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Consequences of subacute
intratracheal exposure of rats to
cadmium oxide nanoparticles:
Electrophysiological and toxicological
effects

András Papp1, Gábor Oszlánczi1, Edina Horváth1,
Edit Paulik1, Gábor Kozma2, András Sápi2,
Zoltán Kónya2 and Andrea Szabó1

Abstract
Cadmium (Cd) is a metal used in various industrial applications, thereby causing exposure to Cd-containing
fumes. The submicron-sized particles in the fumes represent an extra risk due to their high mobility within the
organism and high surface area. Toxicity of Cd on the liver, kidney and bones is well known, but there are less
data on its neurotoxicity. Here, male Wistar rats were treated for 3 and 6 weeks by intratracheal instillation of
cadmium oxide nanosuspension. The body weight gain in treated rats was significantly decreased, and in the
rats treated with high dose (0.4 mg/kg Cd daily), there was a significant increase in the weight of lungs and thy-
mus. In this group, the spectrum of spontaneous cortical electrical activity was shifted to higher frequencies,
the latency of sensory-evoked potentials was lengthened, and the frequency following ability of the somatosen-
sory evoked potential was impaired—even without detectable Cd deposition in the brain. The data support the
role of the nano-sized Cd in the causation of nervous system damage and show the possibility of modeling
human neurotoxic damage in rats.
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Introduction

Environmental conditions constitute one of the four

major determinants of human health, and the medium

causing the most direct exposure to harmful substances

is air. Airborne particulate matter can be classified as

sedimenting dust (>10 mm), suspended or fine dust

(100 nm–10 mm; often called PM10) and ultrafine dust

or nanoparticles (NPs, <100 nm).

NPs as pollutants arise mainly from combustion

and other high-temperature processes (smelting, cast-

ing, welding of metals, etc.) (Antonini et al., 2003).

Another potential source of exposure to NPs today

is nanotechnology. Manufactured nanomaterials are

present in numerous consumers’ goods and in techni-

cal applications ( Oberdörster et al., 2005 ). Quantum

dots, novel nanotechnological materials (with appli-

cation, among others, in biomedical research) often

contain cadmium (more precisely, cadmium telluride)

and show special toxicological properties (Rziga-

linski and Strobl, 2009). Cd-containing metal dust and

fumes, or paint spray, cause occupational airborne

exposure in manufacturing and application of e.g.

steel and other alloys, pigments and semiconductor

materials (ATSDR, 2008).
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Inhaled NPs are either deposited in the

nasopharynx or get down to the alveoli (ICRP,

1994). Once deposited, NPs translocate readily to

other body parts and reach target organs by different

transfer routes and mechanisms, including transcyto-

sis (by caveola formation) across epithelia of the

respiratory tract into the interstitium (Oberdörster et

al., 2005) and axonal transport along the olfactory

fibers directly into the central nervous system (CNS)

(Calderon-Garciduenas et al., 2002). Due to their

small size, number concentration and large specific

surface area, NPs have greater biological activity per

given mass than larger particles (Oberdörster et al.,

2005), including oxidative stress induction (Li et al.,

2003). In the target organs, the components of the NPs

also exert their own toxic effects, after transport to

these sites in whole or after being dissolved from the

surface of the NPs (Lundborg et al., 1985). Cadmium,

in airborne forms, is absorbed from the respiratory

tract in 2–50%, depending primarily on particle size

(Chaney et al., 2004). Its several target organs include

the lungs, liver, kidney, testis, placenta, as well as the

nervous system (ATSDR, 2008). Concerning the lat-

ter, the reported consequences of chronic Cd exposure

include amyotrophic lateral sclerosis, optic nerve

damage, striatal damage and peripheral polyneuropa-

thy (Bar-Sela et al., 2001; Fern et al., 1996; O’Calla-

ghan and Miller, 1986; Viaene et al., 1999). In

children, a straight relationship between hair Cd and

altered visual- or auditory (AUD)-evoked potential

(EP) parameters was found (Thatcher et al., 1984),

and school behavioral problems were also reported

(Marlowe et al., 1985). Similar effects were observed

in rats (Agar et al., 1999). In our previous works, oral

application of Cd to rats for several weeks resulted in

altered electrocorticogram (ECoG) power spectrum

and in changes of cortical EPs and peripheral nerve

action potentials (Institóris et al., 2002; Papp et al.,

2003). In the present work, a potentially more realistic

way of exposure—intratracheal application of cad-

mium oxide (CdO2) NPs—was chosen, and the gen-

eral toxicological and electrophysiological

measurements were supplemented with some bio-

chemical ones.

