Accepted Manuscript

Combining preprocessor slicing with C/C++ language slicing
LészI6 Vidacs, Arpad Beszédes, Tibor Gyiméthy

PII: S0167-6423(09)00035-5
DOI: 10.1016/j.s¢ic0.2009.02.003
Reference: SCICO 1112

To appear in: Science of Computer Programming

Received date: 1 September 2008
Revised date: 10 February 2009
Accepted date: 18 February 2009

Please cite this article as: L. Viddcs, A. Beszédes, T. Gyiméthy, Combining preprocessor
slicing with C/C++ language slicing, Science of Computer Programming (2009),
doi:10.1016/j.scic0.2009.02.003

This is a PDF file of an unedited manuscript that has been accepted for publication. As a
service to our customers we are providing this early version of the manuscript. The manuscript
will undergo copyediting, typesetting, and review of the resulting proof before it is published in
its final form. Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.scico.2009.02.003

Combining Preprocessor Slicing with
C/C++ Language Slicing™

Liészl6 Vidacs, Arpad Beszédes and Tibor Gyiméthy

University of Szeged, Department of Software Engineering
Arpdd tér 2., H-6720 Szeged, Hungary

Abstract

Of the very few practical implementations of program slicing algorithms, the majority deal with C/C++ programs.
Yet, preprocessor-related issues have been marginally addressed by these slicers, despite the fact that ignoring (or
only partially handling) these constructs may lead to serious inaccuracies in the slicing results and hence in the
program analysis task being performed. Recently, an accurate slicing method for preprocessor-related constructs has
been proposed, which — when combined with existing C/C++ language slicers — can provide more complete slices
and hence a more successful analysis of programs written in one of these languages. In this paper, we present our
approach which combines the two slicing methods and, via practical experiments, describe its benefits in terms of the
completeness of the resulting slices.

Key words: Program slicing, C/C+, preprocessing, preprocessor slicing

1. Introduction

Different program analyses and analysis tools have been proposed to assist activities related to software mainte-
nance. Program slicing in particular [1, 2, 3], is an analysis procedure where parts of a software system are extracted
which represent a sub-computation of interest, thus reducing the size and complexity of the problem being addressed.
A short introduction to program slicing and its relation to our present work is given in Section 2.

There are a number of challenges which make the creation of practically usable program slicing tools difficult.
Some of these are very general and have kept the research community busy for decades, while there are also platform
specific issues that are specific for one programming language or a family of languages or platforms. This paper deals
with one particular issue, namely the preprocessor, in the context of computing program slices for C/C++ programs.
In many different program analysis fields researchers cite the preprocessor as an obstacle to implementing correct
analyses, e. g., [4, 5]. Unfortunately, the situation is no better with program slicing.

Alas, preprocessor issues are often completely neglected by slicing algorithms, or at least, handled rather poorly.
Features like file inclusion or conditional compilation are sometimes handled in an acceptable way, but macro ex-
pansion, for instance, is a different story. The best that existing slicers can do is to mark those program points
originating from macros and display this information on the screen. CodeSurfer [6], for instance — which is probably
the best-known static C/C++ slicer available today — displays information on macros appearing in slices, but is unable
to include them in the slicing process itself. However, ignoring the existence of dependencies between preproces-
sor constructs and language elements may lead to serious errors in certain tasks where program slicing is applied.
For example, in an incremental software development scenario, a change to a macro definition should be propagated
throughout the system which will, in many cases, involve other macros and regular language elements as well. Impact

* A preliminary version of this paper has been presented at the 16th IEEE International Conference on Program Comprehension in Amsterdam,
The Netherlands, June 10-13, 2008.
Email address: ~ {lac,beszedes, gyimi}@inf.u-szeged.hu (Liszl6 Vidics, Arpzid Beszédes and Tibor Gyiméthy)

Preprint submitted to Elsevier February 10, 2009

analysis using slices that do not include preprocessor elements will be inaccurate and so potentially unsuccessful in
situations like these.

In this paper, we will present a possible way to implement such a preprocessor-aware C/C++ slicer. It is based
on the so-called macro slicing method introduced earlier [7, 8]. Essentially, a macro slice is a set of dependencies
between macro definitions and their uses, which is fairly similar to other notions of dependency-based slices. These
macro slices are then combined with traditional language slices thus providing a more complete dependency set
for a specific slicing task. Our slicer is experimental and is based on existing tools, applying specifically designed
algorithms for producing the combined slices. The article is an extended version of a conference paper [8] with the
following main contributions:

e More details on the algorithms and the implementation of the connection itself,
e possible applications and motivating examples are given, and
e the experiments have been repeated more thoroughly with a bigger set of programs.

In Section 3, we will justify the need for preprocessor-aware C/C++ slicers by providing motivating examples and
application scenarios. The problems with existing implementations and other related work are listed in Section 4, then
we describe our approach in detail in Section 5. Section 6 deals with our current implementation, then we present
experimental results in Section 7. In the last section we will draw some conclusions and make some suggestions for
future study.

2. Program slicing

Program slicing is an analysis method for extracting parts of a program which represent a specific sub-computation
of interest. It has been originally introduced by Weiser [2] to assist debugging, where a set of program points is sought
for, which affect the variables of interest at a chosen program point, called the slicing criterion. The reduced program
is called a slice. This definition is sometimes more precisely referred to as backward slice, since — having procedural
programs in mind — it associates a slicing criterion with a set of program locations whose earlier execution affected the
value computed at the criterion. On the other hand, a forward slice is a set of program locations whose later execution
depends on the values computed at the slicing criterion. Slicing can also be categorized as static or dynamic. In static
slicing, the input of the program is unknown and the slice must therefore preserve meaning for all possible inputs. By
contrast, in dynamic slicing, the input of the program is known, and so the slice needs only to preserve meaning for
the input under consideration.

Over the years, a number of algorithms to compute program slices has been developed; for an overview see [1,
3]. One of the most cited approaches is to apply a pre-computation step in which a representation of the program
under investigation is constructed first, which captures the dependencies among program elements (for instance, data
dependencies). This representation is called the Program (or System) Dependence Graph, whose basic form for
static slicing and procedural languages was given by Horwitz er al. [9]. The nodes of this graph represent the program
elements (instructions), while the edges connecting them correspond to the program dependencies. The counterpart of
this graph for dynamic slicing, the Dynamic Dependence Graph [10] includes a distinct vertex for each occurrence of
a statement in the execution of the program on the input under consideration (called the execution history). Eventually,
the computation of a slice with these approaches means finding all reachable program elements in these graphs starting
from the slicing criterion.

In this work we reuse the basic slicing principles to compute macro slices by constructing the Macro Dependency
Graph (MDG) first [7]. But, some slicing concepts need to be reinterpreted in the scope of macro slicing, as discussed
in the following. In their first approach, Agrawal and Horgan introduced dynamic slicing by refining the static Pro-
gram Dependence Graph using information from the execution history [10]. The need for the Dynamic Dependence
Graph to construct accurate dynamic slices was then demonstrated by the authors. Namely, a distinct node for each
occurrence of an instruction was implied by the loops in execution history. In the case of macro slicing the set of
mcall edges (discussed in Section 5) serves as execution history. The history of macro invocations can be recon-
structed based on them (if a macro body contains more than one macro invocation, their order in history is the order

2

of appearance in the macro body). Fortunately, there are no cycles in macro calls, so it is not necessary to create new
macro definition nodes for each call.

