
REFACTORING OF C/C++ PREPROCESSOR
CONSTRUCTS AT THE MODEL LEVEL

László Vidács
Research Group on Artificial Intelligence

University of Szeged and Hungarian Academy of Sciences, Szeged, Hungary
lac@inf.u-szeged.hu

Keywords: reverse engineering, refactoring, graph transformation, preprocessor

Abstract: Preprocessor directives are usually omitted from the analysis of C/C++ software, yet they play an important
role especially in program transformations. Here a method is presented for refactoring preprocessor constructs
at the model level. Refactorings are carried out on program models derived from a reverse engineering process
of real-life software. We present a metamodel of preprocessing on which a graph transformation approach is
used to elaborate refactorings. The method is presented through the elaboration of the add parameter refactor-
ing both at schematic and concrete level. Safe transformations are assured by visual control and validated by
the evaluation of OCL expressions. The usability of the idea is validated by successful experiments.

1 Introduction

In this paper we will carry out the refactoring of
C/C++ preprocessor constructs at the model level.
Our aim is to investigate transformations of reverse
engineered program models derived from real-life
C/C++ software, with the emphasis on the safety of
the transformations.

In the past fifteen years refactoring has become
an increasingly important technique for improving
the design of existing code (Opdyke, 1992). It is a
program transformation which preserves program be-
haviour, while the quality of the program becomes
better from some point of view (reusability, maintain-
ability, readability, flexibility). Nowadays refactoring
is a well-known technique mainly due to the trend
of model-driven development, including the empha-
sis on iterative development. Hence the strong need
for tool support has resulted in an increasing num-
ber of refactoring tools, primarily for object-oriented
languages like Smalltalk (Roberts et al., 1997), Java
(jFactor, 2009), and for C++ (Slickedit Homepage,
2009); and for various kind of languages, many of
them listed in the refactoring catalog (Refactoring
Catalog, 2009). A refactoring by definition is a small
transformation, but successively applied refactorings
may lead to a larger modification. Therefore refactor-
ings are usually applied together as composite refac-

torings. For example in an Add parameter refactoring,
when a new parameter is added to a function, one has
to consider modifying the call sites of the function.

Although refactoring in the C/C++ language is es-
sential and affects many software developer compa-
nies, the tool support still has to be improved. One
of the main reasons for this is that two languages
actually have to be refactored: the C or C++ lan-
guage itself, and the preprocessor language. The pre-
processor has a textual syntax and works on tokens,
while the C/C++ compiler uses a grammar with typ-
ical programming language constructs like variables
and functions. Preprocessor constructs are usually
neglected by C/C++ analyzer tools, but in the case
of refactoring a tool is not usable unless it can han-
dle them. In contrast to most studies, this current
work uses the preprocessor as a separate language,
so the preprocessor constructs are treated as the main
subject of refactoring. Of course preprocessor refac-
torings may be used later in C/C++ language refac-
torings as well. There are many points which have
to be considered before a refactoring can be applied
(e.g. the so-called preconditions have to be fulfilled).
The model-driven trend in software engineering al-
lows one to carry out refactorings at the model level,
including verifying the preconditions. In addition, the
modified model may be further validated so that the
concrete refactoring may be refined.

Our aim is to perform a sequence of refactorings
on a reverse-engineered program model. The trans-
formations on the preprocessor metamodel will be de-
scribed by graph transformations, which make them
easy to understand and handle (Gogolla, 2000). The
Columbus and the USE systems were used to imple-
ment our approach, which allows us to handle reverse-
engineered program models and validate the transfor-
mations using OCL expressions. The paper is orga-
nized as follows: Section 2 contains our main contri-
bution including a short description of the preproces-
sor metamodel, the graph transformation approach for
refactoring, the reverse engineering process and the a
case study on the add parameter refactoring. After,
related works are discussed in Section 3, then in Sec-
tion 4 we draw some pertinent conclusions.

