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Abstract 

Background: Deficient peroxisome proliferator activator receptor-γ coactivator-1α (PGC-1α) 

function is one component of mitochondrial dysfunction in neurodegenerative diseases. 

Current molecular classification of such diseases is based on the predominant protein 

accumulating as intra- or extracellular aggregates. Experimental evidence suggests that 

mitochondrial dysfunction and impaired protein processing are closely interrelated. In vitro 

findings further indicate that PGC-1α dysfunction may contribute to protein misfolding in 

neurodegeneration.  

Objective: To systematically evaluate the neuropathological alterations of mice lacking the 

expression of the full-length PGC-1α protein (FL-PGC-1α) but expressing an N-truncated 

fragment. 

Methods: To assess the pattern of neurodegeneration-related proteins, we performed 

immunostaining for Tau, p-Tau, α-synuclein, amyloid-β, amyloid precursor protein, prion 

protein, FUS, TDP-43 and ubiquitin. Using Hematoxylin and Eosin, Klüver-Barrera and 

Bielschowsky silver stainings and anti-GFAP immunohistochemistry, we performed an 

anatomical mapping to provide a lesion profile. 

Results: The immunohistochemical pattern of neurodegeneration-related proteins did not 

differ between FL-PGC-1α knockout and wild-type animals, and there was a complete lack of 

protein deposits or ubiquitin-positive inclusions. The analysis of neuropathological alterations 

revealed wide-spread vacuolation predominating in the cerebral white matter, caudate-

putamen, thalamus and brainstem, and reactive astrogliosis in the brainstem and cerebellar 

nuclei. This morphological phenotype was thus reminiscent of human mitochondrial 

encephalopathies, especially the Kearns-Sayre syndrome. 

Conclusion: We conclude that the lack of FL-PGC-1α per se is insufficient to recapitulate 

major features of neurodegenerative diseases, but evokes a pathology seen in mitochondrial 

encephalopathies, which makes PGC-1α-deficient mice a valuable model for this yet 

incurable group of diseases. 

Keywords: peroxisome proliferator activator receptor gamma coactivator-1alpha; 

mitochondrial dysfunction; misfolded protein; neurodegeneration; neuropathology; 

mitochondrial encephalopathy; Kearns-Sayre syndrome 
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Introduction 

Mitochondria are membrane-bound organelles in the cytoplasm supposedly originating from 

the endosymbiosis of an ancient aerobic prokaryote with a eukaryotic cell. They provide 

environment for several essential biochemical processes, including the synthesis of adenosine 

triphosphate (ATP), and have a pivotal role in adaptive thermogenesis, intracellular Ca2+ 

homeostasis, cell-cycle regulation, development, aging and cell death. Mitochondrial 

dysfunction, accompanied by subsequent cellular energy imbalance and an overproduction of 

reactive oxygen species (ROS), has been strongly implicated in the pathogenesis of several 

neurological disorders, including the neurodegenerative diseases (NDDs) [1] and the 

primarily childhood-onset mitochondrial encephalopathies [2].  

NDDs, such as Huntington’s disease (HD), Alzheimer’s disease (AD), Parkinson’s 

disease (PD) and amyotrophic lateral sclerosis (ALS), are characterized by progressive loss of 

neurons in particular regions of the central nervous system (CNS), which is accompanied by 

the dysfunctional degradation and subsequent aggregation of misfolded proteins such as 

hyperphosphorylated tau (pTau), amyloid-β (Aβ), α-synuclein, prion protein (PrP), trans-

activation response (TAR) DNA-binding protein (TDP-43) and fused in sarcoma protein 

(FUS). Accordingly, current molecular classification of NDDs is based on the predominant 

protein accumulating as intra- or extracellular aggregates [3]. The defects of both relevant 

degradation pathways – ubiquitin-proteasome system and autophagy – have been associated 

with NDDs [4], and emerging evidence based on neurotoxin-induced models of 

neurodegeneration suggests that mitochondrial dysfunction and impaired protein processing 

are closely interrelated [5-11]. 

The nuclear-encoded metabolic master regulator peroxisome proliferator activator 

receptor-γ (PPARγ) coactivator-1α (PGC-1α) has a key integratory role in the transcriptional 

control of cellular energy metabolism, oxidative stress defense, mitochondrial function and 

biogenesis [12]. PGC-1α directly interacts with various transcriptional regulatory factors such 

as PPARs, estrogen-related receptors (ERRs), forkhead box O (FOXO) 1, Yin-Yang 1, 

myocyte-specific enhancer factor 2C (MEF2C) and, most importantly, nuclear respiratory 

factor (NRF) 1 and 2. This robust activation of nuclear transcriptional factors on the one hand 

leads to the increased expression of several nuclear-encoded mitochondrial respiratory 

complex subunits and a number of mitochondrial factors responsible for mitochondrial DNA 

(mtDNA) replication, transcription and translation, and also for mitochondrial protein import 
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and assembly. On the other hand, PGC-1α activation promotes the transformation of 

glycolytic metabolism towards fatty acid oxidation and gluconeogenesis; furthermore, it 

triggers adaptive thermogenesis via the induction of uncoupling protein 1 (UCP1) [13].  

