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The control over the formation of a bi-component porous 5 

network was attained by the self-assembly at a solid-liquid 

interface, by exploiting both primary and secondary non-

covalent interactions between melamine and N3-alkylated 

xanthine modules. 

Hydrogen bonding1 has been extensively used to direct the self- 10 

assembly of suitably designed molecular modules into a variety 

of supramolecular architectures2 including one-dimensional (1D) 

linear non-covalent polymers,3 two-dimensional (2D) networks4 

and three-dimensional (3D) arrangements.5 Among the numerous 

examples of supramolecular arrays on solid surfaces, which have 15 

been reported to date,6 those featuring void spaces, so-called 2D 

porous networks, are of special importance.7 The main reason for 

the growing interest in such periodic architectures, either 

assembled on metals8 or graphite,7, 9 is their great potential for 

technological applications in nanoengineering and, more 20 

generally, in nanotechnology.10 A distinct advantage of porous 

networks is their regular spatial arrangement of nanometer-sized 

cavities with uniform, well-defined shapes that can be used for 

storage functions or to control reactivities.11 Engineering the 

structure and function of 2D porous networks requires control 25 

over structural features of precursors, i.e. shape, nature, and 

position of interacting sites, as well as molecular electronic 

properties and the overall topology of the material. This strategy, 

known as crystal engineering, has rapidly developed for 2D 

systems.12 The spontaneous organization of molecular building 30 

blocks into planar, periodic supramolecular architectures is driven 

by inter- and intra-molecular forces as well as by interfacial 

interactions. Hydrogen bonds have always been a focus of 

attention in supramolecular chemistry with much inspiration 

being drawn from Nature. Besides the multiplicity of H-bonds, 35 

the strength of the interactions holding together the molecular 

units depends on the nature of the donor/acceptor pairs, like the 

involved heteroatoms, the secondary attractive/repulsive 

interactions as well as further non-local (e.g. cooperative) 

effects.13 
40 

Scanning tunneling microscopy (STM) is one of the most 

powerful tools to investigate the structure of molecular 

assemblies at surfaces under various environmental conditions 

with a sub-molecular resolution.14 It is therefore an important 

method to unveil the self-assembly phenomena and 2D crystal 45 

engineering with a high degree of precision. The STM application 

at the solid–liquid interfaces also allows the study of dynamic 

processes,15 making this tool very precious for nanochemistry 

investigations. 

Herein, we exploit self-complementary donor-acceptor-donor 50 

(DAD) / acceptor-donor-acceptor (ADA) hydrogen bonding to 

direct the generation of discrete bi-component supramolecular 

assemblies, which are capable of further self-associating through 

weak H-bonds to form 2D porous networks at the solid-liquid 

interface. In particular, we focus our attention on the H-bonding 55 

between 1,3,5-triazine-2,4,6-triamine (melamine, M) and N3-

substituted xanthine16 derivative, i.e. N3-octadecylxanthine (X), 

capable of forming MX3 entities as shown in Scheme 1. 

Scheme 1. The molecular structures of investigated molecular modules M 
(melamine) and X (N3-octadecylxanthine), and the formation of MX3 60 

species through self-complementary H-bonding.  

 
Figure 1. a) ESI-MS spectrum of N3-methylxanthine (X’, MW: 166) and 

melamine (M, MW: 126) in 0.5% aq. formic acid, zoom range m/z 550-

860; b) CID spectrum of peak at m/z 625; c) proposed structure of 65 

[MX’3+H]+ adduct ion. 
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Because of the very low solubility of N3-octadecylxanthine (X), 

we have chosen N3-methylxanthine (X’) as a model system in 

order to study the self-association between xanthine and 

melamine molecules by electrospray ionization mass 

spectrometry (ESI-MS).  5 

The ESI-MS spectrum of neat melamine (M) in dilute aq. formic 

acid contained the peaks [M+H]+ and [M2+H]+ (see Fig. S1 in 

ESI†). The mass spectrum of neat N3-methylxanthine contained a 

series of peaks containing 1-4 xanthine units with proton, sodium 

or potassium ions (see Fig. S2 in ESI†) with a peak 10 

corresponding to the quartet adduct [X’4+Na]+ at m/z 687 being 

the most abundant as reported.16a When the two solutions are 

mixed together a new adduct appear at m/z 625 corresponding to 

the aggregate [MX’3+H]+. The intensity (and likely, the stability) 