2 Refactoring on the C/C++
preprocessor metamodel

Refactoring is a way of improving the internal
quality of the code (Mens and Tourwé, 2004), but in-
ternal quality is usually not among the top priorities of
a typical software development team. Even when it is
time to improve the maintainability or to correct the
bad design of a former phase of the development, the
estimated cost of a change may discourage refactor-
ing activities. On the other hand, when refactoring is
done on program code, testing after each refactoring
step requires a great deal of effort, and in the worst
cases major modifications may remain untested. Our
intention here is to carry out controlled and validated
refactoring steps (safe refactoring), then spend more
time and effort on higher level or integration testing.

In this work refactorings were performed on pro-
gram models produced by the Columbus Reverse En-
gineering Framework (Ferenc et al., 2002). Colum-
bus builds a graph representation of C/C++ programs,
which includes information about the use of prepro-
cessor directives like macro definitions and calls. The
graph representation conforms with a preprocessor
metamodel. The model-level transformations are re-
alized using the USE system (Gogolla et al., 2007).
In this section graph transformation as a method for
refactoring will be briefly described, followed by the
necessary description of the preprocessor metamodel.
In the remaining part the add parameter refactoring is
investigated in detail. The scope of the current work
covers the macro-related refactorings only.

2.1 Graph transformations

The graph transformation approach is a natural way
to express formal refactoring (e.g. refactoring at the

model level). A graph transformation rule is usually
given by two states of the graph (before and after the
transformation), which corresponds to the usual view
of a refactoring. Actually, there is a good correspon-
dence between the notions and terms of refactoring
and graph transformations (Mens and Tourwé, 2004).
Mens et al. (Mens et al., 2005) give details on us-
ing graph transformations for refactoring and provide
helpful illustrative examples. In addition to the gen-
eral approach, efforts have been made towards apply-
ing this approach in domain specific environments as
well (Taentzer et al., 2007).

Our current work began along similar lines as that
presented in (Vidács et al., 2006). We use a single
pushout approach for graph transformation rules pos-
sessing a left and a right hand side. Instead of using
the rather complicated NAC (Negative Application
Condition), we provide preconditions as OCL expres-
sions. Despite the NAC concept being an integral part
of the graph transformation theory, we will omit it be-
cause OCL is the natural way to express preconditions
and it is also flexible enough to handle complex cases.
The definitions of directed, attributed graphs are used
in the usual way. A program graph is a directed, la-
belled, attributed graph where nodes, attributes and
edges correspond to the metamodel we shall employ.
Not all graphs that correspond to the definition above
represent valid C/C++ preprocessor constructions, but
in the reverse engineering context we shall assume
that the starting graph is a well-formed graph and that
this property is preserved because of the conditions of
the transformations.

2.2 The preprocessor metamodel

Here we used the Columbus Schema for C/C++ Pre-
processing as a preprocessor metamodel, which is
represented in Figure 1 as an UML Class Diagram
(Vidács et al., 2004). The structure of the metamodel
follows the structure of a source file. From a prepro-
cessor point of view, a file consists of elements which
can be either preprocessor directives or other text ele-
ments. There are classes which describe both object-
like and function-like (parameterized) macro defini-
tions. Macro expansions can be tracked with the help
of reference (DefineRef) objects. A DefineRef ob-
ject links the position of the call (such as an Id) to
the position of the macro definition. Also, function-
like macro expansions contain an ordered list of ar-
guments (Argument objects), which are matched to
macro parameters (in this case the reference object
is called FuncDefineRef). The structure of the macro
body (replacement list) is described using the Direc-
tiveText class and its descendant classes, with the help
of associations between them. A macro definition

{O
R}

{O
R}

Ba
se

id
: In

teg
er

Po
sit

ion
ed

pa
th

: S
trin

g
lin
e :

