (see discussion section).

Fig. 5 shows TPD spectra of  $CF_x^+$  (x = 1-3), the desorption of which sets in at about 550 K. All three exhibit peaks above 100 dose, and all become very strong at 250 s dose, where several other ions are just becoming observable. For  $CF_x^+$  (x = 1 and 2), but not  $CF_3^+$ , there are two small peaks at 750 and 850 K. Noting that the most abundant fragment in the cracking pattern of  $CF_x$  is that of  $CF_{x-1}$  [3], we attribute the 623 K peaks to  $CF_3$  radical desorption and the higher temperature peaks to  $CF_2$  desorption. We should point out that surface F, presumably produced during  $CF_2(a)$  formation, is not detected (TPD, XPS, and HREELS, see discussion).

Fig. 6 summarizes TPD areas as a function of dosing time. For doses shorter than 200 s, there is no parent  $CF_3I$  desorption, no  $CHF_3$  and no low temperature  $CF_2$  desorption. The HF TPD area is roughly constant, which is understandable because the coverage of H adsorbed from background in each TPD run was roughly the same. Other species, atomic I (not including the low temperature peaks due to QMS fragmentation of parent  $CF_3I$ ), high temperature  $CF_2$  and  $CF_3$ , grow in from the lowest doses and approach saturation at 400 s.

For  $CF_3I$  doses shorter than 150 s, there is no parent desorption and the TPD area of atomic I increases linearly with the dose time with a slope



Fig. 5. TPD spectra of  $CF_3^+$ ,  $CF_2^+$  and  $CF^+$  in the temperature region between 400 and 1000 K as a function of  $CF_3I$  exposure. The experimental conditions were the same as in fig. 2.



Fig. 6. TPD areas (from figs. 2–5) as a function of  $CF_3I$  dosing time.

of 0.035 units/s (arb. units, see fig. 6). Assuming a constant sticking coefficient of CF<sub>3</sub>I, independent of coverage, we determine from the slope that the saturation I TPD area (~9.8 units, fig. 6) corresponds to a CF<sub>3</sub>I dose time of 280 s. Fig. 2 indicates that saturation of the first monolayer CF<sub>3</sub>I requires a dose of about 400 s. Thus, approximately 70% (0.7 ML) of the first monolayer CF<sub>3</sub>I dissociates and 30% (0.3 ML) desorbs molecularly in TPD, which is in excellent agreement with XPS data (see below).

## 3.1.2. XPS

In order to obtain direct evidence for C-F and C-I bond cleavages, we measured XPS core level spectra of  $I(3d_{5/2})$  and F(1s) for multilayer CF<sub>3</sub>I prepared at 60 K and then flashed to different temperatures. The surface was recooled to 60 K prior to taking the spectra. The results are summarized in figs. 7 and 8. In passing, we note that varying the CF<sub>3</sub>I coverage from submonolayer to multilayer at 60 K causes the  $I(3d_{5/2})$  binding energy (BE) to shift upward by 0.1-0.15 eV, but has no effect on F(1s) position.

Fig. 7 shows the  $I(3d_{5/2})$  XPS spectra (the temperatures to which the surface was flashed are indicated on each curve). Up to 90 K, only one symmetric peak at 620.4 with a FWHM of 1.66 eV is observed. It is assigned to molecular CF<sub>3</sub>I. At 135 K, the intensity drops due to multilayer desorption. The peak broadens and shifts