The contribution of PGC-1α deficiency to neurodegenerative processes is supported by 

numerous experimental data [14]. Complementary to these, deficient PGC-1α axis has been 

reported in HD [15], PD [16] and AD [17] patients. Additionally to impaired mitochondrial 

biogenesis, PGC-1α-deficient neurons exhibit a markedly increased sensitivity against 

mitochondrial oxidative stress, as PGC-1α is required for the recruitment of general 

antioxidant responses [18]. In line with the data linking mitochondrial dysfunction to impaired 

protein processing, recent in vitro studies demonstrated that PGC-1α deficiency may 

contribute to α-synuclein accumulation [19] and the formation of toxic Aβ [17]. 

PGC-1α has recently been demonstrated to undergo an alternative 3’ splicing between 

exons 6 and 7 producing an in-frame stop codon at amino acid 268, which results in a shorter 

but functionally active splice variant of PGC-1α called N-truncated PGC-1α (NT-PGC-1α) 

[20]. Moreover, both splice variants have been shown to have 3-3 distinct isoforms [21], the 

exact roles of which, however, have not yet been fully elucidated. In the past years, two 

independently developed whole-body knockout murine strains of PGC-1α have been 

characterized. Surprisingly, however, despite the well-established contribution of PGC-1α in 

mitochondrial functions, these knockouts are viable and fertile [22, 23], suggesting the 

presence of functional compensatory pathways. The first strain generated by Lin et al. 

represents a complete knockout of PGC-1α [23], displaying no residual expression of any 

fragments of the protein (PGC-1α -/-). The parallel developed knockout strain described by 

Leone et al. [22] lacks the expression of the full-length protein (FL-PGC-1α -/-) but readily 

expresses a slightly shorter form of NT-PGC-1α (amino acids 1-254) denoted as NT-PGC-

1α254, which has very recently been shown to be functionally identical with the complete NT 

splice variant [21]. Notably, both PGC-1α knockout strains were reported to display 

spongiform brain vacuolation predominantly in the caudate-putamen, which first led to the 

conclusion that PGC-1α deficiency may model neurodegeneration. However, a number of 

interesting differences could be observed between the two strains, which include the intact 

thermoregulation, unimpaired hepatic gluconeogenesis and the adult onset obesity seen in FL-

PGC-1α -/- mice. While the presence of functional NT-PGC-1α254 may explain the observed 

metabolic and thermoregulatory differences between the two knockout strains, the apparent 

similarity in the gross neuropathological phenotype and the progressive myopathy observed in 
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FL-PGC-1α -/- mice [22] indicate that the lack of FL-PGC-1α per se results in an 

irreplaceable loss of some aspects of mitochondrial function. 

Based on the concordant data linking mitochondrial dysfunction and PGC-1α 

deficiency to the dysregulation of protein processing and handling, in our present study, we 

performed a systematic neuropathological characterization of adult mice lacking the 

expression of FL-PGC-1α, with special focus on the immunohistochemical pattern of 

neurodegeneration-related proteins.  

In addition to the complete lack of pathological protein aggregation, the 

comprehensive mapping of lesion profiles, comprising spongiform vacuolated lesions and 

astrogliosis, showed that FL-PGC-1α -/- mice evoke a tissue pathology seen in human 

mitochondrial encephalopathies, but do not associate with the pathology seen in adult-onset 

neurodegenerative diseases like HD, PD or AD. 

Materials and methods 

Animals 

FL-PGC-1α -/- mice developed on C57Bl/6J background were generated in Kelly Lab 

(Sanford-Burnham Institute for Medical Research at Lake Nona, Orlando, FL, USA). The 

genetic modification of the animals was carried out as previously described by Leone et al. 

[22]. Briefly, the insertion of a neomycin-based gene targeting construct resulted in a 3’ 

homologous recombination and the duplication of exon 3 between exons 5 and 6 of the 

murine PGC-1α gene, which created a coding region frameshift and a subsequent premature 

termination at amino acid 255. 

