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Abstract:

Dementia is a common neuropsychological disorder with an increasing incidence. The most
prevalent of the different types of dementia is Alzheimer’s disease. The underlying
pathophysiological features of the cognitive decline are neurodegenerative processes, a
cerebrovascular dysfunction and immunological alterations. The therapeutic approaches are
still limited, although intensive research is being conducted with the aim of finding
neuroprotective strategies. The widely accepted cholinesterase inhibitors and glutamate
antagonists did not meet the expectations that they would prevent disease progression, and the
research is therefore currently focusing on novel targets. Nonsteroidal anti-inflammatory
drugs, secretase inhibitors and statins are promising drug candidates for the prevention and
management of different forms of dementia. The kynurenine pathway has been associated
with various neurodegenerative disorders and cerebrovascular diseases, it is closely related to
neuroinflammatory processes too, and it has been implicated in the pathomechanisms of
certain kinds of dementia. Targeting the kynurenine system may be of therapeutic value in the
future.
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1. Introduction

Dementia is an acquired cognitive decline, beyond what might be attributed to normal aging.
It is a general term referring to a clinical syndrome of multiple cognitive deficits with several
different underlying pathologies. The classification of the various dementia types may be
based on genetic, pathological or clinical features. The prevalence and incidence data reveal
an increasing tendency in parallel with the aging of the population. The overall prevalence of
dementia is around 6-8% [De Ronchi et al., 2005, De Deyn et al., 2011, Mejia-Arango et al.,
2011], with the most prevalent type being Alzheimer’s disease (AD) [Nestor et al., 2004].

The main pathogenic mechanisms involved in the development of dementia are
neurodegeneration and a cerebrovascular dysfunction, which have been recognized to be
closely associated [ladecola et al., 2003, ladecola, 2010, Honjo et al., 2012, Liu et al., 2012].

There are a number of common features in the pathomechanisms of neurodegenerative
processes, including mitochondrial disturbances [Karbowski et al., 2012, Szalardy et al.,
2012], neuroinflammation [Glass et al., 2010], glutamate excitotoxicity [Lau et al., 2010] and
oxidative stress [Gandhi et al., 2012]. Excitotoxic damage to neuronal cells is caused by the
overactivation of glutamate receptors, inhibition of which could therefore be a promising
neuroprotective strategy. A valuable endogenous neuroprotective molecule is kynurenic acid
(KYNA), a tryptophan (TRP) metabolite produced in the kynurenine pathway (KP), which
exerts broad-spectrum endogenous excitatory amino acid receptor antagonistic properties
[Perkins et al., 1982, Birch et al., 1988, Kessler et al., 1989].

There is currently no definite cure for dementia syndromes, although intensive research is
under way 2with a view to the development of novel therapeutic interventions that may be
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able to prevent or slow down the progression of the disease, thereby improving the quality of
life of the patients. The KP offers a valuable target for neuroprotective therapies.

2. Dementia aetiology and diagnosis

The diagnosis of the dementia syndrome is usually based on the DSM-IV criteria [American
Psychiatric Association. et al., 2000, Feldman et al., 2008].

The diagnostic criteria for dementia are the following:

» An acquired memory decline and a severe impairment in one or more cognitive
domains, including gnosis, executive function, praxis and language

» Cognitive impairments that interfere with work or social activities

A number of brief cognitive tests are available for the assessment of the overall cognitive
performance, the most widely used being the highly sensitive and specific Mini-Mental State
Examination (MMSE) [Folstein et al., 1975], and the clock-drawing test [Shulman, 2000].
Other tests include the Montreal Cognitive Assessment [Nasreddine et al., 2005], DemTect
[Kalbe et al., 2004], the 7-Minute Screen [Solomon et al, 1998] and the Behavioural
Neurology Assessment short form [Darvesh et al., 2005], which are more accurate in cases of
mild dementia. After recognition of a cognitive impairment, detailed clinical evaluation,
specific laboratory tests and structural neuroimaging may help to identify the aetiology
[Feldman et al., 2008, Gauthier et al., 2012]. The most common types of dementia are AD
and vascular dementia, but there are multiple other pathologies which may lead to a cognitive
decline (Table 1).