toward lower BE (619.9 eV), indicating C-I bond dissociation. With further heating, the  $I(3d_{5/2})$ BE shifts further downward: 619.7 at 165 and 619.5 eV at 220 K. The broad  $I(3d_{5/2})$  spectra at 135 and 165 K are readily deconvoluted into two peaks: one typical of molecular CF<sub>3</sub>I at 620.4 and the other of atomic I(a) at 619.5 eV. From this, we estimate that the percentage of atomic I is 40 and 60%, at 135 and 165 K, respectively. Between 220 and 500 K, neither the intensity nor the position of I(3d<sub>5/2</sub>) changes. At 1000 K, there is no longer any  $I(3d_{5/2})$  signal, consistent with complete desorption of atomic I (fig. 1). From these results, we conclude that a significant amount of  $CF_3I$  dissociates to form  $CF_3(a)$  and I(a) at 135 K and no C-I bonds remain above 220 K. At 135 K, because the multilayer has desorbed, the  $I(3d_{5/2})$  XPS area corresponds to 1 ML CF<sub>3</sub>I. At 220 K, the  $I(3d_{5/2})$  signal is due to atomic I, a dissociation product of CF<sub>3</sub>I, and the XPS area is 70% of that at 135 K. This indicates that 0.7 ML CF<sub>3</sub>I dissociates thermally, consistent with TPD results.



Fig. 7.  $I(3d_{5/2})$  XPS spectra for a multilayer CF<sub>3</sub>I on Pt(111) prepared at 60 K and then flashed briefly to the temperatures indicated on each curve. All XPS spectra were taken after recooling to 60 K.



Fig. 8. F(1s) XPS spectra for a multilayer  $CF_3I$  on Pt(111) prepared at 60 K and then flashed briefly to the temperatures indicated on each curve. All XPS spectra were taken after recooling to 60 K.

Fig. 8 shows the comparable F(1s) XPS. At 90 K, F(1s) is symmetric with a BE of 687.3 eV. Upon heating to 135 K, the intensity decreases due to multilayer desorption. This F(1s) BE agrees with that for  $CF_3$  on single crystal silicon [11], but lies below that (688.4 eV) for  $CF_3CL$  on Pt(111)[5]. Perhaps, compared to  $CF_3Cl$ , the stronger CF<sub>3</sub>I-Pt interactions and the weaker C-I bond can account for the lower F(1s) BE. At 165 K the peak becomes asymmetric, and a shoulder at 685.8 eV appears. This finding is consistent with  $I(3d_{5/2})$  spectra, indicating that, between 135 and 165 K, significant C-I bond dissociation occurs to form  $CF_3(a)$ . A more detailed examination of these spectra indicates a change in  $I(3d_{5/2})$  at a lower temperature than F(1s), perhaps suggesting two forms of adsorbed  $CF_3(a)$ . No XPS signal at 684.6 eV, typical of F(a) [12], is observed. Upon heating to 220 IK, except for a shoulder, the peak at 687.3 eV disappears and the total F(1s) area decreases further. The 685.8 eV BE peak grows and dominates up to 500 K. Desorption of HF,  $CHF_3$  and additional molecular  $CF_3I$ , as well as

the formation of new surface species, account for the aforementioned changes. At 620 K, a 686.4 eV shoulder, assigned to  $CF_2$ , emerges. At 680 K, it becomes dominant. The decrease intensity at 685.8 eV is ascribed to  $CF_3$  radical desorption and to dissociation to form  $CF_2(a)$ . Above 800 K, there is no F(1s) signal. These XPS results, together with HREELS data (see below), indicate that  $CF_3(a)$  fragments, strongly interacting with the substrate, are stable up to 500 K. Most of them desorb as  $CF_3$ , but some dissociate to form  $CF_2(a)$ .

## 3.1.3. HREELS

HREELS results provide evidence for the following: (i) CF<sub>3</sub>I adsorbs through the I atom. (ii) Upon heating to 177 K, some CF<sub>3</sub>I desorbs and no C-I bonds remain in the adsorbates. (iii) Dissociation leaves CF<sub>3</sub>(a) fragments, which are the dominant CF<sub>x</sub> species up to 500 K. (iv) Above 500 K, some CF<sub>3</sub> dissociates into CF<sub>2</sub>(a), which desorbs at a higher temperature. The results are shown in figs. 9 and 10.

Fig. 9 shows HREELS spectra at different  $CF_3I$  coverages (dosing time at 103 K shown on



Fig. 9. HREELS spectra as a function of  $CF_3I$  exposure on Pt(111) at 103 K (exposures, expressed as dosing times, are indicated on each curve).



