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Abstract—This paper investigates a simple SIVS
(susceptible–infected–vaccinated–susceptible) disease
transmission model with immigration of susceptible and
vaccinated individuals. We show global stability results
for the model, and give an explicit condition for the
existence of backward bifurcation and multiple endemic
equilibria. We examine in detail how the structure of the
bifurcation diagram depends on the immigration.
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I. INTRODUCTION

The basic reproduction number R0 is a central
quantity in epidemiology as it determines the average
number of secondary infections caused by a typical
infected individual introduced into a wholly susceptible
population. In epidemic models describing the spread of
infectious diseases, the reproduction number works as
a threshold quantity for the stability of the disease-free
equilibrium. The usual situation is that for R0 < 1 the
DFE is the only equilibrium and it is asymptotically
stable, but it loses its stability as R0 increases through
1, where a stable endemic equilibrium emerges, which
depends continuously on R0. Such a transition of
stability between the disease-free equilibrium and the
endemic equilibrium is called forward bifurcation.
However, it is possible to have a very different situation
at R0 = 1, as there might exist positive equilibria
also for values of R0 less than 1. In this case we say
that the model undergoes a backward bifurcation at
R0 = 1, when for values of R0 in an interval to the
left of 1, multiple positive equilibria coexist, typically
one unstable and one stable. The behavior in the change
of stability is of particular interest from the perspective
of controlling the epidemic: considering R0 > 1, in
order to eradicate the disease it is sufficient to decrease
R0 to 1 if there is a forward bifurcation at R0 = 1,

nevertheless it is necessary to bring R0 well below 1 to
eliminate the infection in case of a backward bifurcation.
This also implies that the qualitative behavior of a model
with backward bifurcation is more complicated than
that of a model which undergoes forward bifurcation at
R0 = 1, since in the latter case the infection usually
does not persist if R0 < 1, although with backward
bifurcation the presence of a stable endemic equilibrium
for R0 < 1 implies that, even for values of R0 less
than 1, the epidemic can sustain itself if enough infected
individuals are present.

Backward bifurcation has been observed in several
studies in the recent literature. The well known works
[4], [6], [7] consider multi-group epidemic models
with asymmetry between groups or multiple interaction
mechanisms. Some simple epidemic models of disease
transmission in a single population with vaccination of
susceptible individuals are presented and analyzed in [1],
[2], [8], [9]. A basic model can be described by the
following system of ordinary differential equations:

S′(t) =Λ(N(t))− β(N(t))S(t)I(t)

− (µ+ φ)S(t) + γI(t) + θV (t),

I ′(t) =β(N(t))S(t)I(t) + σβ(N(t))V (t)I(t)

− (µ+ γ)I(t),

V ′(t) =φS(t)− σβ(N(t))V (t)I(t)

− (µ+ θ)V (t),

(1)

where S(t), I(t), V (t) and N(t) denote the number
of susceptible, infected, vaccinated individuals and the
total population, respectively, at time t. Λ represents
the birth function into the susceptible class and µ is the
natural death rate in each class. Disease transmission
is modeled by the infection term β(N)SI , φ and γ
stand for the vaccination rate of susceptible individuals



and the recovery rate of infected individuals. It is
assumed that vaccination loses effect at rate θ, moreover
0 ≤ σ ≤ 1 is introduced to model the phenomenon that
vaccination may reduce but not completely eliminate
susceptibility to infection. With certain conditions on
the birth function Λ, system (1) can be reduced to a two-
dimensional system, of which a complete qualitative
analysis including a condition for the existence of
backward bifurcation has been derived in [1].

The aim of this paper is to describe and analyze
an epidemic model in which demographic effects,
such as immigration of non-infected individuals are
included into a single population. The model we study
generalizes the above presented vaccination model (1)
by incorporating the possibility of immigration, and we
investigate how immigration changes the bifurcation
behavior.

The paper is organized as follows. A three-
dimensional ODE model is given in section II, which
we reduce to two dimensions by means of the theory of
asymptotically autonomous systems. Some fundamental
properties of the two-dimensional system –as positivity
and boundedness of solutions and stability of the disease-
free equilibrium– are discussed in section III, then sec-
tion IV concerns with the existence of endemic equilibria
and conditions for the forward / backward bifurcation.
We obtain our results by algebraic means, without using
center manifold theory and normal forms. In section V a
complete qualitative analysis has been carried out for the
two-dimensional system, furthermore we analyze how
immigration deforms the bifurcation curve in section VI.
Finally, in section VII we return to the original three-
dimensional model, then discuss our findings in the last
section.

II. SIVS MODEL WITH IMMIGRATION

A general vaccination model with immigration of non-
infected individuals can be described by the system

S′(t) =Λ(N(t))− β(N(t))S(t)I(t)

− (µ+ φ)S(t) + γI(t) + θV (t) + η,

I ′(t) =β(N(t))S(t)I(t) + σβ(N(t))V (t)I(t)

− (µ+ γ)I(t),

V ′(t) =φS(t)− σβ(N(t))V (t)I(t)

− (µ+ θ)V (t) + ω,

(2)

where we assume that immigration of susceptible and
vaccinated individuals occurs with constant rate η and

ω, respectively. The other parameters of the model have
been described in section I, and for the total population
N(t) we obtain

N ′(t) = Λ(N(t))− µN(t) + η + ω. (3)

The proof of the following proposition is obvious and
thus omitted.

Proposition II.1. If for the birth function Λ it holds that
Λ(0) = 0, Λ′(0) > µ and there exists an x∗ > 0 such
that Λ′(x∗) < µ, moreover Λ′(x) > 0 and Λ′′(x) < 0
for all x > 0, then for any η, ω ≥ 0 there exists a unique
positive solution of Λ(x) = µx− η − ω.

We define the population carrying capacity K =
K(Λ, µ, η, ω) as the unique solution of Λ(x) = µx −
η − ω. Note that from Λ(K) = µK − η − ω it follows
that µK − η − ω > 0. We can rewrite equations
(2)2 and (2)3 in terms of N(t), I(t) and V (t) using
S(t) = N(t) − I(t) − V (t) and consider this system
as a system of non-autonomous differential equations
with non-autonomous term N(t), which is governed
by system (3). Then, by limt�∞N(t) = K we find
that system (2) is asymptotically autonomous with the
limiting system

I ′(t) =β(K − I(t)− (1− σ)V (t))I(t)

− (µ+ γ)I(t),

V ′(t) =φ(K − I(t))− σβV (t)I(t)

− (µ+ θ + φ)V (t) + ω,

(4)

where β = β(K). In what follows we focus on the
mathematical analysis of system (4), then we use the
theory of asymptotically autonomous systems [10], [11],
[12] to obtain information on the long-term behavior of
solutions of (2).