Table 1. The most common dementia types

» Alzheimer’s disease
» Vascular dementia and vascular cognitive impairment
» Dementia with extrapyramidal syndromes
o Huntington’s disease
o Parkinson’s disease
o Lewy bodies dementia
» Frontotemporal dementias
» Other dementia types
o AIDS-dementia complex
o Normal pressure hydrocephalus

o Prion diseases




The hallmark neuropathological features of the most common dementia form, AD, are
amyloid-f3 protein deposition in senile plaques and cerebral blood vessels, and tau deposition
in the neurons forming neurofibrillary tangles. The other main form, vascular dementia, is
defined as the common presence of a cognitive decline and a cerebrovascular disorder. Recent
findings provided evidence that a cerebrovascular dysfunction and neurodegenerative
processes are strongly associated during the development of dementia [[adecola ef al., 2003].
Vascular risk factors may accelerate amyloid B production and deposition, thereby
contributing to disease progression in AD. Likevise, amyloid deposition causes cerebral
amyloid angiopathy, which results in a disturbed cerebral perfusion [Thal et al., 2008, Honjo
et al., 2012]. Neuroimaging studies have demonstrated that a reduced cerebral blood flow can
be associated with early stages of AD, and cerebral hypoperfusion may precede the clinical
symptoms of dementia and contribute to the development of AD [Rombouts et al., 2005,
Ruitenberg et al., 2005]. A cerebrovascular dysfunction may contribute markedly to the
development of neurodegenerative processes. Other vascular dementia forms may develop in
consequence of the presence of vascular risk factors such as atherosclerosis or small vessel
disease, and in post-stroke cases [Battistin et al., 2010, Thal et al., 2012].

Cognitive decline and dementia may present in several neurodegenerative disorders.
Huntington’s disease (HD) i1s a chronic progressive disorder of autosomal dominant
inheritance, which involves characteristic motor disturbances and a remarkable cognitive
decline. The genetic background of HD is the polyglutamine expansion of the huntingtin gene
[Tan et al., 2012] but recent genetic studies on yeasts have implicated several other genes
which may influence the neurotoxic process, including kynurenine-3-monooxygenase (KMO)
[Giorgini et al., 2005, Tauber ef al., 2011]

3. The kynurenine pathway and the role of kynurenines in dementia
3.1. The kynurenine pathway

The KP, the main route of the TRP metabolism, is responsible for the breakdown of more
than 90% of the TRP in the human brain [Wolf, 1974]. This metabolic cascade involves
several neuroactive metabolites, collectively termed kynurenines [Lapin, 1978, Zadori et al.,
2011]. Kynurenines have been shown to play important roles in the regulation of
neurotransmission and in immunological processes [Vécsei, 2005, Zadori et al., 2011, Vecsei
et al., 2013]. Alterations in the KP have been implicated in the pathomechanism of cerebral
ischaemia [Sas et al., 2008, Stone et al., 2012], migraine [Fejes et al., 2011, Tajti et al., 2011,
Pardutz et al., 2012, Tajti et al., 2012], AIDS dementia complex (ADC) [Guillemin et al.,
2005] and several neurodegenerative disorders, including AD [Guillemin ef al., 2002, Plangar
etal., 2011, Zadori et al., 2011].

The KP of the TRP catabolism comprises multiple enzymatic steps that result in the formation
of the essential coenzymes nicotinamide adenine dinucleotide (NAD) and NAD phosphate
[Beadle ef al., 1947] (Fig. 1). The rate-limiting step of this metabolic route is the enzymatic
degradation of TRP by indoleamine 2,3-dioxygenase (IDO) or tryptophan 2,3-dioxygenase
(TDO). The first stable intermediate in the KP is L-kynurenine (L-KYN), which can be
converted in two different routes: either by the kynurenine aminotransferases (KATs) to form
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the neuroprotective KYNA, or in a sequence of enzymatic steps which lead to the production
of NAD [Beadle et al., 1947]. The four subtypes of KATs identified so far are mainly
localized in the astrocytes within the brain [Okuno et al., 1991, Guillemin et al., 2001, Yu et
al., 2006, Guidetti et al., 2007, Han et al., 2010]. In the human brain, KYNA production can
be attributed mainly to the activity of KAT-II [Guidetti et al., 2007]. KYNA is a broad-
spectrum endogenous inhibitor of ionotropic excitatory amino acid receptors [Perkins ef al.,
1982] and a non-competitive inhibitor of the a7 nicotinic acetylcholine receptor [Hilmas et
al., 2001], and it was recently discovered that it may also be a ligand for the previously
orphan G protein-coupled receptor GPR35 [Wang et al., 2006].