Similar to other forms of slicing, we use the notions of forward and backward for macro slices as well. We should
mention, however, that our choice for this terminology was rather arbitrary. In the case of procedural programs the
slice direction is defined with respect to the order of computations in the program. But in the case of macro programs,
the notion of “order” is less obvious as there are no “executable instructions” (consider, for example, the fact that the
macro dependency edge points in the opposite direction to the macro call edge, while with procedural programs the
control flow aligns with the control dependency). Furthermore, it is also meaningless to talk about data dependencies
for macro slicing, since these may exist only between the actual arguments and the formal parameters, but the macro
definition itself is not a part of the program, and hence the data dependency starts from the point of the initial call and
necessarily ends at the same place.

3. Motivation, utilization

3.1. Motivating example

Macro slices can be used, among other things, for the purpose of change impact analysis. The developer usually
has to carry out small changes during the system maintenance tasks, but in a large software system the effect even of
a small change is hard to predict. Let us assume that the small program part to be altered is a macro definition. Our
first motivating problem is to find the points of a C/C++ program which are affected by a modified macro definition.
The modified definition may be used in (called from) other macro definitions, which can be called again from many
points of the program (this is quite possible with macro slices). Next, the calls that use the definition are replaced
and become part of the C/C++ language constructs. But these constructs may affect other parts of the program, which
may be captured by traditional C/C++ language slices. In other words, the affected part of a program consists of both
preprocessor-related elements and C/C++ program elements. The union of the forward macro slice starting from the
given definition and the forward language slice starting from replaced parts gives all the affected points. A small
example which illustrates this is given in Figure 1.

#define ASSIGN(v) = v

#define SGN unsigned

#define DECLI (name, val) SGN int name ASSIGN(val) ;
DECLI (i,2)

printf ("$u\n",i) ;

g W N R

Figure 1: Small example on macro and regular forward slices

The slicing criterion for macro slicing is the macro definition in line 1. The corresponding macro slice contains
lines 1, 3 and 4, while the macro call in line 4 is the link between the two kinds of slices. During preprocessing,
the macro call DECLTI (i, 2) is expanded to unsigned int i = 2;, which is a C/C++ program element. The
replaced macro is the slicing criterion for C/C++ language slicing, and the language slice contains lines 4 and 5. The
combined slice contains all lines of the example code except line 2, which means that changing the macro definition
on line 1 affects four lines. A failure to identify these additional dependencies may cause a problem in change impact
analysis, for instance.

The procedure of combining slices works in the other direction as well. Figure 2 lists the previously shown
example code after the preprocessing phase. The macro definitions are hidden from the compiler. Let the slicing
criterion contain the variable i in line 5. The C/C++ backward slice algorithm does not know about macros as the
slice contains lines 4 and 5 only. Using the fact that line 4 comes from macro replacement, a backward macro slice
can be computed on line 4, which contains lines 4, 3, 2, 1. The combined backward slice contains every line of the
original example, instead of two lines of the C/C++ slice. An example where this can cause problems is when this
additional information is not available in a debugger, the user could not track down to all possible causes of an error
which is being debugged.

unsigned int i = 2;
printf ("$u\n" ,i) ;

Figure 2: The example source code after preprocessing

3.2. Real world example

How useful combined slices may be is illustrated by the following example taken from the flex subject program
of our experiments section. Let us assume that a new functionality is added to our software system and that we have
to modify (among other things) the part of the program related to memory handling. It turns out that some part of the
code to be modified contains a macro call in the original source. Using the macro backward slicing, the used macro
definitions can be accurately located.

Let us assume that modifications are done on the macro definition reallocate_integer_array () found at
flexdef.h line 686:

#define reallocate_integer_array(array,size) \
(int x)reallocate_array((void x)array, size, sizeof (int))

Note that the “called” reallocate_array () is not a macro, but a C function. The following task is to build
the whole program and test. Two problems may arise. The altered module compiles, but why do we have building
problems for a totally “unrelated” module? And having modified the macro definition, which parts of the program
have to be tested?

In the case of modifying a C function, slicing can be used to determine dependent program parts, to give hints on
affected files/modules, so one may select the appropriate test cases instead of performing full program test. In this case
the combined forward slice on the changed definition would help. The macro slice shows that 31 toplevel macros are
involved. The macro definition change is done based on one part of the program but there are 30 others where we have
to test. An example path in the slice is when the definition is called from the DO_.REALLOCATION (dfa.c:261)
and PUT_ON_STACK (dfa.c:269) macros. The file dfa.c at line 308 contains a simple macro call, namely
PUT_ON_STACK (ns), but when the source is preprocessed, it is replaced by a do-while loop which is 358 characters
long. One macro change goes through 31 points in the source, for each C slice must be computed, which finally shows
that 8271 source lines may be affected. The 31 toplevel macros show where to check the correct macro usage, helping
in build problems (sometimes in different modules). While the full combined slice gives hint on which part of the
program is affected, which allows for using selective retesting to reduce maintenance costs.

3.3. Utilization

The basic property of the approach proposed here is the handling of macros. Generally speaking, the method is
usable for the same purposes as C/C++ slicing: change impact analysis [11], program decomposition [12], software
re-use [13, 14], debugging [15] and regression testing [16, 17]. Dependencies added by the macro slices provide more
accurate analysis and hence better results. In the case of backward slices the C/C++ slice is continued with macros,
bringing source files into the slice that had not previously been taken into account. The special case of backward
slicing is presented in the above example, where the backward slice was taken for a macro call to identify the used
macro definitions. Forward combined slices start at a macro definition, which cannot be located using pure C/C++
slicing.

The preprocessor related program constructs deserve more attention from the utilization point of view. The back-
ward direction can be used when the programmer encounters a macro call in the code, and neither the replaced value
nor the used macro definitions are visible, which would help in debugging (the place of the compiler error is a macro
call). This is true for program comprehension as well: the simple macro call is expanded to many C/C++ constructs
like that shown in the previous example. As already shown, selecting the right test cases can be helped using our
method as well.

The current implementation of the macro slicer works on just one configuration, which is analyzed by the C/C++
slicer. This keeps the result synchronized, but also means that in general the toolset is not suitable for solving con-
figuration related issues. However, conditional directives usually contain macro checks (using the defined operator),
which are included into the macro analysis. Thus the forward slice requested on a macro definition which determines
the configuration (e.g. #define USE_SMART_PTR) will provide a hint about which part of the current configura-
tion is configuration dependent. Unfortunately the macro call in a conditional directive is not matched to any C/C++
language element (see Section 6). A new dependency between conditionals and C/C++ elements would help. The
current implementation of the macro analyzer contains a dependency relation like this, but it has not yet been used in
macro slicing.

The data structure employed for macro slicing (introduced in [18]) can be configuration dependent (as used in this
work) or configuration independent. The latter has not yet been implemented, but in the future may open the door for
configuration independent macro slicing. The C/C++ part seems to be the harder problem though as the C/C++ slicer
produces slices for just one configuration, but the configuration independent combined slicer should run the C/C++
slicer for every possible configuration and connect/merge the results. Checking every possible configuration can be
usually approximated by some important configurations, but right now a configuration independent slicer is just the
subject of future research.