 In
teg

er
co
l :
Int

eg
er

en
dL

ine
 : I

nte
ge

r
en

dC
ol
: In

teg
er

El
em

en
t

Di
rec

tiv
e

Fil
e

na
me

 : S
trin

g

Inc
lud

e
isE

xte
rna

l :
Bo

ole
an

Nu
ll

Co
nd

itio
na

l
en

ab
led

 : B
oo

lea
n

IfG
ro

up
El
if

Els
e

En
dif

If
Ifd

ef
Ifn

de
f

Er
ro
r

Pr
ag

ma

Un
de

f
na

me
 : S

trin
g

isE
xte

rna
l :
Bo

ole
an

Lin
e

De
fin

e
na

me
 : S

trin
g

isE
xte

rna
l :
Bo

ole
an

De
fin

eR
ef

1

*
{or

de
red

}

co
nta

ins

0..
1

1
inc

lud
es

*

1
inc

lud
es

*
un

de
fin
es

1

*
{or

de
red

}
 de

pe
nd

sO
n

0..
1

0..
1

ref
ers

To
Ne

xt

Fu
nc

De
fin

eR
ef

Ar
gu

me
nt

Te
xt

na
me

 : S
trin

g

Id

1

1..
*

{or
de

red
}

 co
ns
ist
sO

f

Di
rec

tiv
eT

ex
t

na
me

 : S
trin

g

Di
rec

tiv
eId

St
rin

giz
e

Co
nc

at

Pa
ram

ete
r

na
me

 : S
trin

g

0..
1

*

 re
fer

sT
oP

ara
me

ter

Fu
nc

De
fin

e
1

*
{or

de
red

}

ha
sP

ara
me

ter

*

1 re
fer

sT
oD

efi
nit
ion

1

 re
fer

sT
oId

*

1
ref

ers
To

Di
rec

tiv
eId

1

*

ha
sF

ile
Na

me
Inc

l

1

*

ha
sC

on
stE

xp
res

sio
nIf

1

*

ha
sC

on
stE

xp
res

sio
nE

lif

1

*

ha
sD

ire
cti
ve
Te

xt

1

*

ha
sP

rag
ma

Te
xt

1

*

ha
sL
ine

No

1

*

ha
sR

ep
lac

em
en

t

2
{or

de
red

}
1

 co
nc
ate

na
tes

1

*

ha
sF

ile
Na

me
Lin

e

1
*

ha
sA

rgu
me

nt

 st
rin

giz
es

{m
ult
ipl
icit

y:
*:
sta

tic
 in
sta

nc
es

0..
1:

dy
na

mi
c i
ns
tan

ce
s}

{m
ult
ipl
ici
ty:

*:
sta

tic
 in
sta

nc
es

0..
1:

dy
na

mi
c i
ns
tan

ce
s}

1
1..

*
{or

de
red

}
co
ns
ist
sO

f

sh
are

d:
sta

tic
 in
sta

nc
es

co
mp

os
ite
: d

yn
am

ic
ins

tan
ce
s

{O
R}

1

0..
1

 be
lon

gs
To

*
{or

de
red

}

1

 be
lon

gs
To

1
1

 be
lon

gs
To

De
fin

ed

 ch
ec
ks

{or
de

red
}

{O
R}

Fi
gu

re
1:

T
he

pr
ep

ro
ce

ss
or

m
et

am
od

el

may contain further macro calls, so that a sequence
of expansions takes place during the full expansion of
a macro. Since each expansion step requires a De-
fineRef object, a full expansion is represented by a
sequence of reference objects, which is described by
the refersToNext relation. For a detailed description
of the schema see (Vidács et al., 2004).

2.3 Add parameter refactoring

The add parameter refactoring allows a method to
process more information than it could previously.
It may be a part of a complex refactoring, and it
may implement a new feature as well. The object-
oriented version of this refactoring (add parameter
to a method) is described in (Fowler, 2002). In the
object-oriented case there are several alternatives to
consider such as whether to introduce a parameter
object, or whether to get the required information
through an object which has already been passed to
the method. The proposed mechanics of changes
in the code include the following steps: declare a
new method with the additional parameter, copy the
method body from the old one to the new one, com-
pile the code, call the new method from the body of
the old one, compile and test. Next, modify each call
site of the old method to call the new one, compile
and test it for each case, remove the old method, and
finally compile and test.