15 FL-PGC-1α -/- (8 male, 7 female) and 16 (8 male, 8 female) age-matched wild-type 

C57Bl/6J mice were involved in this study. The animals were housed in cages (maximum 4 

per cages) in standard conditions with 12-12h light-dark cycle and ad libitum access to 

standard pellet food and water. The experiments were performed in accordance with the 

European Communities Council Directive (86/609/EEC) and were approved by the local 

animal care committee. The animals were sacrificed at 30 weeks of age. Brains were removed 

on ice and halved at the midline immediately following decapitation. Half brains were fixed in 

4% paraformaldehyde overnight and kept in 10% glycerol in 4°C until embedding in paraffin.  
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Neuropathology and immunohistochemistry 

4-µm-thick sagittal sections of paraffin-embedded brain halves were evaluated. We 

performed the stainings at two levels, one in the level containing the septal nuclei, the medial 

thalamus and the retroflex fascicle, and one in the level of the caudate-putamen, containing 

also the substantia nigra. In addition to Hematoxylin and Eosin, Klüver-Barrera (Luxol and 

Fast red), and Bielschowsky silver stainings, the following monoclonal antibodies 

(crossreacting with mouse) were used for immunohistochemistry: anti-pTau AT8 

(pS202/pT205, 1:200, Pierce Biotechnology, Rockford, IL, USA), anti-α-synuclein (1:10.000, 

clone 4D6, Signet, Dedham, MA, USA), anti-Aβ (1:50, clone 6F/3D, Dako, Glostrup, 

Denmark), anti-amyloid precursor protein (APP) (1:500, Millipore, Billerica, MA, USA) and 

anti-PrP (6H4, 1:1000, Prionics, Schlieren, Switzerland; epitope 144-152). Furthermore, the 

following polyclonal antibodies were used: anti-ubiquitin (1:1000, Dako, Glostrup, Denmark), 

anti-glial fibrillary acidic protein (GFAP) (1:3000, Dako, Glostrup, Denmark) anti-TDP-43 

(1:100, ProteinTech Group, Chicago, IL, USA), anti-tau (1:100, Dako; cross-reacts with the 

tau-equivalent protein in mouse) and anti-FUS (1:1000, Sigma-Aldrich, St. Louis, MO, USA) 

antibodies. The DAKO EnVision detection kit, peroxidase/DAB, rabbit/mouse (Dako, 

Glostrup, Denmark) was used for visualization of antibody reactions. When applying mouse 

antibodies, we used the M.O.M. kit (Vector Laboratories, Burlingame, CA, USA) to prevent 

the aspecific background staining of endogenous mouse immunoglobulins. As positive 

controls for the immunostaining, we used tissue sections from human AD (pTau and Aβ), PD 

(α-synuclein) and frontotemporal lobar degeneration (FTLD) with TDP-43 or FUS inclusions 

(TDP-43 and FUS) as well as tissue sections from scrapie-infected mice (PrP, RML strain, 

Hamilton, MT, USA).  

Neuropathological alterations (vacuolation and astrogliosis) were semiquantitatively 

evaluated in several anatomical regions (table 1).  Respecting the fact that vacuole-like 

alterations may also develop due to histological preparatory processes, vacuoles were scored 

0–4 as follows (fig. 1a): 0) No vacuoles or scattered vacuole-like alterations but not more than 

1 per visual field at 40x magnification; 1) Scattered vacuole-like alterations but not more than 

3 per visual field at 40x magnification; 2) Mildly vacuolated lesion(s) with less than 10 

vacuoles per visual field at 40x magnification; 3) Moderately vacuolated lesion(s) with less 

than 20 vacuoles per visual field at 40x magnification; 4) Severely vacuolated lesion(s) with 

more than 20 vacuoles per visual field at 40x magnification. Astrogliosis were scored 0-3 as 

follows (fig. 1b): 0) No astrocytes or scattered resting asctrocytes; 1) Cloudy positivity with 
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no signs of reactivation; 2) Moderate astrogliosis with multiple reactive astrocytes in a patchy 

distribution; 3) Severe astrogliosis with abundant reactive astrocytes in a confluent pattern.  

Statistical analysis 

The statistical evaluation of the data was carried out by SPSS Statistics 17.0 software®. 

The cross-tabulation analyses of the discrete variables were performed using Fisher’s exact 

test. In structures large enough to be present in both the paramedian and the lateral sections, 

we performed a statistical analysis for the estimation of difference within the FL-PGC-1α -/- 

animals. A value of p < 0.05 was regarded as significant. Structures with statistically 

significant medio-lateral difference were dealt separately; otherwise, pooled data were used 

for the comparative analysis of FL-PGC-1α -/- and wild-type brain structures. 