Materials and methods

Animals and treatment

Adult male Wistar rats of 320–350 g body weight

(b.w.) were obtained from the breeding center of the

university and were housed under standard conditions

(22–24�C, 12-h light/dark cycle with light on at

06:00) with free access to tap water and standard

pellet. The rats were divided into 4 groups of 20 ani-

mals each at start.

Cadmium dioxide NPs were synthesized at the

Department of Applied Chemistry by a dry process.

Stoichiometric amount of CdCl2 and Na2CO3 were

put, in NaCl matrix, in the drum of a planetary ball

mill and rotated with stainless steel mill balls at

400 rpm for 4 h (reaction 1: CdCl2 þ Na2CO3

! CdCO3 þ 2 NaCl). The mixture milled this way

was then calcined at 480�C for 4 h in air (reaction

2: CdCO3þ½ O2! CdO2þ CO2). After calcination,

the synthesis mixture was filtered (0.45 mm polytetra-

fluoroethylene membrane filter) and washed with

80�C preheated water to remove any unreacted start-

ing material and the soluble NaCl matrix. The preci-

pitate was dried at 100�C for 1 h and characterized

with X-ray diffraction and transmission electron

microscopy. The size distribution and electron micro-

graph of the CdO2 NPs is shown in Figure 1.

The synthesized NPs were suspended in distilled

water and were instilled into the rats’ trachea, in daily

doses shown in Table 1, 5 days a week (Monday to

Friday). The volume instilled was 1 ml/kg b.w. Treat-

ment was continued for 3 and 6 weeks, whereby 10

rats from each group were killed after 3 weeks of

treatment and the remaining 10 after 6 weeks. There

was an untreated control group (Con), and a vehicle

control group (W). The choice of doses was influ-

enced by literature data and by the technically possi-

ble concentration of the NPs in the distilled water

medium. Calculating with ca. 0.5 m3/kg b.w. the daily

breathing volume for the rats (based on data by Strohl

et al., 1997), our lower dose is comparable to that

reported from industrial settings (ca. 30 mg/m3,

indoors in car body repair shops: Vitayavirasuk et

al., 2005; or 1–19 mg/m3, outdoors in bridge mainte-

nance: Conroy et al., 1995), and the higher one, to the

550 mg/m3 used by Takenaka et al. (2004) in a rat

inhalation experiment. A more direct comparison is,

however, impossible because of the unknown reten-

tion fractions.

Intratracheal instillation was done in diethyl ether

anesthesia, with the rat suspended on a 60� inclined

board so that its upper incisors were held by a wire

loop to keep the animal’s mouth open. The trachea

was illuminated transdermally. The tongue was pulled

forward with a pair of nontraumatic forceps, and a

custom-made laryngoscope was used to visualize the

glottis. The nanosuspension (or distilled water for
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group W) was instilled into the trachea by means of a

syringe and 1.2 mm outer diameter plastic tubing,

inserted between the vocal chords. The group Con had

neither ether anesthesia nor instillation, while the

water control (W) group was anesthetized and

instilled with distilled water. The nanosuspension was

vigorously sonicated before, and repeatedly during,

administration to prevent agglomeration.

General toxicological and biochemical
measurements

Body and organ weights were the end points for

general toxic effect of the CdO2 NPs. The rats’ b.w.

was measured each workday during the treatment

period, and the mean b.w. of the groups was plotted

against time to see the course of weight gain. Follow-

ing electrophysiology (see below), the rats were killed

by an overdose of urethane, dissected, and the organ

weight of the brain, liver, lungs, heart, kidneys,

spleen, thymus and adrenals was measured. Relative

weights were calculated by relating organ weights to

brain weight. To reduce costs, 5 of the 10 rats from

each group were randomly assigned for chemical

measurements. Of these, blood, brain, lung and liver

samples were taken and stored at �22�C.

Metal level was determined from ca. 1 g of the

samples, dried at 80�C to constant weight and

digested in 5 ml of 65% HNO3 at 90�C for 90 min.

After filtration and dilution, metal level was deter-

mined by inductively coupled plasma mass spectro-

metry (at the laboratory of the MOL Hungarian Oil

and Gas Company).

For biochemical measurements, another 1 g of

the samples was homogenized with 4 ml saline and

centrifuged under cooling for 10 min at 5000 rpm.