In the other main branch of the KP, L-KYN serves as a substrate for kynurenine-3-
monooxygenase (KMO), resulting in the production of 3-hydroxy-kynurenine (3-HK) [Battie
et al., 1981]. The continuing downstream metabolic cascade then produces the free radical
generator 3-hydroxyanthranilic acid (3-HANA) and the NMDA receptor agonist quinolinic
acid (QUIN) [Foster et al., 1986]. 3-HK and 3-HANA are potent free radical generators,
while QUIN displays neurotoxic properties, not only through the production of free radicals,
but also by NMDA-receptor agonism [Stone ef al., 1981, De Carvalho et al., 1996].

The enzymes participating in the KP are differently distributed among the different cells in
the CNS: the microglial cells harbour little KAT, and the astrocytes contain hardly any KMO.
KYNA production can therefore be attributed mainly to astrocytes, while microglial cells are
primarily responsible for the synthesis of QUIN [Espey ef al., 1997, Guillemin et al., 2001,
Lehrmann et al., 2001].

[Fig. 1. The kynurenine pathway]

3.2. Kynurenine pathway alterations in Alzheimer’s disease

An increasing body of evidence supports the notion that alterations in the KP are involved in
the pathogenesis of AD [Baran et al., 1999, Widner et al., 2000]. As long ago as 1998, Baran
demonstrated that the levels of 3-OH-KYN and L-KYN were slightly decreased in the brain
of pathologically confirmed AD patients, while the level of KYNA exhibited a significant
increase in the putamen and caudate nucleus. This elevation in KYNA correlated strongly
with an increased KAT-I enzyme activity [Baran et al., 1999]. As concerns the peripheral
kynurenine metabolism, the KYNA levels in the serum, red blood cells and CSF of AD
patients were decreased, with no alterations in the serum KAT-I or KAT-II activity [Heyes et
al., 1992, Hartai et al., 2007]. Morecover, an increased serum KYN/TRP ratio has been
detected in AD patients, indicating an enhanced IDO activity, which may be explained by the
role of inflammatory processes in the pathogenesis of AD [Widner et al., 2000]. Conversely,
an increased IDO activity was correlated with several immune markers in the serum of AD
patients [Widner et al., 2000]. Interestingly, an increased level of TRP degradation correlated
with a reduced cognitive performance [Widner et al., 2000]. An increased QUIN and IDO



immunoreactivity has been detected in the hippocampus of AD patients [Guillemin et al.,
2005], pointing to the role of QUIN in the neurodegenerative process. This concept was
further supported by the observation that QUIN is co-localized with hyperphosphorylated tau
in the AD cortex, and QUIN also proved to induce tau phosphorylation in in vitro studies
[Rahman et al., 2009].

3.3. Kynurenine pathway in other conditions of cognitive decline

The ADC is a characteristic dementia syndrome associated with human immunodeficiency
virus type 1 infection. The neurotoxic kynurenine metabolite QUIN has been demonstrated to
be involved in the development of the ADC. The significantly elevated levels of QUIN
detected in the CSF of ADC patients correlated with the cognitive deficits, while zidovudine
therapy resulted in a decreased QUIN level in parallel with a clinical improvement. These
data raised the possibility that the neurotoxic properties of this metabolite contribute to
disease progression [Heyes ef al., 1991a, Heyes et al., 1991, Kaul et al., 2001]. Experimental
data indicated that an elevated QUIN production reflected local macrophage activation in the
CNS [Valle et al., 2004].