of this aggregate was comparable to that of the [X’4+Na]+ peak at 15 

m/z 687 (Fig. 1a). This fact suggests that melamine-induced 

aggregate formation successfully competes with the quartet 

formation of xanthine, mediated by cations, and efficiently 

extrudes them to form a stable adduct in which one melamine 

binds three xanthine molecules by nine H-bonds (Fig. 1c). The 20 

identity of the peak [MX’3+H]+ at m/z 625 has been ascertained 

by tandem mass spectrometric measurements resulting in gradual 

loss of xanthine molecules to yield adducts [MX’2+H]+, 

[MX’+H]+ and finally [M+H]+ (Fig. 1b). As a further evidence of 

existence of MX3 entities in solution phase 1H NMR analyses of 25 

bi-component mixtures have been performed. Modified Job’s plot 

constructed from 1H NMR experiments confirm the existence of a 

X/M aggregate with 3:1 stoichiometry (see Fig. S6 in ESI†).  

 STM was used to probe the mono-component self-assembly 

behavior of M and X, as well as the bi-component mixture at the 30 

solution-graphite interface. STM images of mono-component 

self-assembled arrays obtained by depositing a drop of solutions 

of molecular modules M (12 ± 3 µM) and X (10 ± 2 µM) in 1,2,4-

trichlorobenzene (TCB) on highly oriented pyrolitic graphite 

(HOPG) surface are displayed in Figure 2a and 2c, respectively. 35 

As expected, melamine (M) forms a hexagonal pattern (Fig. 2a) 

with unit cell a = (0.99 ± 0.01) nm, b = (1.00 ± 0.01) nm, α = (62 

± 2)° and A = (0.89 ± 0.09) nm2, in very good agreement with 

that previously observed under UHV conditions17 and at the 

solid-liquid interface.18 The STM height image of the obtained 40 

monolayer of N3-octadecylxanthine (X) (Fig. 2c) shows a 

crystalline structure consisting of ribbon-like architectures. In this 

2D crystal, the octadecyl side chains are physisorbed flat on the 

surface and are interdigitated between adjacent supramolecular 

ribbons.19 The unit cell parameters, a = (1.14 ± 0.02) nm, b = 45 

(2.75 ± 0.02) nm and α = (83 ± 2)°, lead to an area A = (3.11 ± 

0.03) nm2. The supramolecular packing motif can be described by 

the formation of the NH(1) – O(2) and NH(7) – O(6) H-bonds 

between X modules.  

 The two aforementioned solutions have been diluted with TCB 50 

to yield concentrations of 1 ± 0.1 µM and 3 ± 0.5 µM for M and 

X, respectively, and mixed in equal volumes. By applying 4 µL of 

this new solution to the HOPG surface, a porous network has 

been obtained at the solid-liquid interface, as visualized by STM 

imaging at room temperature. Figure 2e shows a 2D hexagonal 55 

porous network, which resulted by the formation of: i) strong 

complementary (X)NH(1) – N(M), (X)O(2) – HN(M) and 

(X)O(6) – HN(M) H-bonds between M and X, i.e. the formation 

of MX3 entities; ii) weak cyclic CH(8) – N(9) H-bonds between X 

molecules, i.e. formation of 2D polymeric array. Noteworthy, the 60 

octadecyl side chains of X molecules are backfolded into the 

supernatant solution, and most likely prevent the growth of 

assembly in the third dimension, which plays a key role in the 

formation of porous structure.20 

To provide molecular understanding of the self-assembly of MX3 65 

species and shed light on the formation and stability of 

supramolecular (MX3)n 2D network, computational studies have 

been invoked. Taking into account that the observed (MX3)n 

motif was observed only in the presence of a surface, we 

identified different subsystems which can play an important 70 

 

 
Figure 2. STM height images (viz. images recorded in constant current mode) of supramolecular H-bonded structures of: a) melamine (M), and c) N3-

octadecylxanthine (X) at the 1,2,4-trichlorobenzene-graphite interface. Proposed molecular packing motifs are shown in b) and d), respectively. e) STM 

height image of the self-assembled (MX3)n pattern; f) proposed molecular packing motif of bi-component 2D porous network; for the sake of clarity, 75 

octadecyl side chains have been replaced by methyl groups. (a, c and e) Tunneling parameters: average tunneling current It = 25 - 28 pA, tip bias voltage 

Vt = 400 – 450 mV. 
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role in the formation of the surface-templated 2D pattern. These 

fragments are shown in Figure 3 (for simplicity the octadecyl side 

chains have been replaced by methyl groups in the calculations, 

similarly to the case of MS experiments). 

 5 

Figure 3. Chemical representation of (MX’3)n subunits investigated by 

density functional theory (DFT) using the BLYP functional (for details 

see ESI). 