III. FUNDAMENTAL PROPERTIES OF THE SYSTEM

The existence and uniqueness of solutions of system
(4) follows from fundamental results for ODEs. Since
K was defined as the carrying capacity of the popu-
lation, it is biologically meaningful to assume that for
the initial conditions of system (4) it is satisfied that
0 ≤ I(0), V (0), I(0) + V (0) ≤ K.

Proposition III.1. If 0 ≤ I(0), V (0), I(0) + V (0) ≤ K,
then 0 ≤ I(t), V (t), I(t) + V (t) ≤ K is satisfied for all
t > 0.

Proof: If I(t) = 0 then I ′(t) = 0, which yields that
for nonnegative initial conditions I never goes negative.



If V (t) = 0 when 0 ≤ I(t) ≤ K, then V ′(t) ≥ ω ≥ 0,
thus solutions never cross the line V = 0 from the inside
of the region R : 0 ≤ I, V, I +V ≤ K. If I(t) +V (t) =
K when I(t), V (t) ≥ 0, then summing (4)1 and (4)2
gives

I ′(t) + V ′(t) = −µK − γI(t)− θV (t) + ω,

which is negative since ω − µK is non-positive, thus
I(t) + V (t) > K is impossible.

The disease-free equilibrium of system (4) can be
obtained as

V̄ =
φK + ω

µ+ θ + φ
.

In the initial stage of the epidemic, we can assume that
system (4) is near the equilibrium (0, V̄ ) and approxi-
mate the equation of class I with the linear equation

y′(t) = (β(K − (1− σ)V̄ )− (µ+ γ))y(t), (5)

where y : R � R. The term β(K − (1− σ)V̄ ) describes
the production of new infections, and µ + γ is the
transition term describing changes in state, hence with
the formula for the disease-free equilibrium V̄ we can
define the basic reproduction number as

R0 =
β(K − (1− σ)V̄ )

µ+ γ

=
β

µ+ γ

(
K(µ+ θ + σφ)

µ+ θ + φ
− (1− σ)ω

µ+ θ + φ

)
.

(6)

The following proposition shows that R0 works as a
threshold quantity for the stability of the disease-free
equilibrium of system (4).

Proposition III.2. The disease-free equilibrium of sys-
tem (4) is asymptotically stable if R0 < 1 and unstable
if R0 > 1.

Proof: The stability of the zero steady-state of
system (5) is determined by the sign of β(K − (1 −
σ)V̄ )−(µ+γ), which coincides with the sign of R0−1.
This means that the zero solution of (5) is asymptotically
stable if R0 < 1 and unstable if R0 > 1. This statement
extends to the nonlinear system (4) by the principle of
linearized stability.

IV. ENDEMIC EQUILIBRIUM

The problem of finding equilibrium (Î , V̂ ) for system
(4) yields the two dimensional system

0 = β(K − Î − (1− σ)V̂ )Î − (µ+ γ)Î ,

0 = φ(K − Î)− σβV̂ Î − (µ+ θ + φ)V̂ + ω.
(7)

The existence of a unique disease-free equilibrium has
been proved, so now we focus on finding endemic
equilibria (Î , V̂ ) with Î > 0. From (7)1 we obtain the
formula

V̂ =
β(K − Î)− (µ+ γ)

β(1− σ)
, (8)

then by substituting V̂ into (7)2 it follows from straight-
forward computations that

AÎ2 +BÎ + C = 0 (9)

should hold for Î , where

A =σβ,

B =(µ+ θ + σφ) + σ(µ+ γ)− σβK,

C =
(µ+ γ)(µ+ θ + φ)

β

− (µ+ θ + σφ)K + (1− σ)ω.

(10)

We note that βC = (1− R0)(γ+µ)(µ+φ+ θ) and we
characterize the number of solutions of the equilibrium
condition (9).

Proposition IV.1. If R0 > 1 then there exists a unique
positive equilibrium Î = −B+

√
B2−4AC
2A .

Proof: If C < 0, or equivalently, R0 > 1, then the
equilibrium condition (9) has a unique positive solution,
which can be obtained as Î = −B+

√
B2−4AC
2A .

At R0 = 1 it holds that A > 0 and C = 0, so
there exists a unique nonzero solution Î = −B/A of
(9), which is positive (and thus, biologically relevant) if
and only if B < 0. Let us now assume that B is negative
at R0 = 1, which also implies that B2−4AC = B2 > 0.
Then there is a positive root of the equilibrium condition
at R0 = 1, and due to the continuous dependence of the
coefficients A, B and C on β there must be an interval
to the left of R0 = 1 where B < 0 and B2 − 4AC > 0
still hold. Since C > 0 whenever R0 < 1, it follows that
on this interval there exist exactly two positive solutions
of (9) and thus, two endemic equilibria of system (4).
We denote these equilibria by

Ĭ1 =
−B −

√
B2 − 4AC

2A
,

Ĭ2 =
−B +

√
B2 − 4AC

2A
,

and with the aid of formula (8) we can derive the V̂ -
components to get the equilibria (Ĭ1, V̆1) and (Ĭ2, V̆2).
With other words, if B < 0 when R0 = 1 then system
(4) has a backward bifurcation at R0 = 1 since besides



the zero equilibrium and the positive equilibrium
Ĭ2 = −B+

√
B2−4AC
2A , which also exist for R0 > 1,

another positive equilibrium emerges when R0 passing
through 1 from the right to the left.

Theorem IV.2. If the condition

(1− σ)ω

K
>

(θ + µ+ σφ)2 − σ(µ+ γ)(1− σ)φ

(θ + µ+ σφ) + σ(µ+ γ)
(11)

holds then there is a backward bifurcation at R0 = 1.

Proof: The condition for the backward bifurcation
is that B < 0 when β satisfies R0 = 1. This can be
obtained as an explicit criterion of the parameters: as
B < 0 yields

σβK > (µ+ θ + σφ) + σ(µ+ γ),

moreover from C = 0 we derive

βK =
(µ+ γ)(µ+ θ + φ)

(θ + µ+ σφ)− (1−σ)ω
K

,

we get

σ(µ+ γ)(µ+ θ + φ)

(θ + µ+ σφ)− (1−σ)ω
K

>(µ+ θ + σφ) + σ(µ+ γ),

σ(µ+ γ)(µ+ θ + φ)

(θ + µ+ σφ) + σ(µ+ γ)
>(θ + µ+ σφ)− (1− σ)ω

K
,

(1− σ)ω

K
>(θ + µ+ σφ),

− σ(µ+ γ)(µ+ θ + φ)

(θ + µ+ σφ) + σ(µ+ γ)
,

(1− σ)ω

K
>

(θ + µ+ σφ)2

(θ + µ+ σφ) + σ(µ+ γ)
,

− σ(µ+ γ)(1− σ)φ

(θ + µ+ σφ) + σ(µ+ γ)
,

where we used that µK − ω > 0.