4. Related work

There are relatively few slicing tools available for C/C++ programs. Binkley and Harman [19] conducted an em-
pirical study of static slice size of C programs and they mention three general purpose slicing tools: Unravel [20],
Sprite [21] and CodeSurfer [6], using the latter in their experiments. Unravel was a research prototype that was devel-
oped in a discontinued project. It has a number of deficiencies including the fact that it can only accept preprocessed
ANSI C code, which makes it clear that handling macros has not been implemented. Sprite implements some en-
hancements to traditional slicing algorithms, most notably in the field of points-to data. Since the tool is not publicly
available and the related publications do not deal with this issue, it is not clear how macro dependencies are handled
by using this approach.

The commercial slicing tool CodeSurfer, marketed by GrammaTech Inc., is probably the most up to date and best
developed slicing program for C/C++ today. It is able to compute various static dependency data by employing the
latest code analysis and program slicing technologies. However, it also has modest support for handling preprocessor-
related artifacts. It is able to identify the location of macro definitions and uses and present this data to the user.
However, it is not possible to compute slices using macro definitions as criteria. Furthermore, the slices will only
include statements that exist after macro expansion. Nevertheless, we used this tool in our experiments because the
information supplied by CodeSurfer about macro usage was sufficient to implement our approach.

The APP (Abstract PreProcessor) defines an abstract language to handle preprocessor directives in a similar way
to other programming languages. Handling directives in a consistent way allows one to perform an analysis such
as slicing as a solution for some preprocessor-related problems. The example presented on slicing is similar to our
backward macro slicing, but it has the advantage of telling one the conditional directives in the path. Unfortunately,
the implementation drawbacks prevent this tool from being applied to real C programs (e.g. the function-like macros
are not supported).

The Ghinsu software maintenance environment is the most closely related tool to our approach [23]. With it,
by clicking on a macro invocation the called definitions are highlighted (backward macro slice using our terms). In
addition, it supports both static and dynamic slicing, ripple analysis and other program analyses on ANSI compliant
C source code. This tool also utilizes a dependency graph in which the tokens of preprocessed code are classified
according to whether (and if so, how) they are involved in macro expansion. Unfortunately, it appears that this
project has been discontinued, and from the latest information gleaned we found that the implementation has certain
drawbacks which prohibits its use from being applied to real programs. For example, certain language features and
complex projects consisting of multiple source files are not handled.

There are also some other tools which are not slicers but have quite similar functionality aspects for the compre-
hension of macro usage. The GUPRO program understanding framework implements a macro folding mechanism
where a macro can be hidden or revealed at the place of the call [24]. The Understand for C++ reverse engineering

5

tool provides cross-references between the use and definition of software entities [25]. This includes the step-by-step
tracing of macro calls in both directions. The user can trace back the uses of a given macro definition, but the infor-
mation obtained is not accurate in some situations. These tools however do not incorporate C/C++ language slicing
as we do in our approach.

Finally, an interesting topic for future research is the investigation of the so-called dependence clusters [22] on
preprocessor slices. A dependence cluster is a set of program statements all of which are mutually interdependent.
Dependence clusters are approximated by the set of statements which have similar slice sizes. In the case of combined
slicing the similar slice sizes are also observed. Macro slices are, however, usually short, hence the C/C++ slices are
dominant in the combined slices. In the preprocessor case, macros with really short macro slices do not necessarily
belong to the same cluster. This issue deserves more careful examination, however.

5. Combining C/C++ preprocessor and language slices

The process of combining the two types of slices can be performed in both the forward and backward directions.
In the forward direction the slicing criterion is a macro definition. The macro slice contains toplevel macro calls as
connection points, the replaced toplevel macro calls are (part of) C/C++ program elements, whose program elements
serve as slicing criteria for regular language slicing. The final slice contains both preprocessor and C/C++ program
elements. The backward direction is similar but here the slicing criterion is a C/C++ program element, and the
language slice may contain program elements which are in turn parts of the result of a macro call. These macro calls
are used for macro slicing and the final slice contains the language slice and all the macro slices as well.

In this section we first provide a brief account of macro slices and then describe our approach for combining the
two kinds of slices.

5.1. Macro slices

Here, just an overview will be presented along with some figures and definitions. For a detailed description of
macro slices we refer to our previous work [7].

Slices are usually defined on a graph structure which represents dependency relations between program elements.
Accordingly, the structure of macros is defined by using sets and relations, and a dependency graph is defined based
on macros using a dependency relation which is appropriate for slicing macros.

The terms used to formalize the macro replacements are included in the example given in Figure 3 (the macro call
resultsin 1 2). Note that the captions here are just for illustrative purposes, and some arrows have been omitted from
the picture.

L Eoh g
t- —#= Macro parameter
Macro
definition

Figure 3: Example macro call

e macro definition — the place of the #define directive. The definition consists of three parts, namely macro
name, optionally parameters, and macro body (also called the replacement list).

e macro invocation — the place in the program where a macro name is used (where the name is to be replaced
with the macro body from the definition).
6

e macro expansion — the process of a single macro replacement, where macro arguments are also expanded and
replaced.

o full macro expansion — all macro expansions which are necessary to get the final result of an initial macro
expansion (including the macros in the re-expansion process of macro bodies).

o toplevel macro invocation - starting point of a full macro expansion (a full macro expansion necessarily starts
outside the #define directives).

Let us construct a set called M C which contains macro invocation nodes and macro definition nodes. Both types
of nodes are multi nodes (node sets) in the sense that they contain many preprocessor elements, but for the sake of
simplicity and readability we shall treat them as one node. The first type is based on toplevel macro invocations
(depicted by a black node in Figure 4): each node contains a toplevel invocation and the invocations which are in
its arguments. The second type is based on macro definitions: each node contains a macro definition and the macro
invocations contained by its macro body. The set is constructed in order to exclude every relation other than macro
calls. Based on the macro calls, the macro dependency relation can be defined on the MC set as the inverse relation
of the call in the following way (y € mcall(z), where z,y € MC means that there is a macro call in z that calls
definition y):

Definition 1. Let dep,, C MC x MC be a relation, b € dep.,(a) if and only if a € mcall(b), where a,b € MC.

mcall/_;®
()é __depn
mcall™ >

mcall ™\
. mcall

depm_

Figure 4: The mcall and the dep,, relations on the simplified MC' set

An example set with relations is given in Figure 4. The macro dependency relation points in the opposite direction
to that of the mcall relation. Informally, a node is macro dependent on another if and only if there is a macro call
from inside the first node to the second node.

Let us construct the Macro Dependency Graph (MDG). At this point we again refer to [7] where more information
is given about macro dependencies. The nodes of the graph are the elements of the MC' set and the directed edges
are created from the dep,, relation. The edges are multiple edges because there may be more full macro expansions
which have a common subset of dependency edges, but we have to distinguish them. Edge coloring is used to sign the
edges that belong to a particular full macro expansion.