Initially, the pre-assembled melamine (M) complex with three 

xanthine (X’) molecules (MX’3 in Fig. 3) has been modeled in 10 

silico at the BLYP-D/TZ2P level of density functional theory. 

For further computational details see ESI. MX’3 contains nine 

strong H-bonds and the crucial question is whether the pyramidal 

effect on the amino groups of M can distort the planarity of the 

complex. Performing optimizations with and without planar 15 

constrains, we have found that, albeit the perfectly planar state is 

a transition state, the unconstrained optimization leads to a nearly 

planar structure. The total energy difference between the two 

optima is negligible (less than 0.1 kcal mol-1), highlighting that 

the MX’3 entities can easily lay onto a HOPG surface. Comparing 20 

corresponding dimer bonding energies (MX’, X’2 or M2 with 

values -20.6 kcal mol-1, -16.9 kcal mol-1 and -11.8 kcal mol-1, 

respectively) clearly demonstrates that the interactions between 

M and X’ are favorable. 

This complex can then easily grow into the MX’3 species. 25 

Consequently, the MX’3 structure is the most probable complex in 

the presence of melamine in spite of the fact that the X’4 quartet 

has a stronger bonding energy. The bonding energy of the latter 

structure has been found to be -66.5 kcal mol-1 (cf. ref.13b, 16a) 

while -58.9 kcal mol-1 has been obtained for the MX’3 complex. 30 

Moreover, the X’4 structure contains only 8 hydrogen bonds 

therefore the average hydrogen bond is also stronger than in the 

MX’3 case. On the other hand, the MX’3 structure is much more 

rigid, because of the triple H-bond pattern, therefore it is more 

likely that the preferred complexation of the melamine-xanthine 35 

aggregate is driven by the dimer interaction and the entropic 

change. Noteworthy, melamine is capable to form a hexameric 

ring-based structures (see Fig. S9) in the presence of a surface. 

Nevertheless, this structure is less favorable in the presence of 

xanthine molecules, because of similar reasons as in the 40 

tetrameric case. In addition, the hexameric melamine (M6) ring 

structure has 12 hydrogen bonds and it reaches its minimum in 

C3i symmetry. This non-planar geometry is 5.1 kcal mol-1 lower 

in total energy compared to the perfectly planar C6h 

conformation. 45 

 Once MX’3 species are formed in solution these units can 

easily lay onto the surface when a graphite support is introduced. 

As previously hypothesized, the next step towards the formation 

of 2D bi-component network, has to involve formation of weak 

intermolecular CH(8) – N(9) H-bonds. Therefore, structures X’3 50 

and M3X’3 were calculated. We found that structure X’3 is a real 

minimum in spite of the planar constraint. This system is 

associated with a bonding energy of -12.4 kcal mol-1 with respect 

to dissociation into three monomers. This bonding energy was 

not affected by the presence of M molecules (M3X’3). We also 55 

calculated the interaction energy between one monomer of 

structure X3 and the dimer of the remaining two monomers (note 

that the interaction energy refers to frozen fragments which are 

not allowed to geometrically relax after dissociation). According 

to this fragmentation, -9.0 kcal mol-1 has been obtained for the 60 

interaction energy. Considering the optimized form of structure 

M3X’9, a similar interaction was calculated when dissociating the 

system into a single xanthine molecule (taken from the 

corresponding position of the M3X’3 structure) and the remaining 

part of the complex. The interaction energy was found to 65 

be -9.6 kcal mol-1, which is very close to the result of the 1+2 

decomposition in M3X’3 structure. These findings indicate that 

the different environments do not drastically alter the CH(8) – 

N(9) interaction which allows the new MX’3 building blocks to 

connect properly to the surface-templated structure. Taking into 70 

account the large flexibility of structure M3X’3 and the weak 

average CH(8) – N(9) bonding energy (-4.1 kcal mol-1), this 

structure can form only in the presence of a templating graphite 

surface. All the calculations support a previously suggested two-

step process which leads to the formation of bi-molecular 2D 75 

porous structures, i.e. i) formation of the MX3 unit; ii) 

simultaneous assembly of MX3 structures on the surface through 

weak CH(8) – N(9) interactions. Finally, we have also optimized 

structures M3X’6 and M3X’9 by applying the optimized 

substructures in the setup of the starting geometries. Both 80 

optimizations yield a similarly distorted structure M3X’3 by 

slightly changing the geometry of the CH(8) – N(9) connection, 

but the additional three X monomers can attach to the structure 

M3X’6 with more similar CH(8) – N(9) geometry (cf. ESI) to that 

of it acquired in the optimum of structure M3X’3. Nevertheless, 85 

the triple hydrogen bonds between M and X’ modules were not 

affected at all.  