Theorem IV.3. If condition (11) does not hold, then sys-
tem (4) undergoes a forward bifurcation at R0 = 1. In
this case there is no endemic equilibrium for R0 ∈ [0, 1].

Proof: We proceed similarly as in the proof of
Theorem IV.2 to find that if

(1− σ)ω

K
≤ (θ + µ+ σφ)2 − σ(µ+ γ)(1− σ)φ

(θ + µ+ σφ) + σ(µ+ γ)
,

then B ≥ 0 when C = 0, or equivalently, when β is set
to satisfy R0 = 1. For R0 < 1 it holds that A,C > 0,
moreover B is also positive because B is decreasing in
β, these imply that there is no endemic equilibrium on
R0 ∈ [0, 1). At R0 = 1 the equilibrium condition (9)

becomes AÎ2 +BÎ = 0, and A > 0, B ≥ 0 give that (9)
has only non-positive solutions. However, we know from
Proposition IV.1 that there is a positive solution of (9) for
R0 > 1, thus we conclude that if the condition (11) does
not hold then system (4) undergoes a forward bifurcation
at R0 = 1, where a single endemic equilibrium emerges
when R0 exceeds 1.

If (11) is satisfied, then there is an interval to the left
of R0 = 1 where there exist positive equilibria. In what
follows we determine the left endpoint of this interval.
Let us assume that there is a backward bifurcation at
R0 = 1. We define

U = (θ + µ+ σφ)− (1− σ)ω

K
,

x =
(1− σ)ω

K
+ σ(µ+ γ),

W = −x+ σ
(γ + µ)(µ+ φ+ θ)

U
.

(12)

Note that x and U are positive since µK − ω > 0 by
assumption. The condition for the backward bifurcation
can be obtained as

W > U, (13)

which also yields the positivity of W . We let

Rc =
x− U + 2

√
UW

(µ+ γ)σ
· U

µ+ θ + φ
(14)

and claim that it defines the critical value of the repro-
duction number for which there exist endemic equilibria
on the interval [Rc, 1].

Proposition IV.4. Let us assume that there is a backward
bifurcation at R0 = 1. With Rc defined in (14) only the
disease-free equilibrium exists if R0 < Rc, a positive
equilibrium emerges at R0 = Rc, and on (Rc, 1) there
exist two distinct endemic equilibria. There also exists a
positive equilibrium at R0 = 1.

Proof: The last statement follows from the fact that
at R0 = 1 (C = 0) the single non-zero solution Î = −B

A
of (9) of is positive since B < 0. The necessary and
sufficient conditions B < 0 and B2 − 4AC > 0 for the
existence of two positive distinct equilibria hold on an
interval to the left of R0 = 1. B = 0 automatically
yields B2 − 4AC < 0 if R0 < 1, hence it is clear that
the condition B2 − 4AC = 0 determines the value of
R0 for which the positive equilibria disappear. First, we
derive the critical value βc of the transmission rate from
this equation, then substitute β = βc into the formula
of R0 (6) to give the critical value of the reproduction



number. Using notations U, x and W introduced in (12),
we reformulate B as B = U + x − σβK and C as
C = (µ+γ)(µ+θ+φ)

β −UK. The condition B2−4AC = 0
becomes

U2 + 2U(x− βKσ) + (x− βKσ)2

− 4σ(µ+ γ)(µ+ θ + φ) + 4σβKU

=U2 − 2U(x− βKσ) + (x− βKσ)2 + 4Ux

− 4σ(µ+ γ)(µ+ θ + φ)

=U2 − 2U(x− βKσ) + (x− βKσ)2 − 4UW = 0,

so we obtain the roots

(x− βKσ)1,2 =
2U ±

√
4U2 − 4U2 + 16UW

2

= U ± 2
√
UW.

For the positive root (x−βKσ)2 we get B = U + (x−
βKσ)2 > 0, but we require B < 0 thus we derive from
x− βKσ = U − 2

√
UW that

βc =
x− U + 2

√
UW

Kσ
. (15)

Substituting βc into (6) gives

R0(βc) =
βc

µ+ γ

(
K(µ+ θ + σφ)

µ+ θ + φ
− (1− σ)ω

µ+ θ + φ

)
=
x− U + 2

√
UW

(µ+ γ)σ
· U

µ+ θ + φ
,

which is indeed equal to Rc defined in (14).

The condition R0 = 1 reformulates as σβK = W+x,
so with the aid of (13) and the computations

0 <
(√

U −
√
W
)2
,

2
√
UW < U +W,

x− U + 2
√
UW < W + x,

it is easy to verify that Rc < 1. The positivity of βc,
and hence, the positivity of Rc follows from the fact
that at β = βc it should hold that B < 0, which is only
possible if β > 0.

We wish to draw the graph of Î as a function of β to
obtain the bifurcation curve. By implicitly differentiating
the equilibrium condition (9) with respect to β we get

(2AÎ +B)
dÎ

dβ
=−

(
dA

dβ
Î2 +

dB

dβ
Î +

dC

dβ

)
,

(2AÎ +B)
dÎ

dβ
=σÎ(K − Î)

+
(γ + µ)(µ+ φ+ θ)

β2
.

The positivity of the right hand side follows from
K ≥ Î , which implies that the term 2AÎ + B has
the same sign as dÎ

dβ . If R0 > 1 then there exists the

equilibrium Ĭ2 = −B+
√
B2−4AC
2A , and we obtain that

2AĬ2 +B > 0 hence for R0 > 1 the curve has positive
slope. If there is a backward bifurcation at R0 = 1,
then on (Rc, 1) there exists two positive equilibria Ĭ2
and Ĭ1 = −B−

√
B2−4AC
2A with Ĭ2 > Ĭ1, and since it

holds that 2AĬ1 + B < 0, we conclude that on (Rc, 1)
the bifurcation curve has negative slope for the smaller
endemic equilibrium and positive slope for the larger
one. As a matter of fact, the unstable equilibrium
is a saddle point, and thus the system experiences a
saddle-node bifurcation.