In our case, we suggest the following steps:

• Check for alternatives, and avoid an excessively
long parameter list

• Check for preconditions

• Determine the concrete type of the transformation
rule and process

• Modify the call sites: add a new argument

• Check each call site by hand

Unlike code refactoring, the operations listed
above are automated at the model level, except for the
first and the last one.

Alternatives In a rare case an alternative may be to
get the required information from an existing parame-
ter either by concatenation of an appropriate string or
another parameter, or by using the stringize operator.
One possibility is to get an enumerator name from an
existing string parameter, or to get the string form of a
case label. Some preprocessor implementations sup-
port variadic macros (variable parameter list), which
in some cases make it unnecessary to add a new pa-
rameter. However a good reason for not making use
of this refactoring is the long parameter list bad smell,
which can be avoided by restructuring macros.

Preconditions The applicability of the refactoring
depends on the way the macros are defined. There
are four types of macros based on the place of their
definition:

• Standard macros - defined by the preprocessor
standard, e.g. FILE , LINE

• Environment macros - defined by the compiler en-
vironment, e.g. GCC VER for GCC or MSC VER
for Microsoft Visual Studio.

• Command line macros - defined as command line
parameters, applied to the actual source file only.

• Ordinal macros in the source code

In the metamodel the type of a macro is repre-
sented by the isExternal attribute. The value is true in
the case of standard macros, environment macros, and
command line defined macros. Naturally, refactorings
may only be applied to the non-external definitions.

The new parameter name has to fulfill some con-
ditions. There should not exist a parameter with the
same given name. The replacement text of the macro
must be checked for the new parameter name to see
whether a preprocessing token already exists with the
same text. These conditions can be checked locally.
(Note that there is no need to check whether the new
name conflicts with an already defined macro name.)

Concrete type of transformation A general refac-
toring in most cases can be formalized in many ways
depending on the specific needs. Similarly, a graph
transformation can be presented as a transformation
rule schema and a set of concrete transformations.
The add parameter refactoring includes three types of
transformations: function-like, object-like and vari-
adic macros. Due to space limitations only the first
one is elaborated here. The schematic graph transfor-
mation rule for the add parameter to a function-like
macro is presented in two figures. Figure 2 contains
the left hand side of the transformation and Figure 3
contains the right hand side after the refactoring. The
macro definition part is shown on the left hand side of
both figures, while on the right hand side of each fig-
ure there is an example call of the macro. In Figure 3
the new nodes are shown in grey and the new edges
are depicted in bold. The schematic program code
corresponding to both sides of the transformation is
the following for the left hand side:

#define MACRO(P1, ... Pn) \
R1 ... R_P1 ... R_Pn ... Rm

...
MACRO (A1, ... An)

and for the right hand side it is:

refersToDefinition
:Filename = example

:FuncDefinename = MACRO
R-P1 :DirectiveIdname =

:Idname = MACRO A1:Idname =
:FuncDefineRef

refersToId :Textname = (refersToParameter(1)
P1 :Parametername = hasParameter(1)

R1 :DirectiveTextname = :Textname = ,:ArgumentconsistsOfhasArgument(1)
Pn :Parametername = Rm :DirectiveTextname = R-Pn :DirectiveIdname =

hasParameter(n)
refersToParameter(n)

An:Idname = :Textname =):ArgumenthasArgument(n) consistsOf
Figure 2: Add parameter transformation - left hand side of the rule

:FuncDefinename = MACRO
R-P1 :DirectiveIdname =

refersToParameter(1)
P1 :Parametername = hasParameter(1)

R1 :DirectiveTextname =
Pn :Parametername = Rm :DirectiveTextname = R-Pn :DirectiveIdname =

hasParameter(n)
refersToParameter(n)