Definition 2. Let MDG = (MC, E, I,C) stand for the Macro Dependency Graph, where MC' is the set of nodes
(vertices) and E is the set of edges, I C MC x E is the incidence relation, for Ve € E the {v € MC : vie} set has
two ordered elements, namely a,b € MC : viaAvIb < a € dep,y,(b), and C C E x N is the coloring relation which
assigns the same color to those edges which belong to the same full macro expansion. The E set contains multiple
edges where each edge has a certain color, if several full expansions use the same edge. We use dep,,; € dep,, to
denote the subrelation colored with i: Vi € N, b € depy,;(a) < b € depy,(a) AJe € E - ale Nble A (e, i) € C.

It should be mentioned here that the MDG is an acyclic graph even when it contains subgraphs of the whole
software system [7].
Generating macro slices can be performed on the MDG'. A slicing criterion is a set < p, z > where p is a program
point and x is a variable at p. In the case of macro slicing the criterion is mapped to the M DG, and for the < p, z >
7

criterion there is a node & € MC' in the dependency graph which represents the macro definition x at the program
point p. The forward macro slice contains those program points which are reachable from & along colored edges in
the graph.

Definition 3. Let < p,z > be a slicing criterion where x is a definition at program point p and k € MC' is the node
corresponding to x. Let Col be the set of colors which are used on dependency edges starting from k:
Col={ceN|Fee€ E,ce C(e) N (k,e) € I}.

The forward macro slice of the criterion is the set S = {y € MCly € depm'(k),i € Col}, where dep,' is the
transitive closure of depy, ;.

Backward macro slices can be defined in a similar way, where the slice starts at a macro call and includes all
definitions that are used during the full expansion of the macro.

#define X Y @‘d .
X P depm2®
#define Y 1 depn2
X
@ ®)

Figure 5: Example code and M DG (a) program code (b) M DG with edge coloring

A piece of source code and the associated dependency graph are given in Figure 5. The dependency edge colors
are represented as numbers. The forward macro slice based on the definition of Y as a criterion contains the definition
of X and the second macro invocation Xs. A more detailed example is given in Section 6.

5.2. Connecting slices

The process of combining macro and language slices requires that a common set of nodes and edges be defined
with the dependency relation as well. C/C++ language slices are usually computed on some kind of a Program
Dependence Graph (PDG) [26], or more generally on a System Dependence Graph (SDG) introduced by Horwitz et
al [9]. The PDG models interprocedural dependencies between procedures where each procedure is modelled with a
PDQG. In the preprocessor case, the M DG can be constructed in such a way that it contains dependencies from every
compilation unit in a software; there is no need to define two kinds of graphs for the macros. In the following we shall
consider a generalized SDG, on which a general C/C++ dependency relation is defined (called dep..).

The MDG can be used in combination with the SDG in the following way. Both of them have a well-defined
structure, the only problematic point being the connection. The MDG is based on the original source code, while
the SDG contains C/C++ language elements. In practise it is based on the preprocessed code (. i file). The toplevel
macro invocation (call) serves as a connection point (see the motivating example in Section 3.1). From the point
where the macro call is replaced with the replacement text, the source code is in C/C++ language form and consists
of C/C++ program elements.

Unfortunately, there is no guarantee that the replacement text will be a C/C++ syntactical unit. Moreover, the
SDG is composed of program elements, but contains various kinds of nodes like declaration, expression, return and
so on. There is a many-to-many relation between macro replacement texts and SDG nodes. For instance the macro
replacement may be a sequence of statements that is represented by more nodes in the SDG, and the macro may even
be a constant which is only a part of an SDG node. An SDG node, which at least partially comes from a macro
replacement, depends on the macro itself. Thus a dependency relation can be defined based on shared characters
between the SDG node and the macro (replacement). Let repl(a) be the replacement text after a full expansion of
macro call a, where repl(a) consists of characters with their position in the preprocessed file. (The SDG node b also
contains characters with their position in the preprocessed file.)

Definition 4. Let depeomp € MDG x SDG, a € MDG, b € SDG, b € depeoms(a) if and only if a is toplevel and
x character: x € repl(a) and x is contained by b.

Macro definition Dependent Dependent Program points CIC++ slice sets
(slicing criterion) definitions toplevel macros from macros

Figure 6: The forward direction for combining the slices, with the dependency relation between macros and C/C++ program points

An SDG node depends on an M DG node if at least one of its characters comes from the replacement of the MDG
node.

Using the definitions given in this section, the combined slice can be defined. The dep.. C/C++ dependency
relation, the dep,, macro dependency and the dep.,,,», combining dependency relations are already given. Next, let
DG be the combined dependency graph and dep the combined dependency relation:

Definition 5. Let
DG = SDG U MDG

and
dﬁpm(iﬂ) U depcnmb(f)7 lfl € MDG

dep(x) € DG x DG = { depee Y (2),if v € SDG

Note that the dep relation uses the inverse of the dep,. relation. In program slicing the direction of the dependency
relations usually points in a backward direction. However, in the case of macro slicing the direction is the opposite of
the macro call relation. To be consistent, for combined slicing the inverse of the C/C++ dependency should be used.

Definition 6. Ler < p,z > be a slicing criterion, where x is a variable at program point p. Let k € DG be the
corresponding graph element for x. The combined forward slice of the criterion is the set of program points, which
corresponds to the {l € DG |l € dep'(k)} set, where dep? is the transitive closure of the dep relation.

Definition 7. Let < p,x > be a slicing criterion, where x is a variable at program point p. Let k € DG be the
corresponding graph element for x. The combined backward slice of the criterion is the set of program points, which
corresponds to the {l € DG |k € dep®(l)} set, where dep® is the transitive closure of the dep relation.

The forward direction is depicted in Figure 6. The capital letters in the figure elements refer to their type and
not their name. The slice starts at the slicing criterion, which is a macro definition (D). There is a set of dependent
definitions (D), and there is a set of dependent toplevel macro invocations (T). (Note that many dependency edges
among the elements of this set have been omitted here.) When toplevel invocations are replaced, the result of each
invocation takes part in a set of C/C++ program elements (P). A regular language slicing algorithm computes the slice
for each program element, hence the final combined slice contains every element in the figure.

The backward direction case is outlined in Figure 7. Here once again the capital letters in the figure elements refer
to their type and not their name. The slicing criterion is a C/C++ program element (P). The slice may contain SDG
nodes which are (at least partially) the results of one or more macro invocations. The toplevel invocations which are
present in the C/C++ slice can be found along the dependency edges. For all of these toplevel invocations, macro slice
sets can be obtained using backward macro slicing. The final combined backward slice contains every element in the
figure.

The combined graph and the combined slices of the sample source code from Section 3.1 can be seen in Figure 8.
Nodes belonging to forward and backward slices are denoted by a capital ’F* and ’B’, respectively. The toplevel

9

C/C++ C/C++ slice Toplevel macros taking Macro slice sets
program point partin C/C++ slice
(slicing criterion)

printf("su\n",1i);

fidefine 8GN

Figure 8: Nodes and slices of the motivating example

macro call DECLI (i, 2) is present in both of its possible forms: as a macro and as a program point. The forward
slice contains every node except the definition of SGN, while the backward slice contains every node of the graph.

Note that the method does not make use of any special information concerning the SDG of the C/C++ slicing
algorithm. Just the dependency relation and the character positions of the node texts are used. Hence, in theory the
method can be used for static or dynamic slicing. Moreover, it does not matter whether data, control or some other
dependency relation is used for slicing.