V. STABILITY AND GLOBAL BEHAVIOR

The stability of the disease-free equilibrium has been
examined in section III, so now we derive local stability
analysis of endemic equilibria. The Jacobian of the
linearization of system (4) at (Î , V̂ ) gives

J =

(
−βÎ −(1− σ)βÎ

−(φ+ σβV̂ ) −(µ+ θ + φ+ σβÎ)

)
,

where we used the identity β(K− Î−(1−σ)V̂ ) = µ+γ
from (7), hence the characteristic equation has the form

a2λ
2 + a1λ+ a0 = 0

with
a2 = 1,

a1 = βÎ + (µ+ θ + φ+ σβÎ),

a0 = βÎ(µ+ θ + φ+ σβÎ)− (1− σ)βÎ(φ+ σβV̂ ).

Theorem V.1. The endemic equilibrium (Î , V̂ ) for which
Î = Ĭ2 is locally asymptotically stable where it exists:
on R0 ∈ (1,∞), and also on R0 ∈ (Rc, 1] in case
there is a backward bifurcation at R0 = 1. The endemic
equilibrium (Î , V̂ ) for which Î = Ĭ1 is unstable where
it exists: on R0 ∈ (Rc, 1) in case there is a backward
bifurcation at R0 = 1.

Proof: The Routh-Hurwitz stability criterion (for a
reference see, for example, [5]) states that for all the
solutions of the characteristic equation to have negative
real parts, all coefficients must have the same sign. a2
and a1 are positive, hence the sign of a0 determines the
stability. For that it holds that

a0 =βÎ(µ+ θ + φ+ σβÎ)− (1− σ)βÎ(φ+ σβV̂ )

=βÎ(µ+ θ + σφ+ 2σβÎ − σβ(Î + (1− σ)V̂ ),
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Fig. 1: Solutions of system (4) in case there is a backward bifurcation at R0 = 1 and Rc < R0 < 1. We let
Λ(x) = x

c+dx and choose parameter values as µ = 0.1, γ = 12, θ = 0.5, σ = 0.2, φ = 16, c = 1, d = 1.8,
β = 0.33, η = 5, ω = 5, which makes K = 153.6 and R0 = 0.95. Endemic equilibria (Ĭ1, V̆1) = (8.6, 135.4)
and (Ĭ2, V̆2) = (50.7, 82.8) are represented as (a) red-dashed and blue-dashed lines, (b) red and blue points,
respectively. On (b) the green point denotes the unique disease-free equilibrium (0, 148.4). Solutions with initial
values (I(0), V (0)) = (9, 120) – red curve, (18, 130) – blue curve and (100, 50) – black curve converge to (Ĭ2, V̆2),
however for (I(0), V (0)) = (5, 140) the curve of I – here, green – approaches the DFE.

so using −β(Î + (1− σ)V̂ ) = µ+ γ − βK we derive

a0 =βÎ(µ+ θ + σφ+ 2σβÎ + σ(µ+ γ − βK))

= βÎ(2AÎ +B).

For R0 > 1 the only endemic equilibrium is Ĭ2 =
−B+

√
B2−4AC
2A , for which 2AĬ2 + B > 0 holds and

thus a0 > 0 yields its stability. If there is a backward
bifurcation at R0 = 1, then endemic equilibria exists
on (Rc, 1] as well; here Ĭ2 is again stable for the same
reason as above, however Ĭ1 = −B−

√
B2−4AC
2A is unstable

since a0 = βĬ1(AĬ1 +B) < 0.

With the next theorem we describe the global behavior
of solutions of system (4).

Theorem V.2. If there exists no endemic equilibrium,
that is, if R0 < 1 in case of a forward bifurcation and
if R0 < Rc in case of a backward bifurcation, then
every solution converges to the disease-free equilibrium.
For R0 > 1, the unique endemic equilibrium is globally
attracting. If there is a backward bifurcation at R0 = 1
then on (Rc, 1) there is no globally attracting equilib-
rium, though every solution approaches an equilibrium.

Proof: We first show that every solution of system
(4) converges to an equilibrium. In section III we have

proved that the region R : 0 ≤ I, V, I + V ≤ K
is positively invariant for the solutions of system (4).
We take the C1 function ϕ(I, V ) = 1/I , which does
not change sign on R to show that system (4) has no
periodic solutions lying entirely within the region R. The
computation

∂

∂I

β(K − I − (1− σ)V )I − (µ+ γ)I

I

+
∂

∂V

φ(K − I)− σβV I − (µ+ θ + φ)V + ω

I

=− β − σβ − µ+ θ + φ

I
< 0

yields the result by means of the Dulac criterion [3].
We use the well known Poincaré-Bendixson theorem
to conclude that every solution of (4) approaches an
equilibrium.

The first statement of the theorem immediately follows
from the fact that every solution of (4) approaches an
equilibrium. If R0 > 1, then besides the disease-free
equilibrium, which is unstable according to Theorem V.1,
there exists a single locally stable endemic equilibrium
Ĭ2. We show that no solution can converge to the disease-
free equilibrium.
If limt�∞ I(t) = 0 when I(0) > 0, then it follows from
(4)2 that limt�∞ V (t) = φK+ω

µ+θ+φ . Then for every ε >



0 there exists a t∗(ε) such that I(t) < ε and V (t) <
φK+ω
µ+θ+φ + ε for t > t∗. Using (4)1 we get

I ′(t) ≥β
(
K − ε− (1− σ)

(
φK + ω

µ+ θ + φ
+ ε

))
I(t)

− (µ+ γ)I(t)

=β

(
K(µ+ θ + σφ)

µ+ θ + φ
− (1− σ)ω

µ+ θ + φ

)
I(t)

+ (−2ε+ σε− (µ+ γ)) I(t)

(16)

for t > t∗, moreover R0 =
β

µ+γ

(
K(µ+θ+σφ)
µ+θ+φ − (1−σ)ω

µ+θ+φ

)
> 1 implies that there

exists an ε1 small enough such that

β

(
K(µ+ θ + σφ)

µ+ θ + φ
− (1− σ)ω

µ+ θ + φ

)
+ (−2ε1 + σε1 − (µ+ γ)) > 0.

With the choice of ε = ε1 the right hand side of (16)
is linear in I(t) with positive multiplier, which implies
that I(t) increases for t∗(ε1) > t and thus, cannot
converge to 0. We conclude that no solution of (4) with
positive initial conditions converges to the disease-free
equilibrium, so the endemic equilibrium indeed attracts
every solution.