Fig. 10. HREELS spectra for a multilayer  $CF_3I$  dosed on Pt(111) at 103 K and then flashed briefly to various temperatures as indicated on each curve. All HREELS spectra were taken after recooling to 103 K.

each curve). Molecular CF<sub>3</sub>I features dominate. The observed vibrational modes agree with Raman and infrared spectra of gas-phase CF<sub>3</sub>I and with IR data of CF<sub>3</sub>I adsorbed on NI(100) [2]. Table 1 lists the possible assignments for the observed bands: 245 for the C–I stretching mode  $[\nu(C-I)]$ , 535 for the asymmetric CF<sub>3</sub> deformation  $[\delta_{as}(CF_3)]$ , 735 for the symmetric CF<sub>3</sub> deformation  $[\delta_s(CF_3)]$ , 1060 and 1180 cm<sup>-1</sup> for the symmetric and asymmetric C–F stretching modes

Table 1 Vibrational assignments for  $CF_3I$  and  $CF_3$  on Pt(111)

 $[\nu_{\rm s}({\rm C-F})$  and  $\nu_{\rm as}({\rm C-F})]$ , respectively. The C-I stretching mode is about 40 cm<sup>-1</sup> lower than that in the gas phase, suggesting that the I-P interaction weakens the C-I bond and that CF<sub>3</sub>I adsorbs through the I atom. However, as for CH<sub>3</sub>I on Pt(111) [13], the Pt-I bonding is too weak to be observed. If the CF<sub>3</sub> group possessed C<sub>3v</sub> symmetry, the asymmetric modes (e.g. asymmetric deformation and stretching modes at 535 and 1180 cm<sup>-1</sup>, respectively) would not be seen in dipole scattering. The presence of these models indicates that the C-I axis is tilted with respect to the surface normal.

Fig. 10 shows an annealing set of HREELS spectra for a saturation coverage of CF<sub>3</sub>I on Pt(111) (the annealing temperature indicated on each curve). Upon heating, the first significant changes appear at 168 K. The reduced intensities of the asymmetric modes at 535 and 1180  $cm^{-1}$ are consistent with molecular CF<sub>3</sub>I desorption and dissociation. A new loss appears at 280  $\text{cm}^{-1}$ and exists up to 626 K; the C-I mode disappears. We assign the new mode to rocking  $[\rho(CF_3)]$  of CF<sub>3</sub> bound to Pt. Since the Pt-Cl stretching mode is at 300 cm<sup>-1</sup> [14], the Pt-F stretching mode should be slightly higher, but we find no losses in this region. This indicates that atomic F bonded to Pt is not detectable. Between 177 and 453 K, there are no significant changes. That only symmetric modes appear, indicates that the  $CF_3(a)$  symmetry must be  $C_{3v}$  ( $D_{3h}$  can be ruled out because of surface selection rules). At 550 K, a relatively intense loss at  $1200 \text{ cm}^{-1}$ , assigned to C-F symmetric stretching of CF<sub>2</sub> radicals [15], is

| Vibrational<br>mode    | CF <sub>3</sub> I (Raman) <sup>a)</sup><br>(cm <sup>-1</sup> ) | CF <sub>3</sub> I (IR) <sup>a)</sup><br>(cm <sup>-1</sup> ) | CF <sub>3</sub> I/Pt(111) <sup>b)</sup><br>(cm <sup>-1</sup> ) | $CF_3/Pt(111)^{b}$<br>(cm <sup>-1</sup> ) |
|------------------------|----------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------|
| $\rho(CF_3)$           | 265                                                            | NR <sup>c)</sup>                                            | NR                                                             | 280                                       |
| ν(C-I)                 | 284                                                            | NR                                                          | 245                                                            | -                                         |
| $\delta_a(CF_3)$       | 537                                                            | 540                                                         | 535                                                            | -                                         |
| $\delta_{s}(CF_{3})$   | 741                                                            | 741                                                         | 735                                                            | 735                                       |
| $\nu_{\rm s}(\rm C-F)$ | 1056                                                           | 1073                                                        | 1050-1060                                                      | 1060                                      |
| $v_{a}(C-F)$           | 1168                                                           | 1185                                                        | 1180-1200                                                      | _                                         |

<sup>a)</sup> Ref. [19].