6. Tools and algorithms

The formal definitions of combined slices are given in the previous section. A combined slicer can be implemented
in various ways. There are three tools that must be used to implement the method: a macro slicer, a C/C++ slicer, and
a combiner tool which implements the connection between them. In this section we report our implementation. The
algorithms given below follow the way how the tools are working. For the sake of extensive experiments, the slices
are computed for each appropriate node in dependency graphs, so our tools and algorithms are global in this sense. To
create an on demand version of the toolchain — which computes slices only for criteria given as input — minor changes
are required (overviewed below).

6.1. Tool setup

In our toolchain the macro slicer is built on top of the Columbus framework [27, 28]. The macro slicer tool analyses
the project and afterwards creates a graph instance of the Columbus preprocessing schema [18]. The graph contains
dependency edges between preprocessor elements, therefore it can be used as an M DG on which macro slicing can
be performed. For the C/C++ part we implemented a CodeSurfer plugin to get slicing information [6]. Similar to
the previous case, CodeSurfer builds the SDG graph representation from a software project and determines language
level dependencies (and other pieces of information as well). CodeSurfer gives access to the internal representation
of the SDG and the dependency information via plugins. We used the C API, which just provides core functionality,
but is suitable for slicing (the Scheme API provides full access).

10

The logical outline of the toolchain is depicted in Figure 9. The toolchain consists of the core analyzers (Columbus
and CodeSurfer), the macro slicer tool, the CodeSurfer slicer plugin and a small combiner tool which summarizes the
results obtained (the combiner is implemented together with the macro slicer). The tools communicate with each
other via a set of toplevel macros (given by their line information), which is the common point of the two slicers.

»»\
7 oY

<> | Combiner

8 Vs |
CodeSurfer SDG CodeSurfer
Frontend - (graph) - Slicer

/

Backward
Slice
Requests

Figure 9: Logical tool architecture - forward and backward slicing

The process in both the forward and backward cases starts with the core analyzers. In the backward direction the
C/C++ slices are continued with backward macro slices at points of macro calls. The CodeSurfer plugin produces the
backward slice based on the criterion (which is a C/C++ program point). The slice is then scanned for vertices which
are results of toplevel macro calls (matching). The slice is written into the output, and the set of toplevel macros
present in the slice is given to the macro slicer tool. The macro slicer computes backward slice sets for each toplevel
macro given as input, and by doing so extends the existing slice. Lastly the slices are summarized.

In the case of forward slicing the slicing criterion is a macro definition. The macro slicer produces the macro slice
of the criterion, whose final result contains the set of toplevel macros, which is then given to the language slicer. In the
next part the CodeSurfer plugin identifies positions in the source code where macro replacement was performed and
the toplevel macros are matched with C/C++ vertices. The matching between toplevel macros and vertices is carried
out based on line and column information (from the various types of vertices, just those which have a position in the
source are used). Next, the language slicing algorithm is executed to produce slices for each vertex, which is then
matched with toplevel macros. The results are summarized for each starting macro definition criterion (the C/C++
part of the final slice is the union of the C/C++ slices belonging to the toplevel macros).

In the following sections we will provide details about the implemented algorithms. The logical architecture shown
in the previous section has been slightly altered: the combiner is implemented inside the macro slicer. Therefore two
algorithms are used both in the backward and forward case: one for the CodeSurfer plugin and one for the macro
slicer and combiner. The CodeSurfer plugin is first run in both cases followed by the macro slicer and combiner. The
following notation is used in the algorithm descriptions: the C's and M prefixes refer to CodeSurfer (C/C++) and
Macro artifacts, respectively; vertex means a node in the SDG, while toplev means a toplevel macro invocation.

6.2. Backward algorithm

Our combined backward slicing algorithm is given in Figure 10. As mentioned before, the backward direction
means that the C/C++ slices are continued with backward macro slices at points of toplevel macro calls. The plugin
gets the vertices from each procedure and then computes the backward C/C++ slice on the project SDG (the function
GetProcedure Vertices(SDQG) returns vertices contained in procedures which have source file positions). Each such
slice is scanned one vertex at a time, and the set of matching toplevel macros is found. The Match(y,AllToplevs)

11

function returns the matching toplevel macro set for a vertex (AllToplevs denotes the set of all toplevel macros, for
matching see Section 6.4). The toplevel macros are combined for each such C/C++ slice. The triplet with the original
vertex, the associated C/C++ slice and the set of toplevel macros are computed for each criterion and the result is
passed to the macro slicer and combiner.

In the second step the macro slicer and combiner produces the final slices for each vertex passed as input. First,
the C/C++ slice is part of the final slice. Second, the set of included toplevel macros is used to compute additional
backward macro slices. These macro slices are then placed in the final slice set. The result is the combined backward
slice.

In the backward direction the toolchain may work in an on-demand way; in this case the plugin in line 2 of the
algorithm iterates through the vertex set passed as an argument.

CodeSurfer plugin - Backward slice

input: SDG : SDG of the analyzed project

output:outS : set of < v, CsBwSlice, ,T, > triplets where:
v : vertex € SDG
CsBwSlice, : backward C/C++ slice of v
T, : setof toplevel macros in CsBwSlice,

begin

1 outS=0

2 foreach v € GetProcedure Vertices(SDG)

3 ﬂ} = @

4 CsBwSlice,, = compute backward C/C++ slice for v on SDG
5 foreach y € C'SBwSlice,

6 T, =T, U Match(y , AllToplevs)

7 outS = outS U < v, CsBwSlice, , T, >

end

MacroSlicer & Combiner - Backward slice
input: MDG : MDG of the analyzed project
S : setof < v, CsBackSlice, , T, > triplets
output:S : setof < v,S, >: pairs - combined slice set
for each request (vertex)

begin

1 5=0

2 foreach < v, CsBackSlice, , T, > € inS

3 S, = CsBackSlice,

4 foreach x € T,

5 MBuwSlice, = compute backward macro slice for x on MDG
6 S, = Sy, U MBwSlice,

7 S=SuUu<w,S, >

end

Figure 10: Computing combined backward slice

6.3. Forward algorithm

In the forward direction the slicing criterion is a macro definition. The forward macro slices are combined with
C/C++ slices via toplevel macros matched with SDG vertices. In this direction the toolchain acts as a global slicer.
The CodeSurfer plugin prepares toplevel macros and the associated C/C++ slices for the whole program. The prepared
data is passed to the macro slicer and combiner, which computes macro slices and creates the final sets.

12

Figure 11 lists the combined forward slicing algorithm employed. The CodeSurfer plugin iterates through all
vertices inside procedures and tries to find matching toplevel macros. In the case of a successful match, the forward
C/C++ slice of the current vertex is computed, and the set of matched toplevels is paired with the C/C++ slice. The
output of the plugin is the set of toplevels paired with the forward slices starting from the matched vertices. The
macro slicer and combiner iterates through all macro definitions in the MDG (with the help of the GetDefinitions()
function). For each definition the forward macro slice is computed, which will be part of the final combined slice.
The macro slice contains (usually several) toplevel macros (provided by the GetToplevs() function). For each in-
cluded toplevel macro in the macro slice (GetToplevs() function), the set of C/C++ slices is got from the input
(GetCsFwSlice() function) and then added to the combined slice. The final result is the set of combined slices paired
with the associated definition.