If there is a backward bifurcation at R0 = 1 then
besides the disease-free equilibrium there exist two
endemic equilibra on (Rc, 1), one locally stable and
one unstable (see again Theorem V.1). As the DFE is
locally stable when R0 < 1, we experience bistability
on (Rc, 1), which implies the third statement of the
theorem.

We present Figure 1 to illustrate the statements of this
section. The values of the model parameters were set to
ensure that system (4) undergoes a backward bifurcation
at R0 = 1, moreover we chose the value of β such
that there exist two endemic equilibria. The plots of the
figure support our results about the long-term behavior
of solutions and the local stability of equilibria; solutions
starting near the unstable saddle point (Ĭ1, V̆1) approach
another equilibrium, however (Ĭ2, V̆2) seems to attract
every solution with I(0) ≥ Ĭ1 for the particular set of
parameter values indicated in the caption of the figure.

VI. THE INFLUENCE OF IMMIGRATION ON THE

BACKWARD BIFURCATION

In this section, we would like to investigate the effect
of parameters η and ω on the bifurcation curve. In section

IV we gave the condition (11)

(1− σ)ω

K
>

(θ + µ+ σφ)2 − σ(µ+ γ)(1− σ)φ

(θ + µ+ σφ) + σ(µ+ γ)

for the existence of backward bifurcation at R0 = 1; in
what follows we analyze this inequality in terms of the
immigration parameters. We keep in mind that if there
is no backward bifurcation at R0 = 1 then there is
forward bifurcation, i.e., there always exists an endemic
equilibrium for R0 > 1.

First we present results about how the existence of
backward bifurcation depends on η and ω. The non-
negativity of ω and K immediately yields the following
proposition.

Proposition VI.1. If (θ+µ+σφ)2 < σ(µ+γ)(1−σ)φ,
then for all η and ω there is a backward bifurcation at
R0 = 1.

The special case of ω = 0 automatically makes the
left hand side of inequality (11) zero, hence in this case
there is a backward bifurcation if and only if the right
hand side is negative; note that the right hand side is
independent of η.

Proposition VI.2. If ω = 0, then there is a backward
bifurcation at R0 = 1 if and only if (θ + µ + σφ)2 <
σ(µ + γ)(1 − σ)φ. This also means that in this case η
has absolutely no effect on the existence of a backward
bifurcation.

Figure 2 shows how the bifurcation curve deforms as
we increase (a) ω and (b) η. Parameter values µ = 0.1,
γ = 12, θ = 0.5, σ = 0.2, φ = 16 were chosen so that
the condition (θ + µ+ σφ)2 < σ(µ+ γ)(1− σ)φ holds
(14.44 < 30.976).

After all this, the following question arises naturally:
is it possible to have backward bifurcation at R0 = 1
when (θ+µ+ σφ)2 ≥ σ(µ+ γ)(1− σ)φ, i.e., when the
right hand side of condition (11) is nonnegative? Recall
that if ω = 0 then (θ + µ + σφ)2 ≥ σ(µ + γ)(1 − σ)φ
means forward bifurcation.
Note that the right hand side of (11) is independent
of η and ω; however, K depends on both of these
parameters, µ and the birth function Λ. As we did
not define Λ explicitly (in section II, we only gave
conditions to ensure that for each η, ω ≥ 0 the population
carrying capacity K > 0 can be defined uniquely), it
is not clear how the left hand side of (11) depends on
the immigration parameters. In the sequel, we use the
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(a) η = 5, ω = 0, 1, . . . 19..
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(b) ω = 0, η = 10, 12, . . . 48.

Fig. 2: Bifurcation diagrams for 20 different values of (a) ω and (b) η in the case when (θ + µ + σφ)2 <
σ(µ + γ)(1 − σ)φ. Proposition VI.1 implies that for all η and ω there is a backward bifurcation at R0 = 1. The
curves move to the left as the immigration parameter increases. We let Λ(x) = x

c+dx and choose parameter values
as µ = 0.1, γ = 12, θ = 0.5, σ = 0.2, φ = 16, c = 1, d = 1.8.

general form
Λ(x) =

x

c+ dx
(17)

for the birth function with parameters 0 < c < 1/µ and
d > 0; it is not hard to see that with this definition all
the conditions made in section II for Λ are satisfied. The
carrying capacity K(µ, η, ω) then arises as the solution
of

Λ(x) = µx− η − ω,

which with our above definition (17) gives the second-
order equation

x2µd+ x(−1 + cµ− d(η + ω))− c(η + ω) =0.

The unique positive root yields K as

K(µ, η, ω) =
1− cµ+ d(η + ω)

2µd

+

√
(1− cµ+ d(η + ω))2 + 4µdc(η + ω)

2µd
.

(18)

Our assumption c < 1/µ implies 1− cµ > 0, hence

K

ω
=

1

2µd

(
1− cµ+ dη

ω
+ d

+

√(
1− cµ+ dη

ω
+ d

)2

+
4µdcη

ω2
+

4µdc

ω


>

1

2µd

(
1− cµ+ dη

ω
+ d+

1− cµ+ dη

ω
+ d

)
>

1

2µd
2d =

1

µ

and thus
(1− σ)ω

K
< (1− σ)µ. (19)

It also follows from the above computations that
limω�∞

(1−σ)ω
K = (1 − σ)µ, i.e., although the left hand

side of (11) is always less than (1−σ)µ, the expression
gets arbitrary close to this limit as ω approaches ∞.

Next we fix every model parameter but η and ω and
obtain two propositions as follows.

Proposition VI.3. Let us assume that (θ + µ+ σφ)2 ≥
σ(µ+ γ)(1− σ)φ holds. If the condition

(θ + µ+ σφ) (θ + σµ+ σφ) < σ(1− σ)(µ+ γ)(µ+ φ)

is satisfied, then for any η there is an ωc such that for any
ω ∈ (ωc,∞) there is a backward bifurcation at R0 = 1,
and for any ω ∈ [0, ωc] there is a forward bifurcation
at R0 = 1. In case the above condition does not hold,
then for any η and ω there is a forward bifurcation at
R0 = 1.

With other words, for parameter values satisfying the
assumption and condition of Proposition VI.3, the ωc
defined in (23) works as a threshold value of ω for the
backward bifurcation: there is no backward bifurcation if
ω ≤ ωc, and once ω is large enough so that a backward
bifurcation is established at R0 = 1, it can not happen
that for any larger values of ω the system undergoes
forward bifurcation again. With certain conditions, such
threshold also exists for η as we show it in the following
proposition.