The supernatant was centrifuged again for 20 min

at 14,000 rpm.

From the supernatant, protein content was mea-

sured according to Lowry et al. (1951). As oxidative

stress indicators, reduced glutathione (GSH) mea-

sured by the method of Sedlak and Lindsay (1968),

Figure 1. Size distribution histogram (a) and electron micrograph (b) of the CdO2 nanoparticles. Scale bar: 100 nm.

Table 1. Treatment groups and doses

Group Code Treatment and dose Duration

Untreated control Con – 3 and 6 weeksa

Vehicle control W Distilled water 1 ml/kg b.w.
Low dose LD CdO2 nanosuspension, 0.04 mg Cd/kg b.w.; 1 ml/kg b.w.
High dose HD CdO2 nanosuspension, 0.4 mg Mn/kg b.w.; 1 ml/kg b.w.

aThere were 20 rats in each group at start. Ten of them were processed and killed after 3 weeks of treatment, and the another 10, after
6 weeks of treatment.

Papp et al. 935
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based on the reaction of nonprotein-bound SH groups

with the Ellman reagent (5, 50-dithio-bis(2-nitroben-

zoic acid)), was used. Another oxidative stress

parameter, superoxide dismutase (SOD) activity, was

measured by the method of Misra and Fridovich

(1972), modified by Matkovics et al. (1982), based

on inhibition of the spontaneous adrenaline-adreno-

chrome transformation.

Electrophysiological measurements

Electrophysiological recording was done 1–3 days

after the last instillation. In urethane anesthesia, the

animal’s head was fixed and the sensory areas of left

hemisphere were exposed. The wounds were sprayed

with 10% lidocaine, and a thin layer of petroleum

jelly was applied on the dura to prevent drying. After

30 min recovery, silver electrodes were placed on the

primary somatosensory (SS), visual (VIS) and AUD

areas. ECoG was recorded from these areas for 6 min,

and the relative spectral power of the frequency bands

(delta, theta, alpha, beta1, beta2, gamma; standard

human EEG bands) was determined. Then, sensory

EPs were recorded by the same electrodes. For SS sti-

mulation, two needles were inserted into the contral-

ateral whiskery skin to deliver square electric pulses

(3–4 V, 0.05 ms, 1–10 Hz). VIS stimulation was pro-

duced by a high-luminance white light-emitting diode

aimed directly at the rat’s right eye, driven by 0.2 ms

pulses at 1 Hz. The AUD stimuli were clicks (1 Hz,

40 dB) guided from a miniature earphone into the ani-

mal’s right ear via the hollow ear bar. Fifty stimuli of

each modality per rat were applied and the EPs

recorded. After averaging, latency and duration of the

EPs was measured manually (for details, see Lukács

and Szabó, 2007). The change in latency of the SS

EP with increasing stimulation frequency was also

investigated as a possible indicator of the action of the

treatment on the state of the cortex. All electrophysio-

logical recording and analysis was done by means of

the Neurosys 1.11 software (Experimetria Ltd, Buda-

pest, Hungary). The study was approved by the Ethi-

cal Committee for the Protection of Animals in

Research of the University. During the whole proce-

dure, the principles of the Committee (based on the

EU-conform Hungarian law) were strictly followed.

Data processing

From the data, group means (+SD) were calculated.

The results were tested for significance with one-way

analysis of variance and the post hoc analysis was

done by Scheffe’s test.

Results

Body and organ weights

Intratracheal exposure by the nanoparticulate CdO2

had marked effect on the b.w. gain in rats. As shown

in Figure 2, the untreated controls’ (Con) weight

gain was undisturbed. In the vehicle control (W)

group (anesthesia and instillation but no CdO2 NPs),

the weight gain was lower, and with the advance of

time became more and more similar to that seen in

the treated rats. In the high-dose (HD) group, there

was hardly any weight increase in the first 2 weeks.

Figure 2. Body weight gain of the treated and control rats over the 6 weeks of treatment period. Always the data from
the first workday of the corresponding week are plotted. Mean þ SD, n ¼ 10. Insert: group codes, see Table 1 for expla-
nation. *p < 0.05, **p < 0.01, ***p < 0.001 vs. untreated control group (Con); ##p < 0.01, ###p < 0.001 vs. vehicle control
group (W).
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Then, some compensation seemed to take effect and

the weight gain was similar to that seen in the low-

dose (LD) group and approached that of the vehicle

control (W).