Pn+1 :Parametername = hasParameter(n+1) refersToDefinition
:Filename = example

:Idname = MACRO A1:Idname =
:FuncDefineRef

refersToId :Textname = (:Textname = ,:ArgumentconsistsOfhasArgument(1)
An:Idname = :Textname = ,:ArgumenthasArgument(n) consistsOf An+1:Idname = :Textname =):ArgumenthasArgument(n+1)

consistsOf
Figure 3: Add parameter transformation - right hand side of the rule (result)

#define MACRO(P1, ... Pn, Pn+1) \
R1 ... R_P1 ... R_Pn ... Rm

...
MACRO (A1, ... An, An+1)

The new parameter is included in the definition
as the last parameter in the ordered association. Note
that the new parameter is not automatically used in the
macro body. Similar to object-oriented refactoring,
the use of the new parameter has to be coded by hand.
At the model level just one new node (Parameter) and
one new edge are added (hasParameter).

Call sites In addition to the new parameter, each
call site of the macro definition must be changed. Ac-
cording to the metamodel, each DefineRef object cre-
ates a link between macro definitions and macro calls.
The refersToId relation indicates the position of the
call, while the refersToDefinition relation indicates
the called definition. With a type A transformation
the macro definition usually has DefineRef objects,
which are traversed. For each of them the pointed
macro call is identified and at the end of the argument
list a new placeholder argument is inserted. Finding
an appropriate argument is easier than that for a typed
language: in the preprocessor language everything is
text, so any token is a valid argument. However it
is recommended that an argument be inserted with a
name which refers to the actual refactoring. The new
argument is linked to the FuncDefineRef object via a

new Argument object. For each call site three nodes
and three edges are added to the model.

Implementation The method has been imple-
mented using an experimental tool setup including
the Columbus reverse engineering framework and the
USE model transformation tool. Experiments were
performed on small but real life programs. Details
are omitted from here due to space constraints. First
results show the limitations of the approach in trans-
forming large size programs.

3 Related work
In the previous sections we mentioned some re-

search papers on refactoring, along with some of the
available tools. The graph transformation approach to
formal refactoring is also a well-known method. A
remarkable summary of this topic can be found in the
paper by Mens et al. (Mens and Tourwé, 2004). The
graph representation of a program plays an essential
role in the formalism. The two key issues here are pre-
conditions and behaviour preservation. Bottoni et al.
(Bottoni et al., 2004) use a similar formalism, the fo-
cus being on the coordination of a change in different
model views of the code using distributed graph trans-
formations. Most contributions try to be language in-
dependent, but for a refactoring to be applicable in
case of real-life programs, language dependent details

must be elaborated on. Although researchers have
made good progress in this area, those in the industry
sector use more or less the same solutions as before:
language specific refactorings are implemented sep-
arately. Fanta and Rajlich (Fanta and Rajlich, 1998)
report that transformations are surprisingly complex
and hard to implement. Two reasons they give for
this are the nature of object-oriented principles and
the language specific issues. In our approach, instead
of using traditional graph transformation approaches
we investigate language specific issues; we omitted
NACs and used OCL to check conditions instead.

In the rest of this section we will concentrate on
the preprocessor side. People working on C or C++
analyzers are confronted by the problem of preproces-
sor directives. The usual approach is to work on pre-
processed code, or to recognize (partially handle) di-
rectives (Understand for C++ Homepage, 2008). Sev-
eral preprocessor-related refactorings can be found in
(Garrido and Johnson, 2002), which have no connec-
tion with the C language itself but with the prepro-
cessing directives. The key aspects of such refactor-
ings were presented at a conceptual level only, using
source code examples. Dealing with directives is eas-
ier, when preprocessor constructs form complete syn-
tactical units. Vittek (Vittek, 2003) introduced a tool
which implements some preprocessor-safe refactor-
ings on C++, while he acknowledged that there are
unhandled cases caused by complex code construc-
tions of the two languages. What makes this paper
special are three points. The first is that directives
are the main subject of refactoring at the model level.
Secondly, the graph transformation approach is sup-
ported by OCL. Thirdly, we have tried to narrow the
gap between academic research and industry by work-
ing on reverse-engineered program models.