Proposition VI.4. We assume that (θ + µ + σφ)2 ≥
σ(µ+ γ)(1− σ)φ holds, and fix ω. If ω is such that

(1− σ)ω

K(µ, 0, ω)
>

(θ + µ+ σφ)2 − σ(µ+ γ)(1− σ)φ

(θ + µ+ σφ) + σ(µ+ γ)
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(a) η = 10, ω = 1, 6, . . . 96.
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(b) ω = 60, η = 1, 6, . . . 96.

Fig. 3: Bifurcation diagrams for 20 different values of (a) ω and (b) η in the case when (θ + µ + σφ)2 ≥
σ(µ+ γ)(1− σ)φ. The curves move to the left as the immigration parameter increases. We let Λ(x) = x

c+dx and
choose parameter values as (a) µ = 1, γ = 7.5, θ = 0.5, σ = 0.02, φ = 16, c = 0.1, d = 0.03, (b) µ = 1.5, γ = 11,
θ = 0.5, σ = 0.02, φ = 16, c = 1/15, d = 9/300.

then there exists ηc > 0 such that there is a backward
bifurcation at R0 = 1 for η < ηc, and the system
undergoes a forward bifurcation for η ≥ ηc. If the
above inequality does not hold then there is a forward
bifurcation at R0 = 1.

We illustrate Propositions VI.3 and VI.4 with
Figure 3. With parameter values µ = 1, γ = 7.5,
θ = 0.5, σ = 0.02, φ = 16, c = 0.1, d = 0.03
and η = 10 used for Figure 3 (a), the condition
in Proposition VI.3 becomes 1.5288 < 2.8322.
In case of Figure 3 (b), the parameters µ = 1.5,
γ = 11, θ = 0.5, σ = 0.02, φ = 16, c = 1/15,
d = 9/300 and ω = 60 give (1−σ)ω

K(µ,0,ω) = 0.956928 and
(θ+µ+σφ)2−σ(µ+γ)(1−σ)φ

(θ+µ+σφ)+σ(µ+γ) = 0.569027, so the condition
in Proposition VI.4 is satisfied. It is easy to check that
the assumption (θ + µ + σφ)2 ≥ σ(µ + γ)(1 − σ)φ
holds in both cases since (a) 3.3124 ≥ 2.6656 and (b)
5.3824 ≥ 3.92.

Proposition VI.1 states that for any values of η and
ω the condition (θ + µ + σφ)2 < σ(µ + γ)(1 − σ)φ is
sufficient for the existence of a backward bifurcation
at R0 = 1; moreover we know from Proposition
VI.2 that it is also necessary in the special case
of ω = 0. We remark that backward bifurcation
is possible for any η ≥ 0 and ω > 0, even if
(θ+µ+σφ)2 ≥ σ(µ+γ)(1−σ)φ. Let us choose η ≥ 0
and ω > 0 arbitrary, fix parameters µ, σ, φ, and choose
θ and γ such that (θ + µ + σφ)2 = σ(µ + γ)(1 − σ)φ
holds. As now the right hand side of condition (11) is 0
and ω,K > 0, there is a backward bifurcation, moreover
it is easy to see that the right hand side is increasing in

θ. Thus, due to the continuous dependence of the right
hand side on θ, there is an interval for θ (with all the
other parameters fixed) where condition (11) still holds,
though (θ + µ + σφ)2 > σ(µ + γ)(1 − σ)φ since the
quadratic term increases in θ.

Next, we investigate how immigration deforms the
bifurcation curve. Let us denote by β0 the value of the
transmission rate for which R0 = 1 is satisfied, using
(6) it arises as

β0 =
(µ+ θ + φ)(µ+ γ)

K(µ+ θ + σφ)− (1− σ)ω
. (20)

Proposition VI.5. It holds that β0 decreases in both ω
and η.

We recall that endemic equilibria Ĭ1 and Ĭ2 were
defined as

Ĭ1 =
−B −

√
B2 − 4AC

2A
,

Ĭ2 =
−B +

√
B2 − 4AC

2A
,

with A,B and C given in (10). Obviously −B −√
B2 − 4AC > 0 where Ĭ1 exists and −B +√
B2 − 4AC > 0 where Ĭ2 exists.

Proposition VI.6. For the endemic equilibrium Ĭ2 it
holds that ∂

∂ω Ĭ2,
∂
∂η Ĭ2 > 0, the inequalities ∂

∂ω Ĭ1,
∂
∂η Ĭ1 <

0 are satisfied for the endemic equilibrium Ĭ1. The
equilibrium Ĭ1 = Ĭ2 = −B

2A increases in both ω and
η.

These results give us information about how the bifur-
cation curve changes when the immigration parameters



βcKσ =x− U + 2
√
UW

=σ(µ+ γ)− (θ + µ+ σφ) + 2
√
−(θ + µ+ σφ)σ(µ+ γ) + σ(γ + µ)(µ+ φ+ θ)

=σ(µ+ γ)− (θ + µ+ σφ) + 2
√
σ(µ+ γ)φ(1− σ)

(21)

increase. If there is a forward bifurcation at R0 = 1,
the curve moves to the left since β0 decreases in η
and ω, and the curve expands because ∂

∂ω Ĭ2,
∂
∂η Ĭ2 > 0.

In case there is a backward bifurcation at R0 = 1,
β0 again moves to the left, and ∂

∂ω Ĭ1,
∂
∂η Ĭ1 < 0 and

∂
∂ω Ĭ2,

∂
∂η Ĭ2 > 0 imply that for each fixed β the two

equilibria move away from each other in the region
where they coexist, moreover Ĭ2 increases when it is
the only endemic equilibrium. The singular point of
the bifurcation curve, where the equilibrium is −B/2A,
moves upward as η and ω increase, this together with
the above described behavior of Ĭ1 and Ĭ2 imply that
the left-most equilibrium cannot move to the right, or
equivalently, the corresponding value of the transmission
rate βc decreases if we increase η and ω. We give the
last statement of the above discussion in the form of a
proposition. See Figures 2 and 3 for visual proof of the
results of this section.

Proposition VI.7. In case there is a backward bifurca-
tion at R0 = 1, βc decreases in both ω and η.

Actually, using (20) it is easy to see that β0 converges
to 0 as any of the immigration parameters approaches
infinity: for any fixed ω (η), the carrying capacity K
reaches arbitrary large values if we increase η (ω),
moreover µK − ω is positive by assumption, hence

lim
ω�∞

(K(µ+ θ + σφ)− (1− σ)ω) =

= lim
ω�∞

(K(θ + σφ) + σω + µK − ω) =∞.