The relative weight of the lungs was significantly

higher in the HD group vs. Con after 6 weeks of

exposure (Table 2). In the W and LD groups, there

was no noteworthy increase. There was also signifi-

cant increase in the relative thymus weight in the HD

group, and decrease in the relative spleen and liver

weight in the treated groups. After only 3 weeks of

treatment (not shown), the trends were similar but

less expressed.

Brain weight itself was little influenced by the Cd

NP treatment (after 6 weeks of exposure: Con,

1.278 + 0.054 g; W, 1.156 + 0.91 g; Cd-LD,

1.169 + 0.091 g; Cd-HD, 1.189 + 0.134 g)—so the

relative organ weights were not biased.

Cadmium levels and oxidative stress indicators

A shown in Table 3, most of the Cd content of the

instilled NPs was located in the lungs but a significant

amount was absorbed and deposited in the liver in a

dose-dependent manner. In the brain (and blood),

however, no Cd was detected.

Table 2. Relative organ weights after 6 weeks of exposure to Cd nanoparticlesa

Groups organs Con W Pb-LD Pb-HD

Lungs 0.787 + 0.067 0.692 + 0.084 0.831 + 0.088 1.359 + 0.254b,c

Liver 7.323 + 0.718 7.198 + 1.071 6.549 + 0.502d 6.198 + 0.595
Kidney 1.407 + 0.070 1.350 + 0.089 1.311 + 0.172 1.379 + 0.146
Heart 0.583 + 0.031 0.542 + 0.043 0.558 + 0.039 0.556 + 0.066
Spleen 0.468 + 0.062 0.358 + 0.040 0.334 + 0.056b 0.387 + 0.041e

Thymus 0.213 + 0.026 0.194 + 0.033 0.207 + 0.017 0.277 + 0.056e,f

Adrenals 0.028 + 0.008 0.027 + 0.007 0.029 + 0.008 0.029 + 0.008

Con: untreated control group; HD: high-dose group; LD: low-dose group, W: vehicle control group.
aMean + SD, n ¼ 10.
bp < 0.001 vs. Con.
cp < 0.001 vs. W.
dp < 0.05 vs. Con.
ep < 0.01 vs. Con.
fp < 0.01 vs. W.

Table 3. Cd deposition and reduced glutathione level in tissue samples of rats after 6 weeks of exposure by CdO2 NPsa

Treatment groups

W Cd-LD Cd-HD

Cd level (mg/kg)
Brain 0 0 0
Liver 26 + 26 683 + 271b 9986 + 4171b,c

Lung 1707 + 1391 43,020 + 23,904d 268,399 + 199,844d,e

GSH (mM)
Brain 0.0895 + 0.0037 0.0914 + 0.0075 0.1071 + 0.0035f,g

Liver 0.0729 + 0.0040 0.0806 + 0.0065 0.1062 + 0.0020
Lung 0.2080 + 0.1780 0.2398 + 0.1335 0.1681 + 0.1620f,g

HD: high-dose group; LD: low-dose group, NPs: nanoparticles; W: vehicle control group.
aMean + SD, n ¼ 5.
bp < 0.01 vs. W.
cp < 0.01 vs. Cd-LD.
dp < 0.05 vs. W.
ep < 0.05 vs. Cd-LD.
fp < 0.001 vs. W.
gp < 0.001 vs. Cd-LD.
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SOD activity was affected neither in the brain nor

in the lung and liver (in which organs Cd deposition

was detected). The level of GSH was, on the contrary,

dose-dependently influenced and the HD vs. W differ-

ence was significant in the lungs and the brain.

Electrophysiological effects

The alterations in the spontaneous cortical activity

(ECoG) were alike in all three cortical areas. There

was a dose- and time-dependent shift from slower to

faster waves which became significant in the HD

group after 6 weeks of exposure (Figure 3). After

3 weeks only, no significant changes were seen.

The SS EP showed significant increase in

latency in the HD group vs. Con at each stimula-

tion frequency (Figure 4). The slight dependence

of the latency on the frequency of stimulation, seen

in Con and W, was more expressed in the treated

groups, up to the significant difference between the

latencies obtained with 1 and 10 Hz stimulation in

the HD group. The latency of the VIS EP, and to a

lesser extent of the AUD EP, also increased in the

treated groups vs. Con (Figure 5).