Creating an on-demand slicer requires that the macro slicer and the combiner be separated and the tools be called
in the following order: macro slicer (with input criteria), plugin, combiner.

CodeSurfer plugin - Forward slice
input:SDG : SDG of the analyzed project

output:outS : setof < T, CsFwSlicer > pairs where:
T : setof toplevel macros
CsFwSlicer : forward C/C++ slice connected to 7'

begin

1 outS=10

2 foreach v € GetProcedureVertices(SDG)

3 if Match(v, AllToplevs) # 0

4 CsFwSlice, = compute forward C/C++ slice for v on SDG
5 outS = outS U < Match(v, AllToplevs) , CsFwSlice, >

end

MacroSlicer & Combiner - Forward slice
input: VDG : MDG of the analyzed project
S @ setof < T, CsFwSlicer > pairs
output:S : setof < d,S; >: pairs - combined slice set
for each request (macro definition)

begin

1 S=0

2 foreach d € GetDefinitions(MDG)

3 MFuwSliceq = compute forward macro slice for d on MDG
4 Sq = MFwSliceq

5 foreach t € GetToplevs(MFwSliceq)

6 Sq = Sq U GetCsFuwSlice(inS, t)

7 S=5uU<d,S;>

Figure 11: Combined forward slice algorithm

6.4. Details on matching and graph coloring

There are many factors which make the matching of macros and vertices based on file position a challenging
task. The behaviour of the tools had to be adjusted in many areas including the physical and logical lines (e.g. for
the #1ine directive CodeSurfer preserves the original line information), handling macros in conditional directives,
and handling macros defined in the command line. The plugin iterates through vertices belonging to procedures,
which means that some vertices are omitted such as forward declarations or globals). Another important factor is the

13

handling of standard libraries. The SDG contains additional vertices from standard libraries, and some vertices used
in its internal representation. Accordingly, the macro slicing tool is adjusted to match macros from standard libraries,
but not to report errors for omitted ones.

The matching process is based on comparing source position intervals. The result of the Match (vertex: y ,
set < toplev >: T') function is the subset of 7. The repl(a) function gives the replacement text after a full expansion
of macro call a, where repl(a) consists of characters with their position in the preprocessed file. If the vertex y
contains characters from repl(m) (i.e. the expansion of the toplevel macro m € T'), then the matching set contains
m. In other words, the matching algorithm checks the file position of the vertex and the replacement of macros, and
if there are overlapping intervals then the matching is successful.

A schematic view of the matching process is shown in Figure 12. The toplevel macro (7) is expanded using two
definitions (D1, D). The final replacement is denoted by repl(T') in the figure. The result is included in the C/C++
analysis, and the SD@ vertices are defined based on the preprocessed source including repl(T'). Vertices are denoted
by horizontal lines as they may overlap the same source position. The figure contains two successful matches, namely
(T) is matched with both (P, P). Note that the replacement text is included in matching in full length. Lastly, the
combined forward slice requested on Do consists of {(Da, D1), T, (Py, Ps)}.

(© I

®I 1 |

oD

expansion

repl (T)F t | |

Figure 12: Matching based on common characters in an expansion

The matching algorithm can be refined with more accurate check on positions. If we track the origin of the pieces
contained by the replacement text, then the slice set may be smaller. In this case P> is matched with pieces from
both D; and Do, but P} matches only pieces from D;. Therefore using accurate tracking the combined forward slice
on D5 does not contain Py, it consists of {(Ds, D1), T, (P2)}. This kind of slicing produces smaller, more accurate
slices. Despite the result is not necessarily better (it is not obvious that P, is not related to Dy). Another question
arises about the interpretation: should D, contained by forward slice of Dy? The toolchain used in our experiments
used the first type of matching without tracking macro pieces.

#define A ..B...C...
#define B ...
#define D ...C...

A

#define C ...E...

A

#define E ...

D

Figure 13: Edge coloring example

The graph coloring method is introduced briefly in Section 5. An illustrative example is given in Figure 13. The
program code is given on the left hand side of the figure, which is followed by the basic and the colored version of the

14

graph (colors are represented by solid, dotted and dashed lines). Coloring reflects the full macro expansion of toplevel
macros. For example macro call A; uses the definition of A (solid lines). During the further expansion macro B is
also expanded, but C'is not defined at that source position. Using the basic dependency graph for macro slicing would
result inaccurate (larger) slices. Computing forward macro slice on the definition of E using the basic graph would
resultin £, C, D, Dy, A, A1, As. Using the dashed edges in the colored graph a much better slice can be computed,
namely E,C, D, D;. Coloring helps in a similar way in the case of backward macro slicing. The backward macro
slice computed on A; using the basic graph includes unnecessary nodes (C, E)). Although the presented example
is artificial, the analyzed projects contain several complex preprocessor constructs, which confirms the necessity of
graph coloring.

7. Measurements

7.1. Subject programs

Experiments are performed on 28 open source projects, starting from small programs to medium size ones to
about 20k lines of code. Many of the programs are selected based on remarkable empirical studies on slicing [19]
and preprocessor usage [29]. We found the total of 240k non empty lines of code enough to prove the usability of
the method. Table 1 contains the list of projects used in our measurements, and their basic data. Sizes given in non
empty lines of code as CodeSurfer calculates its LCode metric (note that this metric is significantly smaller than the
usual LOC metric, when usually comments and empty lines are counted). Build time of dependency graphs is given
is seconds, as the fime unix tool reports the user time of the process. The building time includes the time needed to
build the project, not only the graph building phase. The number of nodes in the graphs can be found as a measure
for the graph size. Not surprisingly, the MDG is smaller than the SDG, which is almost 60 times larger on average.
The time required for slicing operation is given in the tables, backward and forward slicing is done during the same
run. The memory consumption was below 350M for the CodeSurfer plugin and below 2.5G for the macros slicer and
combiner tool (without any special effort spent on decreasing memory consumption).

7.2. Slices in detail

In our experiments the measure for the slice size was the number of source code lines which contain vertices from
the slice, since this seems to be the best common denominator for the different slicing tools. Other researchers also
used this approach [19].

Because of the difficulties in matching, which were mentioned in the previous section, there were slices in both
directions which the tools failed to match. The failure rate was generally about 8% in the forward case, and under
1% in the backward case, which we found acceptable for reporting measured data. The data given in this section just
contains the perfectly matched slices.

The left hand side of Table 2 contains the number of combined forward slices and their average sizes. We com-
puted all possible forward slices, meaning that we started from each macro definition, and measured the sizes of the
individual macro and language slices along with the combined slices. The numbers listed are the average slice size
values. We treat the set of toplevel macros in a special way so we count the toplevel macros into both the macro slice
and the associated vertices into the C/C++ slice as they belong to both kinds of slices.

There are two items of especial interest in the list. The program espresso is interesting because it does not contain
any macro definitions. The program lightning is exactly the opposite: it is the only one that has larger macro slices
than C/C++ slices. Examining the code confirms that some C source files of this program are full of macro definitions
and calls.