Results 

Immunostaining for neurodegeneration-related proteins 

Immunostaining for PrP revealed moderate staining of the neuropil, and for α-

synuclein we observed immunopositivity in presynaptic structures. Anti-APP and anti-

phospho-independent tau antibodies showed cytoplasmic immunoreactivity, while for TDP-

43, FUS, and ubiquitin nuclear staining pattern was observed. All of these were the same in 

wild-type and PGC-1α-deficient animals. Moreover, there was a complete lack of tangle-like 

structures, pretangles, glial or astrocytic tau pathology, extracellular plaques (Aβ or PrP) and 

TDP-43, FUS, or ubiquitin-immunopositive inclusion bodies (nuclear or cytoplasmic) in all 

animals and brain regions (fig. 2). The staining intensity was finely and evenly distributed 

throughout all animals, slices and anatomical regions, indicating the adequate penetration of 

the fixative in all brains examined. 

Lesion profile 

Neuropathological changes in the brains of FL-PGC-1α -/- mice consisted of 

vacuolation, predominantly in the white matter, and reactive astrogliosis. 

Spongiform alterations were present throughout the brain in PGC-1α-deficient mice. 

The caudate-putamen was the most severely affected grey matter structure (fig. 3a), followed 

by the antero-lateral nuclei of the thalamus (reticular and ventral posterolateral area), but 

consistent mild to moderate alterations could be observed in the pontomedullary brainstem, 

the tegmental part of the midbrain, the nucleus accumbens, the globus pallidus, the medial 
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thalamus, the mammillary body, the substantia nigra, the cerebellar nuclei, as well as in the 

olfactory, insular, motor, sensory, postsubicular and also throughout the paramedian cortices 

(table 1). However, vacuolation was lacking in the cerebellar cortex, the tectal midbrain and 

the septal nuclei (not shown). Vacuoles within the cerebral cortex generally predominated in 

the deep cortical layers; furthermore, analysis of cerebral cortices in the lateral sagittal 

sections revealed a preference towards the posterior (visual and sensory) versus the anterior 

(motor, insular and piriform) cortices (Fisher’s exact value = 19.184; p < 0.001). Spongiform 

change in the pontomedullary brainstem was more severe in the paramedian than in the lateral 

sections (Fisher’s exact value = 9.282; p = 0.018). Notably, the hippocampal grey matter (i.e. 

cornu Ammonis (CA) 1-3 and the dentate gyrus) was relatively preserved, with consistent 

vacuolation mainly in the white matter bundles of the lacunosum molecular layer of the CA1, 

as revealed by the Klüver-Barrera staining of the lateral sections (supplementary fig. 1a). 

Similarly, the Klüver-Barrera staining of the caudate-putamen revealed that, besides being 

present in the striatal neuropil, the vacuoles within the caudate-putamen were the most 

abundant in the streaming fibers of the anterior internal capsule (pencil fibers) (supplementary 

fig. 1b). 

In the white matter structures, robust vacuolation was observed in the internal capsule 

(fig. 3a) and the retroflex fascicle, mild to moderate alterations were noted in the cerebellar 

white matter, the fimbria hippocampi, the stria terminalis, the anterior commissure and the 

olfactory tract, while the optic tract remained consistently unaffected. Vacuolation of the 

myelin, which was arranged in chains in the severely affected white matter regions, was not 

associated with the damage of axons (fig. 3b). Indeed, there was a lack of APP-

immunoreactive (not shown) or argyrophilic axonal swellings (fig. 3b), excluding 

morphological evidence of a disturbance in axonal transport in association with neuronal 

damage. 

Prominent reactive gliosis was present in the brainstem and within the cerebellar 

nuclei of FL-PGC-1α -/- mice. This was the most striking in the paramedian sections of the 

pontomedullary brainstem (fig. 3c), while moderate astrogliosis was noted in the midbrain, 

the cerebellar nuclei and the lateral pontomedullary brainstem (supplementary fig. 1c). The 

median predominance of the involvement of the pontomedullary brainstem was statistically 

significant (Fisher’s exact value = 10.758; p = 0.004). No other regions of the brain displayed 

any signs of astrocytic reactivation. Moreover, we did not observe pathological degree of 

vascular proliferation in any examined region (data not shown). 
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Discussion 

The involvement of dysfunctional PGC-1α axis in NDDs has already been 

demonstrated. The PGC-1α-dependent thermoregulatory defect in transgenic HD mice and the 

decreased expression of PGC1-1α and its target genes in human brain and transgenic mice 

were the first to suggest contribution in the pathogenesis of HD [24, 25]. Conversely, PGC-1α 

overexpression in transgenic HD models displayed neuroprotective effects [24, 25]. 