Conclusions 

We described the bottom-up fabrication of 2D bi-component 

supramolecular arrays composed of melamine and N3-90 

octadecylxanthine molecules based on the generation of nine 

strong H-bonds and the formation of (MX3)n discrete assemblies, 

which are further reinforced by additional CH(8) – N(9) weak 

interactions. Scanning tunneling microscopy studies at the solid-

liquid interface revealed the formation of 2D porous structures. 95 

The existence of MX’3/MX3 species in gas and solution phases 
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has been corroborated by MS and NMR investigations. The 

unambiguous assignment of molecular modules was possible by 

using density functional calculations. The possibility of 

developing of 2D porous and bi-component polymeric arrays at 

the solid-liquid interface by making use of secondary weak 5 

interactions is of general applicability for the fabrication of stable 

scaffolds and provides an enhanced control over the super-

structure, which can lead to improved properties of the 

supramolecular materials. 
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1. Mass Spectroscopy 

N
3-Methylxanthine and melamine analytes were purchased from TCI and Sigma-Aldrich, 

respectively. N
3-Octadecylxanthine was prepared as described in ref.1 Saturated solutions were 

prepared from both analytes in hot water using a bath sonicator for 10 min. The saturated solutions, 

containing 0.5% formic acid, were measured first separately, then a 50:50 (v/v) mixture of them. 

All mass spectrometric measurements were performed on a Waters Q-TOF Premier spectrometer 

(Waters, Milford, Massachusetts, USA) equipped with a built-in electrospray ion source. A high 

voltage of ca. 3000 V was used in the ion source. The instrument was scanned in the normal MS 

mode over the mass range 50-990 with a scan time of 2 s. In case of MS/MS measurements 

collision energy was set from 5 to 2 eV. Argon was used as collision gas; gas flow was 

0.33 mL/min. Injection volume: 5 µL; Injection speed: 200 µL/min. Cone voltage: 32 V. Eluent: 

acetonitrile - water 1:1 (v/v). 

 

Figure S1. MS spectrum of Melamine (M, MW: 126) in aq. 0.5% formic acid 

(Q-TOF instrument, positive ion mode). 
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Figure S2. MS spectrum of N
3-Methylxanthine (X’, MW: 166) in aq. 0.5% formic acid 

 (Q-TOF instrument, positive ion mode). *Peaks caused by contamination of the needle with 

melamine. 

 

 

Figure S3. MS spectrum bi-component mixture: N3-Methylxanthine (X’, MW: 166) + Melamine 

(M, MW: 126) in aq. 0.5% formic acid (Q-TOF instrument, positive ion mode). 
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Figure S4. MS spectrum bi-component mixture: N3-Methylxanthine (X’, MW: 166) + Melamine 

(M, MW: 126) in aq. 0.5% formic acid. Zoom range m/z 550 – 860. 

 

 

Figure S5. MS spectrum bi-component mixture: N3-Methylxanthine (X’, MW: 166) + Melamine 

(M, MW: 126) in aq. 0.5% formic acid CID spectrum of peak at m/z 625. 

 

2. NMR 

NMR spectra were recorded with a Varian Unity INOVA 600 MHz instrument equipped with a 

reverse probe. Appropriate amounts of X and M were weighted and added into NMR tubes. DMSO-

d6 was added to each tube to obtain a 5.3 mM overall composition. Each sample was heated at 

353.0 K in the instrument probe and allowed 20 min for dissolution and equilibration before 

acquiring the spectrum. All measurements were run in duplicate. 

Page 8 of 15Physical Chemistry Chemical Physics



S5 

 

Modified Job’s plot2 constructed from 1H NMR experiments, confirm the existence of a X/M 
aggregate with 3:1 stoichiometry. 
 