βc < β0 implies that βc also goes to 0 as ω � ∞ or
η � ∞. We can also show that in the special case of
ω = 0, increasing η decreases the region where two
endemic equilibria exist. The equation (15) for βc then
reformulates as (21), thus for β0 − βc we have

(β0 − βc)Kσ =
σ(µ+ θ + φ)(µ+ γ)

(µ+ θ + σφ)
− σ(µ+ γ)

−
(

(θ + µ+ σφ) + 2
√
σ(µ+ γ)φ(1− σ)

)
.

The right hand side is independent of η and K
increases monotonically as η increases, so the length of
the interval (βc, β0) decreases as η increases.

In the light of the results of this section we conclude
that, although SIVS models without immigration can
also exhibit backward bifurcation [1], incorporating the
possibility of the inflow of non-infectives may signifi-
cantly influence the dynamics: under certain conditions
on the model parameters, increasing ω just as decreasing
η can drive a system with forward bifurcation into
backward bifurcation and the existence of multiple en-
demic equilibria. Nevertheless we showed that including
immigration moves the left-most point of the bifurcation
curve to the left, which means that the larger the values
of the immigration parameters the smaller the threshold
for the emergence of endemic equilibria.

VII. REVISITING THE THREE-DIMENSIONAL SYSTEM

Based on our results for system (4), we draw some
conclusions on the global behavior of the original model
(2). Given that N(t) converges, and substituting S(t) =
N(t) − I(t) − V (t), (2)2 and (2)3 together can be
considered as an asymptotically autonomous system with
limiting system (4). We use the theory from [12].

Theorem VII.1. All nonnegative solutions of (2) con-
verge to an equilibrium. In particular, if R0 > 1,
then the endemic equilibrium is globally asymptotically
stable. If there is a forward bifurcation for (4) and
R0 ≤ 1, or there is a backward bifurcation for (4) and
R0 < Rc, then the disease free equilibrium is globally
asymptotically stable.

Proof: Theorem V.2 excluded periodic orbits in the
limit system by a Dulac-function, hence we can apply
Corollary 2.2. of [12] and conclude that all solutions of
(2)2 − (2)3 converge. As I(t),V (t) and N(t) converge,
S(t) converges as well for system (2).

Now consider the case R0 > 1. Then the endemic
equilibrium is globally asymptotically stable for (2)
(see Theorem V.2), and its basin of attraction is the
whole phase space except the disease-free equilibrium.
We can proceed analogously as in (16) to show that
no positive solutions of (2)2 − (2)3 can converge to
(0, V̄ ) when R0 > 1, since N(t) > K − ε holds for
sufficiently large t. Thus, the ω-limit set of any positive
solution of (2)2 − (2)3 intersects the basin of attraction



of the endemic equilibrium in the limit system, and
then by Theorem 2.3 of [12] we conclude that the
positive solutions of (2)2− (2)3 converge to the endemic
equilibrium.

When the disease-free is the unique equilibrium of
(4), (i.e., when R0 ≤ 1 in the case of forward, or
R0 < Rc in the case of backward bifurcation), then it is
globally asymptotically stable for (4) (see Theorem V.2)
with the basin of attraction being the whole space, thus
Theorem 2.3 of [12] ensures that the DFE is globally
asymptotically stable for (2)2 − (2)3 as well.

VIII. CONCLUSION

We have examined a dynamic model which describes
the spread of an infectious disease in a population
divided into the classes of susceptible, infected and
vaccinated individuals, and took the possibility of
immigration of non-infectives into account. Such an
assumption is reasonable if there is an entry screening
of infected individuals, or if the disease is so severe that
it inhibits traveling. After obtaining some fundamental,
but biologically relevant properties of the model, we
investigated the possible equilibria and gave an explicit
condition for the existence of backward bifurcation at
R0 = 1 in terms of the model parameters. Our analysis
showed that besides the disease-free equilibrium –
which always exists – there is a unique positive fixed
point for R0 > 1, moreover in case of a backward
bifurcation there exist two endemic equilibria on an
interval to the left of R0 = 1. An equilibrium is locally
asymptotically stable if and only if it corresponds to
a point on the bifurcation curve where the curve is
increasing, moreover it is also globally attracting if
R0 > 1.

We investigated how the structure of the bifurcation
curve depends on η and ω (the immigration parameter
for susceptible and vaccinated individuals, respectively),
when other model parameters are fixed. As discussed
in Propositions VI.1 and VI.3, two regions can be
characterized in the parameter space where for any
values of the immigration parameters the system
experiences a backward or forward bifurcation,
respectively. Nevertheless, under certain conditions
described in Propositions VI.3 and VI.4, modifying
the value of ω and η has a significant effect on the
dynamics: critical values ωc and ηc can be defined such
that the bifurcation behavior at R0 = 1 changes from

forward to backward when we increase ω through ωc
and/or we decrease η through ηc. However, Propositions
VI.2 and VI.4 yield that in some cases ω can be chosen
such that, independently from the value of η, backward
bifurcation is impossible.

We also showed that immigration decreases the value
of the transmission rate for which endemic equilibria
emerge, furthermore increasing ω and/or η moves the
branches of the bifurcation curve apart which implies
that the stability region of the disease-free equilibrium
shrinks (see Figures 2 and 3). Last, we wish to point out
that, as it follows from the discussion after Proposition
VI.4, backward bifurcation is possible for any values of
ω and η, so when one’s aim is to mitigate the severity of
an outbreak it is desirable to control the values of other
model parameters, for example, the vaccination rate in a
way that such scenario is never realized.

APPENDIX

For readers’ convenience here we recall Propositions
VI.3, VI.4, VI.5 and VI.6, and state their proofs.

Proposition VI.3. Let us assume that (θ+µ+σφ)2 ≥
σ(µ+ γ)(1− σ)φ holds. If the condition

(θ + µ+ σφ) (θ + σµ+ σφ) < σ(1− σ)(µ+ γ)(µ+ φ)

is satisfied, then for any η there is an ωc such that
for any ω ∈ (ωc,∞) there is a backward bifurcation
at R0 = 1, and for any ω ∈ [0, ωc] there is a forward
bifurcation at R0 = 1. In case the above condition
does not hold, then for any η and ω there is a forward
bifurcation at R0 = 1.