Subsequently, a dysfunctional PGC-1α axis was reported in the skeletal muscle of transgenic 

mice and HD patients [15], and PGC-1α gene polymorphisms were associated with the age at 

onset [26, 27]. In HD, mutant huntingtin protein downregulates PGC-1α both through a direct 

interaction with its promoter [24], and through an indirect effect, mediated by an increased 

extrasynaptic NMDA receptor activity and subsequent deregulation of cyclic AMP response 

element-binding protein (CREB) signaling [28]. According to a recent finding, the expression 

of NT-PGC-1α itself is robustly and consistently altered in human and transgenic HD brains, 

human HD myoblasts and transgenic striatal cells [29]. 

Evidence suggests the pathogenic involvement of PGC-1α in PD as well. Indeed, 

several PGC-1α-responsive genes were found underexpressed in PD patients [16], and 

polymorphisms were also reported to be associated with the age at onset and the risk of 

developing PD [30]. Moreover, PGC-1α-deficient mice exhibit an increased sensitivity 

against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxicity [18], whereas the 

overexpression of PGC-1α protects dopaminergic neurons against rotenone and α-synuclein 

toxicity in vitro [16], and against parkin-deficiency in vivo [31]. Ebrahim et al. further 

demonstrated that PGC-1α deficiency promotes the aggregation of α-synuclein in vitro [19]. 

With regard to AD, Qin et al. reported the inverse correlation of hippocampal PGC-1α 

protein content with the severity of cognitive decline, neuritic plaque pathology and 

hippocampal Aβx-42 burden in AD patients [17]. This group also provided in vitro evidence 

that PGC-1α deficiency might contribute to the accumulation of AD-type Aβ in the brain via 

decreasing the non-amyloidogenic α-secretase activity. 

The knockout strain used in our study lacks the expression FL-PGC-1α, but expresses 

a slightly shorter though functionally identical form of a NT-PGC-1α [21].  Indeed, both NT-

PGC-1α and NT-PGC-1α254 can readily coactivate PPARγ and EERα and upregulate UCP1 

[21], which clearly underlies the intact thermoregulation and UCP1 levels in FL-PGC-1α -/- 

mice [21, 22], and may explain the metabolic differences between PGC-1α -/- and FL-PGC-

1α -/- strains. However, NT isoforms lack the central and C-terminal domains responsible for 
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the activation of NRF1, NRF2, MEF2C and FOXO1. The published alterations in 

mitochondria-related protein expression in FL-PGC-1α -/- mice (i.e. decreased expression of 

cytochrome c, respiratory complex subunits and mitochondrial transcription factor A (TFAM) 

[22]) are in line with the roles of NRFs in mitochondrial function, and correspond to the 

observation that NT-PGC-1α is unable to induce cytochrome c expression in PGC-1α -/- cells 

[21].  

Based on the evidences suggesting that mitochondrial dysfunction and impaired 

protein processing are interrelated, together with the in vitro findings associating PGC-1α 

deficiency with protein accumulation [17, 19], we hypothesized that the ablation of FL-PGC-

1α could evoke the accumulation of neurodegeneration-related proteins in vivo. This concept 

seemed feasible since disturbances in protein processing systems and formation of aggregates 

have already been demonstrated in rodents without a transgenic background for 

neurodegeneration-associated proteins (i.e. neurotoxin models [9-11], aged animals [32]). 

However, our systematic immunohistochemical analysis revealed no protein depositions; 

indeed, there was a complete lack of tangle-like structures, extracellular plaques and 

ubiquitin-immunopositive inclusion bodies throughout the brains, and the pattern of 

immunoreactivity was similar in FL-PGC-1α -/- and wild-type animals (fig. 2). These results 

indicate that despite its widely established contribution in NDDs, the absence of FL-PGC-1α 

per se has no major influence on protein processing in adult mice. This suggests a more 

complex scenario for the interaction of mitochondrial dysfunction and protein aggregation in 

NDDs, and is consistent with the finding that PGC-1α deficiency is not associated with a 

gross disturbance of autophagy within the CNS [33]. However, we cannot exclude the 

supplementary effect of NT-PGC1α254 in this context, which question could be answered by 

studying the PGC-1α -/- mice in a similar immunohistochemical paradigm.  

Mitochondrial malfunction is the primary etiological factor in a group of sporadic or 

inherited CNS diseases, collectively termed mitochondrial encephalopathies. The underlying 

genetic alterations can affect either the mtDNA or nDNA. Although the distribution of the 

neuropathological alterations is characteristic to a particular syndrome, mitochondrial 

encephalopathies show various degrees of spongiform vacuolation (in particular regions with 

preserved neurons giving the characteristic appearance of “pseudonecrosis”), reactive 

astrogliosis and, less generally, pathological capillary proliferation (table 2). 