Backward slices may not necessarily contain macro calls. Although the average number of macro calls is not so
high, most of the backward slices contain macro calls (above 75%). The number of combined slices (which necessarily
contain macros) and their average sizes are given in Table 2 (on the right hand side), where we used the same approach
for measurement as we did with the forward slices. It can be seen that backward macro slices are generally bigger
than forward slices, which can be explained by the fact that language slices usually contain many more code lines and
hence more potential starting points for macro slices exist (we used both data and control dependencies for slicing
C code). Another reason might be that in the backward case we produce slices for each vertex, so more of the large

15

Program Size MDG build | MDG size | SDG build | SDG size | Macrosl. | C/C++sl.
name (LCode) time (s) (nodes) time (s) (nodes) time (s) time (s)
replace 512 0.28 136 1.18 3205 0.26 7.85
copia 1085 0.45 7 6.13 94390 0.12 208.65
time 1119 1.88 162 4.15 5633 0.26 3.73
which 1246 1.87 146 5.41 7449 0.48 29.44
compress 1335 0.84 108 2.18 4408 0.16 8.29
wdiff 1364 2.12 217 4.57 7640 0.53 10.77
ed 2637 3.80 117 9.98 39412 0.73 716.82
barcode 2807 6.34 381 13.76 27970 3.1 427.62
tile 3549 1.93 1881 27.69 51095 19.72 146.43
acct 4008 9.37 899 12.50 24619 5.0 116.98
li 4793 10.71 1826 3006.31 943340 79.9 56238.38
EPWIC 5249 12.10 852 14.68 27099 12.23 443.48
lightning 5563 20.8 1750 69.42 56778 6954.21 572.75
gzip 5997 9.88 1725 17.88 37525 34.16 1315.92
userv 6016 5.47 1244 2472 105902 23.30 3281.28
indent 7582 4.55 857 12.22 42102 17.98 1100.14
be 9472 9.6 1554 24.90 59503 31.17 2080.13
diffutils 10124 18.91 1971 29.35 53928 31.54 1261.76
gnuchess 11045 13.87 2511 29.12 70782 143.8 4391.19
ctags 11670 12.96 1480 55.31 209357 106.61 12611.60
sed 13339 9.37 2527 26.28 89788 204.76 9374.67
nano 13698 14.96 3964 38.11 177879 591.88 23445.10
ijpeg 15253 25.82 4283 39.75 77531 212.62 6948.48
flex 17533 22.56 3188 112.12 126757 259.55 9912.45
bison 20673 35.74 4387 88.64 138972 98.92 16099.25
wget 21104 27.88 4146 95.28 269209 993.85 60294.88
espresso 21780 3.86 0 52.79 151802 0.18 9642.20
20 22118 5.40 5296 22.18 110236 499.19 22550.61
total [242671 [29332 | 47615 | 3846,61 [3014311 [1032621 | 24324085 |

Table 1: Subject programs

slices are counted, while in the forward case we selected just a few vertices (according to the macro calls). This way,
the average may be higher in the backward case.

Studying the ratio of macro slice sizes relative to the C language slice sizes it can be seen that the individual macro
slices are relatively small, but this may be due to the size difference of the SDG and the MDG graphs. For a given
slicing criterion the smaller the slice the better, naturally without ignoring any dependency. Macro slices are more
accurate in this sense, while still having relatively small additional percentage value.

There is a wide range of open source software which has been analyzed by Ernst et al [29]. They report the
preprocessor directive usage in open source software and find that preprocessor directives make up about 8.4% of the
program code on average. It is worth mentioning that in both directions the extra code lines coming from macro slices
are relatively small compared to the language slices, so their true worth is debatable here. However, we think that in
many cases these additions may be crucial from a program comprehension point of view. The real world example in
Section 3.2 provides an example where the macro slice part is small but useful. This is not a rare occurrence. The
example is taken from the flex program where macro usage is close to the average according to the empirical study
mentioned above. In this respect, traditional C/C++ language slices without macro slices can be treated as unsafe,
overlooking important information.

8. Conclusions and future work

The work presented was motivated by the observation that virtually all available program slicing tools for the
C/C++ language lack the proper and complete handling of preprocessor constructs. From a program comprehension
point of view, the existing methods often appears inadequate. For instance, the impact of changing a macro definition
cannot be accurately followed throughout the program’s preprocessor and non-preprocessor related parts. Existing

16

Forward slices Backward slices
Number of | Macro sl. C lang sl. Comb. sl. Number of | C lang sl. Macro sl. Comb. sl.
slices size (avg) size (avg) size (avg) slices size (avg) size (avg) size (avg)
replace 23 7.1 328.7 335.9 647 205.2 86.6 291.8
copia 2 3.0 1132.5 1135.5 3044 924.2 6.0 930.2
time 31 8.9 287.6 296.5 598 115.4 19.0 134.4
which 22 6.3 544.8 551.1 1288 396.1 53.6 449.8
compress 26 4.7 277.9 282.6 601 323.7 64.5 388.2
wdiff 25 7.0 300.6 307.6 989 170.2 454 215.6
ed 27 33 1459.2 1462.5 3849 1543.8 37.5 1581.3
barcode 44 6.7 1665.8 1672.5 4143 1569.3 153.1 1722.3
tile 145 23.1 2468.0 2491.0 2469 358.9 193.3 552.2
acct 76 14.2 761.9 776.1 3896 492.1 93.8 585.9
li 111 29.7 3966.6 3996.3 7695 4025.3 1392.2 5417.5
EPWIC 122 7.1 1102.5 1109.6 6434 897.0 239.7 1136.7
lightning 341 983.8 167.5 1151.3 808 101.0 73.0 174.0
gzip 259 11.0 3274.0 3285.0 4701 2884.3 979.7 3864.1
userv 202 12.2 2732.3 2744.5 8002 2163.5 482.7 2646.2
indent 53 16.8 4518.0 4534.8 5781 3196.4 427.3 3623.7
be 153 9.3 3832.7 3842.1 8548 3108.0 612.7 3720.6
diffutils 242 13.7 2997.5 3011.2 9614 1830.4 397.4 2227.8
gnuchess 242 14.8 7086.4 7101.2 10919 5137.0 1838.9 6975.8
ctags 111 17.0 8337.1 8354.1 12775 7496.0 976.1 8472.0
sed 256 102.6 8812.6 8915.2 12295 7367.3 1571.9 8939.2
nano 389 18.3 12590.1 12608.4 14754 12750.5 3354.6 16105.1
ijpeg 322 19.1 5861.3 5880.4 13479 5661.1 1859.5 7520.6
flex 334 16.3 9036.2 9052.5 12530 7250.8 1977.1 9227.9
bison 248 28.0 4458.6 4486.6 3873 5763.4 1792.0 7555.4
wget 340 272 16045.4 16072.6 21471 14345.1 2838.9 17184.0
espresso 0 nan nan nan 0 nan nan nan
g0 382 38.2 10817.2 10855.4 23840 10304.6 3628.1 13932.7
‘ total/avg ‘ 4528 ‘ ~ 96.62 ‘ ~ 6525.98 ‘ ~ 6622.60 ‘ 199043 ‘ ~ 6647.69 ‘ ~ 1706.99 ‘ ~ 8354.68 ‘

Table 2: Summary of forward and backward slices

tools either compute the slices based on dependencies in the language constructs or provide rich features to model
macro usage, but not both. This could have a detrimental impact on various fields related to program comprehension
and maintenance in general. For example, in change impact analysis, a failure to identify a dependency of a change
could have the effect of inaccurately predicting the cost of changes and of performing incomplete change propagation,
which in turn would result in increased risk of regression [30].