<sup>b)</sup> This work.

c) NR = not resolved.



Fig. 11. Work function changes, determined from He(I) UPS secondary electron thresholds, as a function of  $CF_3I$  coverage (left panel) and temperature (right panel).



Fig. 12. TPD spectra of different species (indicated on each curve) for 1 ML CF<sub>3</sub>I coadsorbed with D(a), 2 L D<sub>2</sub> dose, on Pt(111) at 85 K. The TPD heating rate was 6 K/s. The dashed curves are the corresponding TPD spectra from a D-free surface.

clearly identified. Above 550 K, all the modes (280, 735 and 1060 cm<sup>-1</sup>) associated with CF<sub>3</sub> lose intensity, while those related to CF<sub>2</sub> intensify. Above 650 K, the loss at 1200 cm<sup>-1</sup> dominates. Above 800 K, all the losses vanish (not shown). The changes in HREELS above 550 K are consistent with desorption of CF<sub>3</sub> radicals and dissociation of CF<sub>3</sub> to form CF<sub>2</sub>. However, we found no evidence for surface atomic F, i.e. no Pt-F stretching mode. This is consistent with XPS results showing that dissociation of CF<sub>3</sub> to form CF<sub>2</sub> is a minor channel for CF<sub>3</sub>. As a result, we believe that the amount of F retained is too small to be detected by TPD, XPS or HREELS.

#### 3.1.4. Work function change ( $\Delta\phi$ )

Fig. 11 shows the work function change  $(\Delta \phi)$ as a function of  $CF_3I$  coverage on Pt(111) (left panel) and, starting with a multilayer coverage, as a function of annealing temperature (right panel). The decrease in  $\phi$  with increasing coverage is ascribed to charge polarization within the oriented CF<sub>3</sub>I. Upon heating, the desorption of molecular CF<sub>3</sub>I and other species causes a work function increase. Between 240 and 500 K, there is negligible work function change, which is consistent with stable CF<sub>3</sub> dominating the adsorbates. Above 500 K, the desorption and dissociation described above cause an increase in work function. The final rise is due to atomic iodine desorption (due to tiny amounts of I left, the work function of the last point is still slightly lower than that of clean surface).

## 3.2. $CF_3I/D/Pt(111)$

Since insight is often gained by isotope labeling, we studied coadsorption of D, prepared by dissociative adsorption of D<sub>2</sub>, and CF<sub>3</sub>I at 85 K. In TPD, we observed that atomic D activates the C-F bonds in CF<sub>3</sub>(a) to form DF around 250 K, resulting in less CF<sub>3</sub> and more CF<sub>2</sub> desorption.

Fig. 12 shows TPD after 1 ML CF<sub>3</sub>I was dosed at 85 K on D-covered Pt(111) (2 L D<sub>2</sub>). The dotted curves are the corresponding spectra from a D-free surface. Panel A shows desorption of CF<sub>3</sub>I, CF<sub>2</sub>, and dihydrogen in the temperature region between 80 and 330 K. The interpretation for  $CF_3I$  and  $CF_2$  desorption is the same as mentioned above. We attribute the increase in molecular CF<sub>3</sub>I desorption to inhibition of CF<sub>3</sub>I dissociation by coadsorbed D. Less CF<sub>2</sub> desorption at 150 K supports the interpretation. Surface D and H, the latter mainly from background adsorption, desorb as D<sub>2</sub> and HD at 265 K. Panel B shows TPD spectra of CDF<sub>3</sub>, CHF<sub>3</sub>, DF and HF. There was no  $CD_2F_2$  desorption.  $CDF_3$  is attributed to hydrogenation of  $CF_3(a)$ . The absence of  $CD_2F_2$  was expected, since  $CF_2$  desorbs promptly once formed. The DF and HF peaks are unusually broad. We believe that two different F sources contribute to them; the first is dissociation of IF, which we propose is formed in one dissociation channel, and the second is D-induced activation and dissociation of  $CF_2(a)$ . The latter accounts for the higher temperature portion of DF and HF desorption. The small DF and HF peaks at 390 K are probably due to the decomposition of  $CDF_x$  and  $CHF_x$  ( $x \le 2$ ), respectively, because D(a) and H(a) are not available at 390 K. Panel C shows  $CF_x^+$  (x = 1-3) and F<sup>+</sup> TPD signals in the temperature region between 525 and 925 K. While CF<sub>3</sub> and I desorption (not shown) intensities decrease, CF<sub>2</sub> radical desorption increases significantly (compare  $CF_2^+$ curves with and without coadsorbed D). These observations suggest that predosed D atoms activate  $CF_3(a)$  at about 250 K to produce  $CF_2$  fragments which remain on the surface up to 700 K.