The continuous attempts to create animal models for such diseases have been facing 

difficulties. Indeed, most of the developed genetic modifications result in embryonic or early 
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postnatal lethality (e.g. knockouts of CREB [34], ERRγ [35], NRF1 [36], NRF2 [37], TFAM 

[38], mtDNA polymerase γ 1 (POLG1) [39], optic atrophy 1 (OPA1) [40] and synthesis of 

cytochrome c oxidase 2 (SCO2) [41]), whereas a great proportion of viable strains, 

surprisingly, exhibit no neuropathology (e.g. knockouts of adenine nucleotide translocator 1 

(ANT1) [42], PPARγ [43], ERRα [44] and SURF1 [45]; Twinkle mutant ‘Deletor’ mice [46] 

and ΔmtDNA Mito-Mice [47]). To our knowledge, murine knockouts of apoptosis inducing 

factor (AIF) [48, 49], superoxide dismutase 2 (SOD2) [50], thymidine phosphorylase and 

uridine phosphorylase (TP/UP) [51] and NADH dehydrogenase [ubiquinone] iron-sulfur 

protein 4 (NDUFS4) [52] are the only ones that display a neuropathology resembling that of 

human mitochondrial encephalopathies (table 2).  

In the present study, we characterized the lesion profile of 30-week old FL-PGC-1α -/- 

mice, which age has not been previously characterized neurohistologically in PGC-1α-

deficient mice. The neuropathological findings consisted of widespread spongiform 

vacuolation and circumscribed astrogliosis, whereas vascular proliferation was absent. The 

most striking spongiform alterations were observed in the long white matter bundles of the 

internal capsule and the retroflex fascicle. The most severely affected grey matter regions 

included the thalamus and the caudate-putamen; however, myelin staining revealed the 

massive involvement of the pencil fibers streaming across the caudate-putamen, indicating 

that the abundant vacuolation in this region is at least in part attributable to myelin 

degeneration. The whole forebrain was free of gliosis, which contrasted with the robust and 

confluent astrogliotic reaction in the central pontomedullary brainstem, and the patchy 

reactions in the midbrain and the cerebellar nuclei. Collectively, this pattern is highly 

reminiscent of human mitochondrial spongiform encephalopathies, particularly of KSS and, 

in some aspects, LS (table 2). This impression was further supported by the ovoid shape and 

unidirectional longitudinal axes of the vacuoles in the white matter, the deep occipito-parietal 

preference of the cortical vacuoles, the median predominance of brainstem involvement, 

along with the preservation of axons in the vacuolated fibers as revealed by the lack of APP-

immunopositive and argyrophylic axonal swellings. The sparing of axons contrasts the 

concept proposed by Lin et al. during the characterization of the PGC-1α -/- strain, suggesting 

that the spongiform lesions in the caudate-putamen might arise from axonal degeneration 

[23]. This concept was partially confirmed by a later work of this group, demonstrating that 

neuron-specific knockouts of PGC-1α also exhibit striatal and cortical vacuolation; however, 

with apparently less severity than the whole-body knockouts [33]. Our observations allow us 

to presume that spongy vacuolation in the FL-PGC-1α -/- model may primarily share the 
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etiology of the status spongiosus seen in mitochondrial encephalopathies, in which myelin 

vacuoles are proposed to be attributable to mitochondrial dysfunction in oligodendrocytes, 

whereas grey matter vacuoles are presumed to develop due to the failure of ATP-dependent 

ion transporters in astrocytic membranes [53].  

In their comprehensive study characterizing the PGC-1α -/- strain, Lin et al. reported 

the presence of GFAP-immunopositive astrocytes in the vicinity of the vacuoles within the 

caudate-putamen, which has frequently been interpreted as a direct indicative of striatal 

neurodegeneration, turning the attention to the contribution of PGC-1α to NDDs, especially to 

HD. It must be noted, however, that no reports have yet provided direct evidence of neuronal 

loss in PGC-1α-deficient mice. In the strain examined in this study, the region of the caudate-

putamen indeed displayed some slight GFAP positivity, suggestive of resident astroglia in the 

striatal white matter. However, the pattern of immunoreactivity and the appearance of 

astrocytes did not differ between FL-PGC-1α -/- and wild-type animals. This pattern contrasts 

the massive reactive (i.e. hypertrophic and hyperplastic) astrogliosis in the brainstem and 

cerebellar nuclei of PGC-1α-deficient mice used in our study.  