 

Figure S6. Modified Job’s plot 2 of X and M (600 MHz, dmso-d6, 353.0 K). ∆δ = chemical shift 

change of the NH-1 proton of X.1 

 

 

Figure S7. X NH-1 signal shift in X/M mixtures as a function of X molar fraction. 
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3. STM investigation. Scanning Tunneling Microscopy (STM) measurements were performed 

using a Veeco scanning tunneling microscope (multimode Nanoscope III, Veeco) at the interface 

between highly oriented pyrolitic graphite (HOPG) and a supernatant solution, by using a scanner A 

(Veeco), therefore by mapping a maximum area of 1µm × 1µm. Diluted solutions of M and/or X 

were applied to the basal plane of the surface. For STM measurements the substrates were glued on 

a magnetic disk and an electric contact is made with silver paint (Aldrich Chemicals). The STM tips 

were mechanically cut from a Pt/Ir wire (90/10, diameter 0.25 mm). The raw STM data were 

processed through the application of background flattening and the drift was corrected using the 

underlying graphite lattice as a reference. The latter lattice was visualized by lowering the bias 

voltage to 20 mV and raising the current to 65 pA. Mother solutions of 1,3,5-triazine-2,4,6-triamine 

(melamine, M) and N
3-ocadecylxanthine (X) were dissolved in 1,2,4-trichlorobenzene (TCB) at 

95 ºC and diluted to give 100 µM and 10 µM solutions. STM imaging was carried out in constant 

current mode yet without turning off the feedback loop, to avoid tip crashes. Monolayer pattern 

formation was achieved by applying onto freshly cleaved HOPG 4 µL of a solution that was heated 

at 60-70 ºC to improve the solubility. Noteworthy, study of this system in different solvents, i.e. 1-

phenyloctane, nonanoic acid and tetradecane, did not produced any ordered monolayers, which can 

be attributed to the low solubility of molecules M and X in those solvents. The two aforementioned 

solutions have been diluted with TCB to yield concentrations of 1 ± 0.1 µM and 3 ± 0.5 µM of M 

and X, respectively, and mixed in 1:3 (M:X) ratio. By applying 4 µL of this new solution to the 

HOPG surface, a porous network has been obtained at the solid-liquid interface, as visualized by 

STM imaging at room temperature. The STM images were recorded at room temperature after 

achieving a negligible thermal drift. All of the molecular models were minimized with Chem3D at 

the MM2 level and processed with QuteMol visualization software. 3  
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4. Computational details 

All calculations were performed using the 2012 version of Amsterdam Density Functional (ADF),4 

and the QUantum-regions Interconnected by Local Descriptions (QUILD) program developed by 

Swart and Bickelhaupt.5 The applied level of density functional theory (DFT) was BLYP-D in 

combination with the TZ2P basis set: BLYP-D comprises the BLYP functional6 with dispersion 

corrections as proposed by Grimme.7 This approach has been shown to yield excellent structures 

and energies for multiply-hydrogen bonded DNA-base oligomers.8 The other reason for including 

dispersion corrections in the calculations is that, in this way, the new results can have a direct 

comparison to our previous 3-methylxanthine quadruplex calculations.8-9 

Equilibrium structures were optimized using analytical gradient techniques and all energy minima 

except the two largest (12 and 9 units) ones were verified through vibrational analysis.10 In those 

cases where it was necessary the presence of a surface was taken into account by planar restraint. 

The overall bond energy ∆Ebond is made up of two major components [Eq. (1)]: 

 

∆Ebond = ∆Edef + ∆Eint        (1) 

 

The deformation energy ∆Edef is the amount of energy required to deform the individual monomer 

molecule from its equilibrium structure in the gas phase to the geometry that it acquires in the 

supramolecular complex. The interaction energy ∆Eint corresponds to the energy change when the 

geometrically deformed molecules are associated to form the optimized structure. ADF does not 

provide total energies, i.e., energies with respect to all nuclei and electrons separated at infinite 

distance). Instead, it yields energies with respect to separate fragments where default fragments are 

spherical spin-restricted individual atoms. Note that energy differences with respect to this atomic 
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zero level provide exactly the same results as calculations with respect to any other point of 

reference. 

  
Structure MX’3      Structure X’3 

  

Structure M3X’3       Structure M3X’6 
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Structure M3X’9 

Figure S8. Optimized H-bond distances (in Å, yellow numbers) and angles (in degree, cyan 

numbers) of the basic surface motif M3X’9 and the calculated subsystems (MX’3, X’3, M3X’3, 

M3X’6) in the interaction of melamine (M) and N3-methylxanthine (X’). All the calculations were 

performed in C3h symmetry, except structure B where the optimization leads to a non-symmetric 

structure very close to a C3h symmetric geometry(see main text). 

  
Figure S9. Optimized H-bond distances (in Å, yellow numbers) and angles (in degree, cyan 

numbers) of hexameric melamine (M6) in C6h (left) and C3i (right) symmetry. 
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Figure S10. The three optimized reference dimer structures M2 (top), MX’ (middle) and X’2 

(bottom) with optimal H-bond distances (in Å, yellow numbers) and angles (in degree, cyan). 
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