#### 4. Discussion

In this section, we discuss possible reaction mechanisms and surface structures involved in CF<sub>3</sub>I on Pt(111). We focus on a multilayer coverage of CF<sub>3</sub>I on Pt(111). Scheme 1 outlines the observed results. In scheme 1, the species in ovals are surface bound. Possible reaction channels are shown in scheme 2. In brief, multilayer and a fraction (30%) of monolayer CF<sub>3</sub>I desorbs at 100 and 168 K, respectively. Two dissociation channels are proposed for the remaining chemisorbed CF<sub>3</sub>I: (i) CF<sub>3</sub>(a) and I(a), and (ii) CF<sub>2</sub>(g) and IF(a). We suppose that IF(a) is best thought of as a surface complex in which atomic I is strongly



perturbed by high electronegative atomic F, and both interact with Pt. Under the influence of the accumulated dissociation products, especially atomic iodine, some  $CF_3I$  in the monolayer desorbs at 136 K. For channel (1), a fraction of  $CF_3(a)$  reacts with adsorbed background H to form  $CF_3H$ , which desorbs at 174 K, while the remaining  $CF_3(a)$  changes into a more stable form that is bound very strongly to the substrate and is difficult to hydrogenate, even under high concentration of coadsorbed D. The  $CF_3(a)$  desorbs



(major) and dissociates (minor) into  $CF_2(a)$  above 550 K. For channel (2), the  $CF_2$  produced desorbs promptly at the temperature (150 K) where it is formed. IF(a) dissociates and reacts with adsorbed background hydrogen at 220 K to form HF, which desorbs promptly. The atomic iodine desorbs above 800 K.

Evidence that  $CF_3I$  adsorbs on Pt(111) through the I atom comes from two sources: (i) the C-I vibrational frequency for adsorbed molecular  $CF_3I$  on Pt(111) is lower than for gas-phase  $CF_3I$ , and (ii) in passing from submonolayer to multilayer, the F(1s) BE does not change while the  $I(3d_{5/2})$  does. Since both TPD (inferred from the parent desorption at 136 K) and XPS show evidence of accumulation of atomic I at 135, it is certain that significant C-I cleavage occurs below 135 K. Considering that the onset of  $CF_2$  radical desorption is as low as 100, we suggest that some C-I bond dissociation occurs even at 100 K.

After C–I bond dissociation, two puzzles need to be dealt with. (i) Why do some  $CF_3(a)$  species hydrogenate and desorb at 174, while others are not hydrogenated even in the presence of high coverages of D and are stable up to 500 K? (ii) Why do some  $CF_2$  radicals desorb at 150 while others remain to 750 K? We propose two reaction channels as shown in scheme 2. We will discuss them separately.