KP metabolites have been associated with a post-surgical cognitive impairment and the
alterations observed in this patient population additionally correlated with inflammatory
markers [Forrest et al., 2011]. An enhanced kynurenine metabolism has been demonstrated to
correlate with the infarct volume and mortality in stroke patients, and recent data suggested
that an increased IDO activity resulting in a higher kynurenine/tryptophan ratio is associated
with post-stroke cognitive impairment [Darlington et al., 2007, Gold et al., 2011]. Other
studies have implicated kynurenine metabolites in vascular cognitive impairment and other
neuropsychiatric conditions [Oxenkrug, 2007].

Experimental data indicate a correlation between KP alterations and HD pathomechanism. In
early stages of HD, increased levels of QUIN and 3-OH-KYN have been measured [Guidetti
et al., 2004]. Beal et al. demonstrated in 1990 that KYNA levels are decreased in the striatum
of HD patients [Beal ef al., 1990]. Similarly, a reduced KAT activity has been demonstrated
in several brain regions of HD patients [Jauch ef al., 1995]. The results of a clinical study
revealed an increased IDO and a decreased KAT activity, in parallel with an elevated level of
oxidative stress [Stoy et al., 2005]. These alterations have been assumed to contribute to the
disease development. Similar changes in KAT activity have been observed in an animal
model of HD [Csillik et al., 2002]. Another animal study provided evidence of an increased
vulnerability to the neurotoxicity of QUIN after KAT deletion, while elevation of the KYNA
concentration proved to be protective [Harris ef al., 1998, Sapko et al., 2006].

3.4. Future therapeutic possibilities by targeting the kynurenine pathway

The roles of the above-mentioned alterations in AD patients are still under investigation; the
most feasible concept is that an accelerated kynurenine metabolism contributes to the
neurodegenerative process through the overproduction of neurotoxic metabolites.



KYNA displays neuroprotective properties, but at concentrations above physiological it can
exert adverse effects. The intracerebroventricular administration of KYNA resulted in
behavioural abnormalities in rats, including stereotypy and ataxia [Vecsei et al., 1990], and in
another study KYNA level elevations caused spatial working memory deficits [Chess et al.,
2007]. On the other hand, one animal study demonstrated that the inhibition of KYNA
formation may be associated with an enhanced cognitive performance [Potter et al., 2010].
However, under the pathological conditions in neurodegenerative processes where
glutamatergic excitotoxicity is present, inhibition of the overactivated glutamate receptors
may restore the normal level of activation and improve the cognitive function. From this
perspective, KYNA analogues may be a promising therapeutic tool in different pathologies
relating to a cognitive impairment, by exerting a neuroprotective effect and restoring normal
glutamatergic neurotransmission.

KYNA itself can cross the blood-brain barrier only poorly [Fukui et al., 1991], and its
systemic administration as a therapeutic tool is therefore not feasible. Furthermore, it is
rapidly excreted from the brain by organic acid transporters [Bahn et al., 2005]. One
therapeutic possibility would be the administration of L-KYN together with probenecid, an
organic acid transporter inhibitor; this concept has been already tested under ischaemic
conditions with good results [Gigler et al., 2007, Robotka et al., 2008]. Another possibility
could be the administration of the halogenated L-KYN derivative 4-chlorokynurenine, which
produces the KYNA analogue 6-chlorokynurenic acid. 4-chlorokynurenine has already
successfully completed a Phase I clinical safety trial (for further information, see the press
release on the VistaGen website) [Vecsei et al., 2013]. Other synthetic KYNA analogues have
proved to be neuroprotective in different animal experiments including HD, and recent data
provided evidence that this novel KYNA-amide does not exert cognitive side-effects
[Knyihar-Csillik et al., 2008, Vamos et al., 2010, Zadori et al., 2011, Gellert et al., 2012].
Another approach could be the use of KMO inhibitors, which may shift the kynurenine
metabolism towards KYNA production. KMO inhibition has been demonstrated to increase
the brain KYNA concentration, improve spatial memory and anxiety deficits and prevent
synaptic loss in a transgenic mouse model of AD [Zwilling ef al., 2011]. The same compound
tested in a HD animal model was able to slow down neurodegeneration and increase survival
time [Zwilling ef al., 2011]. Inhibition of KMO and TDO resulted in a shift of the KP towards
KYNA formation and additionally ameliorated the neurodegenerative process in other animal
models [Campesan ef al., 2011].