Figure 3. Band power spectrum (delta to gamma, see insert) of the rats’ electrocorticogram after 6 weeks of exposure.
Abscissa: group codes. SS: somatosensory area; VIS: visual area; AUD: auditory area. *p < 0.05 vs. untreated control group
(Con); #p < 0.05 vs. vehicle control group (W).

Figure 4. Latency of the somatosensory-evoked potential after 6 weeks of exposure. Abscissa: group codes. Mean + SD,
n¼ 10. Insert: stimulation frequency. *p < 0.05 vs. untreated control group (Con); �p < 0.05 vs. 1 Hz stimulation within the
same treatment group.
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Discussion

The metal levels, as well as the electrophysiological

and biochemical changes, indicated that Cd instilled

into the rats’ trachea in the form of CdO2 NPs was in

fact absorbed from the airways and unfolded its toxi-

city. The time trend of body weights and the increase

in alterations after 6 vs. 3 weeks suggested a gradual

buildup of Cd. Absorption of the metal via the air-

ways has been described repeatedly. Takenaka et

al. (2004) detected Cd in the blood, liver and kidney

of rats after inhalation CdO2 NPs—in an experiment

with much shorter duration, and faster tissue sam-

pling after exposure than it was in our work, which

may explain the main difference viz. the absence

of detectable Cd level in the blood of treated rats.

In bulk, CdO2 is hardly water soluble, but its absorp-

tion from the lung is rather good (Oberdörster,

1979). No detectable blood Cd level in our work

probably meant that the absorbed amount was

promptly sequestered in the liver where it was

detected in fact. In the study by Dill et al. (1994), the

blood Cd level after ca. 3 months inhalation expo-

sure by CdO particles of about 1 mm diameter was

103 times lower than in the kidney, the other organ

known to accumulate Cd in the organism. The

absence of noteworthy amounts of Cd in the blood

was, logically, the reason for not detecting Cd in our

brain samples. Beyond that, Cd is known to have low

permeability across the blood–brain barrier

(ATSDR, 2008) and no transneuronal movement

from the periphery to the brain (Tjälve et al., 1996).

In spite of the latter, neurotoxicity of Cd in humans

has been reported repeatedly (see Introduction sec-

tion). In exposed workers, elevated urine Cd level was

associated with reduced visuomotor performance and

difficulties of concentration and stance (Viaene et al.,

2000) and with peripheral neuropathy (Viaene et al.,

1999). In children, the exposure indicator was hair

Cd, and the outcomes, cortical EPs (Thatcher et al.,

1984) and behavior (Marlowe et al., 1985). The signif-

icant change in the latency of cortical EPs in our work,

without detectable Cd deposition in the CNS, was

probably due to secondary effects. Along the periph-

eral part of the afferent pathways, Cd2þ ions, if present,

could interfere with ion channels (primarily Ca chan-

nels: Viarengo and Nicotera, 1991), and with mito-

chondrial energy production (López et al., 2006),

resulting in delayed arrival of the excitation to the sub-

cortical and cortical centers, and so to lengthened cor-

tical EP latency. Cd-induced liver damage could affect

the substrate supply for synthesis of monoamine trans-

mitters (Yourdaydin et al., 1990), the abnormal activ-

ity of which is known to alter cortical electrical activity

(Sebban et al., 1999). The ECoG shift in the present

study was similar to that found with oral application

of dissolved Cd for 12 weeks (Papp et al., 2003).

The oxidative stress inducing effect of Cd is indi-

rect; due, among others, to depletion of GSH (Valko

et al., 2005) and to mitochondrial damage (López et

al., 2006). The GSH level in the lungs of treated rats

(the organ having the highest Cd load) was in fact sig-

nificantly reduced. The increase in the brain samples

was possibly of compensatory nature. Others, e.g.

Figure 5. Latency of the visual- and auditory (see insert)-evoked potential after 6 weeks of exposure. Abscissa: group
codes. Mean + SD, n ¼ 10. *p < 0.05, **p < 0.01 vs. untreated control group (Con).
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Tandon et al. (2003), found depletion of GSH in Cd-

exposed rats but in that experiment Cd was applied

per os in dissolved form, in higher dose (1.5 mg/kg

b.w.) and was detected in brain samples after 5 days

treatment.

In spite of some disagreements with others’ find-

ings, it can be stated that the data, presented above,

emphasize the role of the nano-sized fraction of

Cd-containing industrial fumes in the causation of

nervous system damage, and show that it is possible

to model the human neurotoxic damage caused by

inhalational Cd exposure in rats.
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