Hydrogenation of  $CF_3$  to form  $CHF_3$  (or  $CDF_3$ ) is evident in figs. 4 and 12B. There is only one CHF<sub>3</sub> peak (174 K); the peak temperature does not change with coadsorbed hydrogen coverage (figs. 4 and 12B). Since the  $CHF_3$  signal decays sharply on its high temperature side, we believe that either  $CF_3(a)$  or H(a) is completely consumed at about 180 K. Because HF desorption still occurs at 220 and because, when D is coadsorbed, a significant amount of D<sub>2</sub> and HD desorbs at 265 (fig. 12A) and there is still significant CF<sub>3</sub> radical desorption at 623 K (fig. 12C), we conclude that one kind of CF<sub>3</sub>(a), rather than H(a), limits the product signal. However, high temperature CF<sub>3</sub> radical desorption indicates that another kind of CF<sub>3</sub>(a), more stable and difficult to hydrogenate, exists up to 500 K. Direct evidence is given by HREELS data (fig. 10). Starting at 168 K, a new peak at 280 cm<sup>-1</sup> appears. Its presence up to 626 K, along with other characteristic losses, suggests that it belongs to  $CF_2(a)$ . From 177-453 K, the symmetric stretching and deformation modes of  $CF_3$ , as well as the rocking mode, do not change, implying a stable surface structure. The constant work function and F(1s)XPS peak support this notion. Under certain circumstances, e.g. very low coverages or coadsorption with D(a), at least one C-F bond in this stable form of  $CF_3(a)$  can be activated as shown in TPD results (fig. 12). The reaction product, HF, desorbs above 250 K, much higher than for CF<sub>3</sub>H formation and desorption (174 K). If there were only one kind of  $CF_3(a)$ , it would be hard to explain why excess surface D cannot hydrogenate all  $CF_3(a)$ , but can break one C-F bond to produce HF and  $CF_2$ . We conclude that there must be a stable form of  $CF_3(a)$  existing up to 500 K.

The detailed surface structures of these two kinds of  $CF_3(a)$  are not clear. We speculate that, after C-I bond cleavage, most CF<sub>3</sub>(a), which can be hydrogenated, occupies either top or bridge sites. During heating, some  $CF_3(a)$  moves to hollow sites, causing the surface Pt to move slightly [16] so that the F atom in the  $CF_3$  can interact strongly with Pt. These  $CF_3(a)$  fragments are stable and cannot be hydrogenated. The lack of features assignable to CF<sub>2</sub> in both HREELS and XPS rules out the possibility of coexistence of  $CF_3(a)$  and  $CF_2(a)$  below 500 K. In other words, the  $CF_2$  desorption at high temperatures must be a result of CF<sub>3</sub> dissociation. Stoichiometrically, one F atom is produced for dissociation of every  $CF_3(a)$  to form  $CF_2(a)$ . However, in no case do we find evidence for surface F. As mentioned earlier, this is probably because the amount of F produced is too small to be detected, i.e. dissociation of  $CF_3(a)$  is a minor channel, and because atomic F is removed by highly-efficient ESD, as observed for  $CF_1$  on Ru(001) [3].

We now turn to the second question. As discussed above, we propose that high temperature  $CF_2$  radical desorption is the result of  $CF_3(a)$  dissociation between 500 and 650, that is, no surface bound  $CF_2$  exists below 500 K (see HREELS results, fig. 10). In the presence of coadsorbed D, some surface bound  $CF_2$  is produced at 250 K via  $CF_3(a) + D(a) \rightarrow CF_2(a) +$ 

DF(g). Clearly, if  $CF_2$  radicals equilibrate with the substrate, they will not desorb thermally below 700 K. Therefore, the CF<sub>2</sub> radical desorption at 150 K comes from some other source. One might argue that the high temperature peaks for CF<sub>2</sub> radicals are due to strongly bound CF<sub>2</sub> and the low temperature peak to weakly bound  $CF_2$ . If the latter existed,  $CF_2H_2$  would form and desorb. However, none was found. Because the low temperature CF<sub>2</sub> desorption occurs only at relatively high coverages (> 200 s dose) where molecular CF<sub>3</sub>I desorption also takes place, we believe that a crowded surface plays an important role in ejecting  $CF_2$  radicals into vacuum once they are formed. The crowding on the surface prevents this active species from forming a surface bond; it therefore desorbs. However, the  $CF_2$ radical formation and desorption at 150 K must be surface mediated; that is, it does not occur in multilayers. When D is coadsorbed, the Pt is modified or the number of reactive sites are reduced, and less  $CF_2$  desorbs at 150 K (fig. 12b). By way of comparison, low temperature CF<sub>2</sub> radical desorption occurs on Pt(111) and Ni(100) [2], but not on Ag(111) [4] and Ru(001) [3]. No matter how CF<sub>2</sub> forms and desorbs, it must be produced from CF<sub>3</sub>I.