Our finding that the neuroanatomical pattern of the lesions in this model overlaps with 

multiple human mitochondrial encephalopathies is not that surprising, considering that FL-

PGC-1α contributes to the proper functioning of several downstream proteins which 

practically cover all levels of mitochondrial functioning that have been associated with 

mitochondrial diseases [2]. More surprisingly, PGC-1α-deficient mice are not only free of 

embryonic lethality, but they have normal longevity and acceptable reproduction [22, 23], 

suggesting the existence of potent complementary pathways, probably within the PGC family 

itself. It is possible that the presence of intact PGC-1β and PGC-1-related coactivator (PRC) 

is sufficient to maintain an acceptable level of mitochondrial function, as both possess 

functional domains capable of interacting with nuclear hormone receptors and NRFs [54, 55]. 

This may at least in part explain the apparent discrepancy between the suggested roles of 

PGC-1α in mitochondrial physiology and the observed viable phenotypes of the knockouts. 

Indeed, the directly upstream CREB, and a number of downstream factors (ERRγ, NRF1, 

NRF2, TFAM and POLG1) were found indispensable for embryonic or early postnatal 

development. On the other hand, the murine knockouts of the directly coactivated PPARγ and 

the PGC-1α-dependent ANT1 are viable, but display no neuropathological alterations. The 

most closely reminiscent brain pathology of that observed in this study was reported in the 

murine knockout of SOD2 (also downstream of PGC-1α), indicating that oxidative damage 

may play an important role in the development of the spongiform leukoencephalopathy. 
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Although the lifespan of the SOD2 null model can be somewhat increased by antioxidant 

protection, these animals die within the first 3–4 weeks [50]. We suggest that PGC-1α-

deficient mice with their normal lifespan and measurable neurological symptoms may 

represent a useful animal model to investigate the therapeutic potential of candidates in 

halting the progression of mitochondrial diseases. Our findings also suggest that 

polymorphisms in the PGC-1α gene might be valuable targets of investigation in 

mitochondrial diseases with unidentified genetic origin, and correspond to the notion that the 

activation of PGC-1α axis may be of therapeutic benefit in mitochondrial diseases [56, 57]. 

We conclude that mitochondrial dysfunction due to the lack of FL-PGC-1α per se is 

unable to recapitulate major features of NDDs with regard to impaired protein processing and 

the anatomical pattern of reactive astrogliosis in adult mice. Specifying the nature and 

distribution of the neuropathological alterations in FL-PGC-1α -/- mice, we propose that those 

are reminiscent of human mitochondrial encephalopathies, which makes PGC-1α-deficient 

mice an appropriate and viable animal model for this, yet incurable, group of diseases. 
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Table 1. Lesion profile in the brains of FL-PGC-1α -/- mice. 

Comprehensive mapping of lesion profile in FL-PGC-1α -/- animals, demonstrating the 

typical degree of involvement of an anatomical region in the spongiform vacuolation and 

reactive astrogliosis. The differences between FL-PGC-1α -/- and wild-type animals are 

represented by the means and the corresponding p values in the respective anatomical regions. 

 

 

 

Typical degree of 
vacuolation Region Mean p-value 

Mild 

cerebellar white matter  1.833 < 0.001 
pontomedullary brainstem l * 1.923    0.005 
substantia nigra 1.375    0.004 
hippocampus m 1.133    0.006 
hippocampus l 1.933 < 0.001 
fimbria hippocampi 1.182    0.007 

Moderate 

cerebellar nuclei * 2.150 < 0.001 
pontomedullary brainstem m ** 2.933 < 0.001 
midbrain * 2.571 < 0.001 
nucleus accumbens 2.600 < 0.001 
globus pallidus 2.692 < 0.001 
mammillary body 2.143 < 0.001 
cerebral cortex 2.305 < 0.001 
thalamus 

m 2.067 < 0.001 
anterior commissure 2.533 < 0.001 
stria terminalis 2.786 < 0.001 
olfactory tract 2.071 < 0.001 

Severe  

caudate-putamen 4.000 < 0.001 
thalamus 

l 3.533 < 0.001 
internal capsule 3.615 < 0.001 
retroflex fascicle 4.000 < 0.001 

l lateral section 
m paramedian section 

* accompanied by moderate astrogliotic reaction 

** accompanied by severe astrogliotic reaction. 
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Table 2. Comparative summary of the typical neuropathological findings and their 

distribution in human mitochondrial spongiform encephalopathies and their most reminiscent 

murine models. 