4 Conclusions

Each modification of an existing program holds
the possibility of making errors. So does refactoring,
the technique for improving the quality of existing
program code. In this paper a method was introduced
to carry out program refactoring at the model level
to assure the safety of modifications. The subjects
of the refactorings were the preprocessor directives,
which are usually omitted from C/C++ program anal-
ysis, however ignoring directives may lead to errors
in analysis and transformation. As a demonstration of
the approach, the add parameter refactoring for pre-
processor macros was investigated at schematic and
concrete level. Experiments were performed on re-
verse engineered models derived from several small,
but real-life C/C++ programs. Future plans include

the performance improvement by separating the de-
sign and validation and the execution of refactorings.

Acknowledgements This work was supported, in
part, by grants no. RET-07/2005, OTKA K-73688
and TECH 08-A2/2-2008-0089.

REFERENCES
Bottoni, P., Parisi-Presicce, F., and Taentzer, G. (2004).

Specifying integrated refactoring with distributed
graph transformations. LNCS, 3062:220–235.

Fanta, R. and Rajlich, V. (1998). Reengineering object-
oriented code. In Proceedings of ICSM 2008, page
238, Washington, DC, USA. IEEE Computer Society.

Ferenc, R., Beszédes, Á., Tarkiainen, M., and Gyimóthy,
T. (2002). Columbus - reverse engineering tool and
schema for C++. In ICSM 2002, pages 172–181, Mon-
treal, Canada. IEEE Computer Society.

Fowler, M. (2002). Refactoring Improving the Design of
Existing Code. Addison-Wesley.

Garrido, A. and Johnson, R. (2002). Challenges of refac-
toring C programs. In Proceedings of IWPSE 2002,
pages 6–14. ACM.

Gogolla, M. (2000). Graph Transformations on the UML
Metamodel. In GVMT’2000, pages 359–371. Carleton
Scientific, Waterloo, Ontario, Canada.

Gogolla, M., Büttner, F., and Richters, M. (2007). USE: A
UML-based specification environment for validating
UML and OCL. Sci. Comp. Program., 69(1-3):27–34.

jFactor (2009). Homepage of jFactor.
http://old.instantiations.com/jfactor/ .

Mens, T. and Tourwé, T. (2004). A survey of software refac-
toring. IEEE Transactions on Software Engineering,
30(2):126–139.

Mens, T., Van Eetvelde, N., Demeyer, S., and Janssens, D.
(2005). Formalizing refactorings with graph transfor-
mations. JSME: Research and Practice, 17:247–276.

Opdyke, W. F. (1992). Refactoring Object-Oriented Frame-
works. PhD thesis, Urbana-Champaign, IL, USA.

Refactoring Catalog (2009). Refactoring catalog.
http://www.refactoring.com/catalog/ .

Roberts, D., Brant, J., and Johnson, R. (1997). A refac-
toring tool for Smalltalk. Theor. Pract. Object Syst.,
3(4):253–263.

Slickedit Homepage (2009). Homepage of Slickedit.
http://www.slickedit.com/ .

Taentzer, G., Müller, D., and Mens, T. (2007). Specifying
domain-specific refactorings for AndroMDA based on
graph transformation. In AGTIVE, pages 104–119.

Understand for C++ Homepage (2008). Understand for
C++ Homepage. http://www.scitools.com .

Vidács, L., Beszédes, A., and Ferenc, R. (2004). Columbus
Schema for C/C++ Preprocessing. In Proceedings of
CSMR 2004, pages 75–84. IEEE Computer Society.

Vidács, L., Gogolla, M., and Ferenc, R. (2006). From
C++ Refactorings to Graph Transformations. In Proc.
ICGT’2006 Workshop SETRA’2006, pages 127–141.

Vittek, M. (2003). Refactoring browser with preprocessor.
In Proceedings of CSMR 2003, pages 101–110, Ben-
evento, Italy.