On Ni(100) [2], low temperature (~ 220 K)  $CF_2$  radical desorption was attributed to  $CF_3(a)$   $\rightarrow CF_2(g) + F(g)$ . Here, we propose a different reaction, that is,  $CF_3I(a) \rightarrow IF(a) + CF_2(g)$ . Based on XPS and HREELS, we ruled out atomic F. Since HF desorption occurs at 130 and the H(a)  $+ F(a) \rightarrow HF(g)$  reaction occurs at 154 K [5], HF desorption at 220 K is certainly reaction limited, but not by H and F recombination. Rather, we propose that IF forms, accompanying CF<sub>2</sub> radical desorption at 150 K, and dissociates or reacts with H(a) at 220 K to form HF(g) and I(a). Unfortunately, no direct evidence in XPS or HREELS is available to identify IF.

Although both TPD and XPS data indicate that 0.7 ML  $CF_3I$  dissociate above 100 K, they do not permit a quantitative discussion of the decomposition yields for different pathways, because some products such as IF and F, though proposed, are not detected. However, we can obtain a lower or upper limit for the dissociation

yields of different pathways. As shown in fig. 6, the low temperature CF<sub>2</sub> radical desorption appears only for doses longer than 200 s. Above 200 s, surface atomic I increases by 0.25, indicating an addition of 0.25 ML CF<sub>3</sub>I dissociates. Because, above 200 s, the TPD areas of  $CF_3$  and high temperature CF<sub>2</sub> (750 and 850 K) still increase and CHF<sub>3</sub> desorption appears, it is certain that the yield of low temperature  $CF_2$  radicals (i.e. the  $CF_3I \rightarrow CF_2 + IF$  dissociation channel) is not more than 0.25 ML. At saturation, the TPD area of CF<sub>2</sub> desorbed at 750 and 850 K is only 9% of that at 150 K. Therefore, no more than 0.023 ML CF<sub>3</sub> decomposes between 500 and 650 K to form  $CF_2$  and F. The  $CF_3I \rightarrow CF_3 + I$  dissociation channel is a major pathway, accounting for at least 0.45 ML CF<sub>3</sub>I.

Parenthetically, using schemes 1 and 2, we can reinterpret some data reported previously for  $CF_3Cl/Pt(111)$  [5]. Under the influence of 50 eV electrons,  $CF_3Cl$  changes the adsorption geometry from bonding through both CL and F to Cl only. Then, thermal activation results in  $CF_2$  radical desorption at 157 K and an HF desorption peak at 270 K, tracking HCl desorption. We believe that FCl forms along with  $CF_2$  desorption and it dissociates and reacts with H(a) to produce HF and HCl (we do not expect HI formation and desorption in the present case).

We now discuss low coverages. Since the coverage onset (200 s dose) for the  $CF_2$  radical,  $CF_3H$  and parent  $CF_3I$  desorption is the same, we speculate that surface crowding promotes  $CF_2$ and  $CF_3H$  formation and desorption. At low coverages, we believe that all the  $CF_2$  and  $CF_3$ remain on the surface and desorb as radicals at high temperatures. Below 50 s dose, adsorbed background hydrogen can activate C-F bonds, resulting in HF formation and desorption, as shown in fig. 4.

It is interesting to compare  $CF_3$  and  $CH_3$ fragments on Pt(111). Both can be hydrogenated by surface H, though at different temperatures, and their thermal stabilities are different:  $CF_3$  is stable up to 500 K while  $CH_3$  dissociates readily below 300 K. This might be traced to the large difference in electronegativity of carbon in the two species leading to a stronger interaction with Pt(111) in the CF<sub>3</sub>. Carbon in methyl or other alkyl groups is significantly less electron attracting than hydrogen. Conversely, the CF<sub>3</sub> group is far more electron attracting than hydrogen [17]. Moreover, the C-H bond is weaker than C-F (110 kcal/mol for H-CH<sub>2</sub>, and 132 kcal/mol for C-F) [18], resulting in easier CH<sub>3</sub> dissociation.