Abbreviations: AIF, apoptosis inducing factor; FL-PGC-1α -/-, knockout for the full-length 

peroxisome proliferator activator receptor gamma coactivator-1alpha protein; KSS, Kearns-

Sayre syndrome; LHON, Leber’s hereditary optic neuropathy; LS, Leigh syndrome; MELAS, 

mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes; MERRF, 

myoclonic epilepsy with ragged-red fibers; NDUSF4, NADH dehydrogenase [ubiquinone] 

iron-sulfur protein 4; SOD2, superoxide dismutase 2; TP/UP, thymidine phosphorylase and 

uridine phosphorylase; WM, white matter; +, present; -, absent. 
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Disease Vacuolation  Anatomical 
predominance of 

vacuolation 

Astrogliosis Anatomical 
predominance 
of astrogliosis 

Characteristic 
vascular 

proliferation  

References 

Human 
disorders             

KSS + 

cerebral WM 
thalamus 

 basal ganglia 
brainstem 

cerebellum 

+ brainstem 
cerebellum - 

[58-61] 

LS + 

thalamus 
basal ganglia 

brainstem 
cerebellar nuclei 

+ 

thalamus 
basal ganglia 

brainstem 
cerebellar nuclei 

+ 

MELAS + cerebrum 
cerebellum + 

cerebrum 
thalamus 

basal ganglia 
brainstem 

cerebellum 

+ 

MERRF + cerebrum 
brainstem + 

basal ganglia 
brainstem 

cerebellar cortex 
cerebellar nuclei 

- 

LHON + optic nerve + optic nerve 
retinal ganglia - 

Experimental 
models             

FL-PGC-1α 
-/-  mice + 

cerebrum 
thalamus 

basal ganglia 
brainstem 

cerebellar nuclei 

+ brainstem 
cerebellar nuclei - 

 

Ndufs4 -/- 
mice + brainstem 

cerebellar nuclei + brainstem 
cerebellar nuclei + [52] 

TP/UP double 
-/- mice + 

cerebral WM 
thalamus 

basal ganglia 
cerebellar WM 

cerebellar nuclei 

No data 
available  - [51] 

SOD-2 -/- 
mice + cerebral cortex 

brainstem + cerebral cortex 
brainstem - [50] 

AIF -/- 
(Harlequin) 

mice 
-   + 

thalamus 
basal ganglia 

cerebellar nuclei 
retinal ganglia 

optic tract 

+ [48, 49] 
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Fig. 1. Representative images corresponding to the semiquantitative scores used to evaluate 

vacuolation (a) and astrogliosis (b). 

Bar in a represents 20 µm. 

Abbreviations: H&E, Hematoxylin and Eosin; GFAP, glial fibrillary acidic protein. 
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Fig. 2. The absence of FL-PGC-1α expression is not associated with the accumulation of 

neurodegeneration-related proteins in adult mice. 

Immunostaining for prion protein (PrP), α-synuclein (a-Syn), amyloid precursor protein 

(APP), amyloid-beta (A-beta), Tau, phosphorylated Tau (pTau), TDP-43, FUS, and ubiquitin 

(Ubi) in various anatomical regions in wild-type (WT) and FL-PGC-1α -/- (PGC-1α) animals. 

The representative images demonstrate lack of pathological protein aggregation and inclusion 

body formation throughout the brain of mature FL-PGC-1α -/- mice. 

Bar represents 50 µm for the images of PrP, a-Syn, A-beta, and ubiquitin; 20 µm for APP; and 

7.5 µm for Tau, pTau, TDP-43, and FUS. 

Fig. 3. Lesion profile in the brains of FL-PGC-1α -/- mice is reminiscent of human 

mitochondrial encephalopathies. 

(a) Hematoxylin and Eosin (H&E) staining in different anatomical regions in wild-type (WT) 

and FL-PGC-1α -/- (PGC-1α) animals, demonstrating prominent vacuolation in the caudate-

putamen and the internal capsule in PGC-1α-deficient animals. (b) Vacuolation in the myelin 

(as shown by Klüver-Barrera staining on the left) exhibits chain-like appearance (as 

exemplified by the lower image of the retroflex fascicle) and is associated with relatively 

preserved axons, pushed towards the edge of the vacuoles (as shown by Bielschowsky silver 

staining on the right). (c) Immunostaining for glial fibrillary acidic protein (GFAP) in 

different anatomical regions in wild-type (WT) and FL-PGC-1α -/- animals, showing reactive 

astrogliosis in the brainstem regions.	
  Bar in A represents 75 µm for the images of the caudate-

putamen and internal capsule in a and c; 125 µm for the brainstem in c; and 10 and 5 µm for b 

upper and lower panel, respectively. 