4. Other possible novel therapeutic approaches in dementia

The therapies currently available for AD have the aim of restoring the cholinergic and
glutamatergic dysfunction; cholinesterase inhibitors and the glutamate-antagonist memantine
are well-known and widely-used drugs. However, for other dementia types the
recommendations are not so clear. The evidence supports the use of cholinesterase inhibitors
and memantine in Lewy body disease and Parkinson’s disease dementia, with particular
concern for side-effects; for other dementia types, there is currently no robust evidence in
favour of any pharmacological approach [EFNS-ENS guideline-2012]. Intensive research is
currently being carried out with a view to the development of novel therapeutic tools which
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could possibly slow the disease progression besides providing symptomatic relief (Table 2)
[Potter, 2010].

Table 2. Possible targets for drug development in Alzheimer’s disease [Potter, 2010]

» cholinergic receptor agonists
vaccines against amyloid-f3
antibodies against amyloid-f
secretase inhibitors

antiinflammatory drugs

vV VvV V VYV V¥V

tau-targeting agents

Neuroinflammation is considered to be an important aspect in the pathomechanism of AD,
and the observation from epidemiologic studies that nonsteroidal anti-inflammatory drugs
(NSAIDs) were associated with a lower risk of AD gave rise to the concept of using anti-
inflammatory drugs for the treatment of dementia [Szekely et al., 2004]. In vitro studies
yielded evidence that some NSAIDs were able to decrease the level of the amyloidf-42
peptide in cultured cells [Weggen et al., 2001], while ibuprofen treatment in an animal model
of AD resulted in a reduction of the amyloid plaque load and microglial activation [Yan ef al.,
2003]. Unfortunately, clinical trials have so far been disappointing [Aisen, 2002]. However,
recently published data have suggested that selective COX-1 inhibitors may be of therapeutic
value in AD, but further studies are needed to assess their efficacy [Choi et al., 2013].

The lipid metabolism was linked with AD when the apolipoprotein E (ApoE) allele 4 was
identified as a major genetic risk factor for AD [Corder et al., 1993]. ApoE is a major
cholesterol transport protein in the brain [Mahley, 1988]. The ApoE ¢ allele has been
associated with an increased risk of cerebral amyloid angiopathy [Greenberg et al., 1995] and
HIV disease progression [Burt et al., 2008], among others. ApoE, cholesterol and lipid
metabolism alterations have been implicated in various stages of the pathogenesis of AD,
including amyloid-B protein production and clearance and cerebrovascular effects [Marzolo et
al., 2009, Zlokovic, 2013]. Statins have been associated with a lower risk of AD in large
epidemiological studies [Wolozin et al., 2000]. This can be explained in part by the fact that
hyperlipidaemia is one of the major vascular risk factors and a cerebrovascular dysfunction
may contribute to the development of AD. Moreover, statins have been reported to decrease
amyloid-f peptide production in a cholesterol-independent mechanism [Hosaka et al., 2013].

The amyloid-B protein is produced from amyloid precursor protein in consequence of the
proteolytic activity of B-secretase beta-site APP cleavage enzyme 1 (BACEl) and the y-
secretase complex [Vassar, 2004]. Inhibition of BACE1 has been demonstrated to result in a
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lower amyloid-8 protein level and to enhance cognitive impairment in an animal model of AD
[Ohno et al., 2004]; BACEI inhibitors may therefore be of therapeutic value in AD patients.
The development of an orally available brain-penetrant BACE!1 inhibitor was recently
reported, which resulted in a reduced level of amyloid B protein formation in rats [Stamford et
al., 2012], while another recently developed BACEl-inhibitor has already progressed to a
Phase 1 clinical trial [Jeppsson ef al., 2012].

5. Conclusions

The pathomechanisms of different types of dementias are still under investigation, and the
therapeutic possibilities are therefore limited. Neuroinflammatory processes, the lipid
metabolism and secretase inhibitors are currently controversial fields as concerns drug
development, but further research may facilitate an understanding. The alterations in the KP
are common features in the neurodegenerative, cerebrovascular and immunological aspects of
dementias. This may therefore lead to a promising novel therapeutic approach for all types of
dementia.
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