It is still not clear what role atomic I plays. With no I present,  $CF_3$  desorption is more than 100 K lower [5]. On Ru(001),  $CF_3$  and  $CF_2$  [3] desorb before and after atomic I desorption, respectively. On Pt(111), we speculate that atomic I stabilizes surface  $CF_x$ . Finally, we point out that  $CF_3$  desorption also is substrate dependent, occurring at 310 on Ag(111) and Ni(100) [2,4], at 623 on Pt(111) and at 705 K on Ru(001) [3].

#### 5. Summary

The work reported here can be summarized as follows:

(i)  $CF_3I$  adsorbs molecularly at 85 K with multilayer and monolayer desorption at 100 and 168 K, respectively.

(ii) C-I bond cleavage starts at 100 K and is complete below 220 K.

(iii) There are two competitive reaction channels for  $CF_3I$ . One forms  $CF_3(a) + I(a)$  and the other forms  $CF_2(g) + IF(a)$ .

(iv) While part of  $CF_3(a)$  can be hydrogenated into  $CF_3H$ , which desorbs at 174 K, the remainder transforms into a stable species which is difficult to hydrogenate. Most of the latter desorbs as  $CF_3$  at 623 K, while a small amount dissociates to form  $CF_2$ , which desorbs at 750 and 850 K.

(v) While  $CF_2$  desorption, associated with  $CF_3I$  dissociation, occurs at 150 K, the IF(a), proposed to be formed concurrently, survives up to 220 K and dissociates into I(a) and F(a), resulting in a reaction limited HF desorption at 220 K.

#### Acknowledgement

This work was supported in part by the Army Research Office.

#### References

- [1] R.G. Jones and N.K. Singh, Vacuum 38 (1988) 213.
- [2] K.B. Myli and V.H. Grassian, Surf. Sci., submitted.
- [3] J.S. Dyer, P.A. Thiel, Surf. Sci. 238 (1990) 169.
- [4] M.E. Castro, L.A. Pressley, J. Kiss, S.K. Jo, X.-L. Zhou and J.M. White, J. Phys. Chem., submitted.
- [5] J. Kiss, D.J. Alberas and J.M. White, Surf. Sci. 275 (1992) 82.
- [6] G.E. Mitchell, P.L. Radloff, C.M. Greenlief, M.A. Henderson and J.M. White, Surf. Sci. 183 (1987) 403.
- [7] S.K. Jo, X.Y. Zhu, D. Lennon and J.M. White, Surf. Sci. 241 (1991) 231.
- [8] EPA/NIH Mass Spectral Data Base, Eds. S.R. Heller and G.W.A. Milne (US Government Printing Office, Washington, 1978).
- [9] E. Bechtold, Appl. Surf. Sci. 7 (1981) 231.

- [10] F.T. Wagner and T.E. Moylan, Surf. Sci. 182 (1987) 125.
- [11] B. Roop, S. Joyce, J.C. Schultz and J.I. Steinfeld, J. Chem. Phys. 83 (1985) 6012.
- [12] A. Bensaoula, E. Grossman and A. Ignatiev, J. Appl. Phys. 62 (1987) 4587.
- [13] M.A. Henderson, G.E. Mitchell and J.M. White, Surf. Sci. 184 (1987) L325.
- [14] V.H. Grassian and G.C. Pimentel, J. Chem. Phys. 88 (1988) 4484.
- [15] M.E. Jacos, J. Phys. Chem. Ref. Data 13 (1984) 945.
- [16] J.T. Yates, Jr., Chem. Eng. News (1992) 22.
- [17] J.D. Roberts and M.C. Caserio, Basic Principle of Organic Chemistry, 2nd ed. (Benjamin, New York).
- [18] R.C. Weast, M.J. Astle and W.H. Beyer, CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 1986).
- [19] W.F. Edgell, C.E. May, J. Chem. Phys. 22 (1953) 1808.