With this work we fill this gap and propose a combined approach for computing slices in C/C++ programs. We
justify out approach by providing a realistic sample program comprehension problem and other possible applications
of the method. Existing tools were employed in an experimental tool setup with which a number of program slices
were computed. We counted the program points returned by the combined approach and compared it to slices without
the preprocessor components.

The first results measured on open source projects look promising, and clearly demonstrate the benefits of using
our approach. However, the method needs to be refined and larger case studies should be performed. We plan to
qualitatively evaluate the approach in greater depth to look for usage scenarios where it would be most beneficial. We
also plan to conduct more experiments with much bigger systems, like the Mozilla source code. But even at this stage
of the research we definitely recommend that similar combined strategies for slice calculation in existing tools like
CodeSurfer be integrated. In it, one may be able to use and extend the existing internal representation for this purpose.
Finally, extending CodeSurfer’s GUI capabilities with combined slice features is an interesting idea. We intend to
pursue these tasks in the near future as well.

17

Acknowledgements

We would like to thank Judit Jasz for her help in programming CodeSurfer. This research was supported in part

by the Hungarian national grants RET-07/2005, OTKA K-73688 and TECH_08-A2/2-2008-0089.

References

(11
(2]
(3]

(4]
[5]

(6l
(71
(81
191
[10]

[11]
[12]

[13]
[14]
[15]

[16]
[17]

(18]
[19]
[20]
[21]
22]
23]
[24]
[25]
[26]
27]

(28]
[29]

[30]

F. Tip, A Survey of Program Slicing Techniques, Journal of Programming Languages 3 (3) (1995) 121-189.

M. Weiser, Program Slicing, IEEE Transactions on Software Engineering SE-10 (4) (1984) 352-357.

B. Xu, J. Qian, X. Zhang, Z. Wu, L. Chen, A Brief Survey of Program Slicing, ACM SIGSOFT Software Engineering Notes 30 (2) (2005)
1-36.

A. Garrido, Program Refactoring in the Presence of Preprocessor Directives, Ph.D. thesis, UIUC, 2005.

M. Vittek, P. Borovansky, P.-E. Moreau, A collection of C, C++ and Java code understanding and refactoring plugins, in: ICSM (Industrial
and Tool Volume), 61-64, 2005.

GrammaTech CodeSurfer Homepage, Homepage of GrammaTech’s CodeSurfer, URL
http://www.grammatech.com/products/codesurfer, 2008.

L. Viddcs, A. Beszédes, R. Ferenc, Macro Impact Analysis Using Macro Slicing, in: Proceedings of the Second International Conference on
Software and Data Technologies (ICSOFT*07), 230-235, 2007.

L. Viddcs, J. Jasz, A. Beszédes, T. Gyim6thy, Combining Preprocessor Slicing with C/C++ Language Slicing, in: Proceedings of the 16th
IEEE International Conference on Program Comprehension (ICPC’08), 163—171, 2008.

S. Horwitz, T. Reps, D. Binkley, Interprocedural Slicing Using Dependence Graphs, ACM Transactions on Programming Languages and
Systems 12 (1) (1990) 26-61.

H. Agrawal, J. R. Horgan, Dynamic Program Slicing, in: Proceedings of the ACM SIGPLAN’90 Conference on Programming Language
Design and Implementation, no. 6 in SIGPLAN Notices, 246-256, 1990.

S. A. Bohner, R. S. Arnold (Eds.), Software Change Impact Analysis, IEEE Computer Society Press, ISBN ISBN 0818673842, 1996.

K. B. Gallagher, J. R. Lyle, Using Program Slicing in Software Maintenance, IEEE Transactions on Software Engineering 17 (8) (1991)
751-761.

A. Cimitile, A. de Lucia, M. Munro, A Specification Driven Slicing Process for Identifying Reusable Functions, Journal of Software Mainte-
nance: Research and Practice 8 (3) (1996) 145-178.

J. Zhao, A Slicing-Based Approach to Extracting Reusable Software Architectures, in: Proceedings of the 4th European Conference on
Software Maintenance and Reengineering (CSMR’00), 215-223, 2000.

H. Agrawal, R. A. DeMillo, E. H. Spafford, Debugging with Dynamic Slicing and Backtracking, Software — Practice and Experience (SPE)
23 (6) (1993) 589-616.

D. W. Binkley, The application of program slicing to regression testing, Information and Software Technology 40 (11-12) (1998) 583-594.
G. Rothermel, M. J. Harrold, Selecting tests and identifying test coverage requirements for modified software, in: Proceedings of ISSTA’94,
169-183, 1994.

L. Viddcs, A. Beszédes, R. Ferenc, Columbus Schema for C/C++ Preprocessing, in: Proceedings of CSMR 2004, IEEE Computer Society,
75-84, 2004.

D. Binkley, M. Harman, A Large-Scale Empirical Study of Forward and Backward Static Slice Size and Context Sensitivity, in: Proceedings
of the International Conference on Software Maintenance (ICSM’03), IEEE Computer Society, 44-53, 2003.

Unravel Homepage, Homepage of the Unravel project, URL http://itl.nist.gov/div897/sqg/unravel/unravel.html,
2008.

M. Mock, D. C. Atkinson, C. Chambers, S. J. Eggers, Program Slicing with Dynamic Points-To Sets, IEEE Transactions on Software
Engineering 31 (8) (2005) 657-678.

D. Binkley, M. Harman, Locating Dependence Clusters and Dependence Pollution, in: Proceedings of the 21st International Conference on
Software Maintenance (ICSM’05), IEEE Computer Society, 177-186, 2005.

P.E. Livadas, D. T. Small, Understanding Code Containing Preprocessor Constructs, in: Proceedings of IWPC 1994, IEEE Computer Society,
89-97, 1994.

B. Kullbach, V. Riediger, Folding: An Approach to Enable Program Understanding of Preprocessed Languages, in: Proceedings of the 8th
Working Conference on Reverse Engineering (WCRE 2001), IEEE Computer Society, Los Alamitos, 3—-12, 2001.

Understand for C++ Homepage, Homepage of Understand for C++, URL http://www.scitools.com, 2007.

K. J. Ottenstein, L. M. Ottenstein, The Program Dependence Graph in a Software Development Environment, in: Proceedings of the ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software Development Environments (SDE), no. 19(5) in SIGPLAN
Notices, Pittsburgh, Pennsylvania, 177-184, 1984.

R. Ferenc, A. Beszédes, M. Tarkiainen, T. Gyiméthy, Columbus — Reverse Engineering Tool and Schema for C++, in: Proceedings of the
18th International Conference on Software Maintenance (ICSM 2002), IEEE Computer Society, 172-181, 2002.

FrontEndART Software Ltd., FrontEndART Software Ltd., URL http://www.frontendart .com, 2008.

M. D. Ermnst, G. J. Badros, D. Notkin, An empirical analysis of C preprocessor use, IEEE Transactions on Software Engineering 28 (12)
(2002) 1146-1170.

V. Rajlich, A Model for Change Propagation Based on Graph Rewriting, in: Proceedings of ICSM 1997), 84-91, 1997.

18