Proof of Proposition VI.3: If

(θ + µ+ σφ) (θ + σµ+ σφ) ≥σ(1− σ)·
· (µ+ γ)(µ+ φ),

(θ + µ+ σφ)

(
θ + µ+ σφ

1− σ
− µ

)
≥σ(µ+ γ)(µ+ φ),

(θ + µ+ σφ)2

1− σ
− σ(µ+ γ)φ ≥µ(θ + µ+ σφ)

+ µσ(µ+ γ)),

(θ + µ+ σφ)2 − σ(µ+ γ)(1− σ)φ

(θ + µ+ σφ) + σ(µ+ γ)
≥(1− σ)µ,

then it follows from (19) that backward bifurcation is not
possible at R0 = 1 since the right hand side of condition



K − ω∂K
∂ω

=
1− cµ+ d(η + ω) +

√
(1− cµ+ d(η + ω))2 + 4µdc(η + ω)

2µd

− ωd 1

2µd

(
1 +

1− cµ+ d(η + ω) + 2µc√
(1− cµ+ d(η + ω))2 + 4µdc(η + ω)

)

=
1− cµ+ dη

2µd
+

(1− cµ+ d(η + ω))2 + 4µdc(η + ω)

2µd
√

(1− cµ+ d(η + ω))2 + 4µdc(η + ω)

− ωd(1− cµ+ d(η + ω) + 2µc)

2µd
√

(1− cµ+ d(η + ω))2 + 4µdc(η + ω)

=
1− cµ+ dη

2µd
+

(1− cµ+ d(η + ω))(1− cµ+ dη) + 4µdcη + 2µdcω

2µd
√

(1− cµ+ d(η + ω))2 + 4µdc(η + ω)
> 0

(22)

(11) is always greater than or equal to the left hand side.
Next let us consider the case when

(θ + µ+ σφ) (θ + σµ+ σφ) <σ(1− σ)·
· (µ+ γ)(µ+ φ),

(θ + µ+ σφ)2 − σ(µ+ γ)(1− σ)φ

(θ + µ+ σφ) + σ(µ+ γ)
<(1− σ)µ.

We show that (1−σ)ω
K is monotone increasing in ω; if

so, then, following relation (19) and the discussion after-
wards, the formulas (1−σ)·0

K(µ,η,0) = 0 and limω�∞
(1−σ)ω
K(µ,η,ω) =

(1− σ)µ imply that ωc can be defined uniquely by

(1− σ)ωc

K(µ, η, ωc)
=

(θ + µ+ σφ)2 − σ(µ+ γ)(1− σ)φ

(θ + µ+ σφ) + σ(µ+ γ)
, (23)

and from the monotonicity it follows that the condition
for the backward bifurcation (11) is satisfied if and only
if ω > ωc.
We obtain the derivative

∂

∂ω

( ω
K

)
=
K − ω ∂K∂ω

K2
,

which implies that (1−σ)ω
K increases in ω if and only if

K − ω ∂K∂ω is positive. With our assumption 1− cµ > 0
the computations in (22) yield the result.

Proposition VI.4. We assume that (θ + µ + σφ)2 ≥
σ(µ+ γ)(1− σ)φ holds, and fix ω. If ω is such that

(1− σ)ω

K(µ, 0, ω)
>

(θ + µ+ σφ)2 − σ(µ+ γ)(1− σ)φ

(θ + µ+ σφ) + σ(µ+ γ)

then there exists ηc > 0 such that there is a backward
bifurcation at R0 = 1 for η < ηc, and the system
undergoes a forward bifurcation for η ≥ ηc. If the
above inequality does not hold then there is a forward
bifurcation at R0 = 1.

Proof of Proposition VI.4: First we note that
K(µ, η, ω) (defined in (18)) is an increasing function
of η and it attains its minimum at η = 0. This implies
that

(1− σ)ω

K(µ, η, ω)
≤ (1− σ)ω

K(µ, 0, ω)

for all η, hence the condition for the backward bifurca-
tion (11) cannot be satisfied if

(1− σ)ω

K(µ, 0, ω)
≤ (θ + µ+ σφ)2 − σ(µ+ γ)(1− σ)φ

(θ + µ+ σφ) + σ(µ+ γ)
.

On the other hand, K(µ, η, ω) takes arbitrary large val-
ues, and hence (1−σ)ω

K(µ,η,ω) converges to zero monotonically
as η increases, so if

(1− σ)ω

K(µ, 0, ω)
>

(θ + µ+ σφ)2 − σ(µ+ γ)(1− σ)φ

(θ + µ+ σφ) + σ(µ+ γ)
,

then there is a unique ηc > 0 which satisfies

(1− σ)ω

K(µ, ηc, ω)
=

(θ + µ+ σφ)2 − σ(µ+ γ)(1− σ)φ

(θ + µ+ σφ) + σ(µ+ γ)
,

and the monotonicity of K in η yields that for η <
ηc (η ≥ ηc) the condition for the backward bifurcation
(11) holds (does not hold). Thus it is clear that ηc is a
threshold for the existence of backward bifurcation. Note
that if (θ+µ+ σφ)2 = σ(µ+ γ)(1− σ)φ then ηc =∞,
i.e., for each value of η there is a backward bifurcation
if ω > 0. The proof is complete.

Proposition VI.5. It holds that β0 decreases in both
ω and η.



∂

∂ω

(√
B2 − 4AC −B

)
=

2B ∂B
∂ω − 4(−σβ(µ+ θ + σφ)∂K∂ω + σβ(1− σ))

2
√
B2 − 4AC

− ∂B

∂ω
,

=

∂B
∂ω

(
B −

√
B2 − 4AC

)
√
B2 − 4AC

+
2σβ((µ+ θ + σφ)∂K∂ω − (1− σ))

√
B2 − 4AC

,

∂

∂η

(√
B2 − 4AC −B

)
=

2B ∂B
∂η − 4(−σβ(µ+ θ + σφ)∂K∂ω )

2
√
B2 − 4AC

− ∂B

∂η
,

=

∂B
∂η (B −

√
B2 − 4AC)

√
B2 − 4AC

+
2σβ(µ+ θ + σφ)∂K∂η√

B2 − 4AC
.

(24)

∂

∂ω

(√
B2 − 4AC +B

)
=

∂B
∂ω

(
B +

√
B2 − 4AC

)
√
B2 − 4AC

+
2σβ((µ+ θ + σφ)∂K∂ω − (1− σ))

√
B2 − 4AC

> 0,

∂

∂η

(√
B2 − 4AC +B

)
=

∂B
∂η

(
B +

√
B2 − 4AC

)
√
B2 − 4AC

+
2σβ(µ+ θ + σφ)∂K∂η√

B2 − 4AC
> 0.

(25)

Proof of Proposition VI.5: Using (20) we see that
β0 decreases as η increases since

∂

∂η
(K(µ+ θ + σφ)− (1− σ)ω)

=
∂K

∂η
(µ+ θ + σφ) > 0.

On the other hand, β0 decreases in ω if and only if

∂

∂ω
(K(µ+ θ + σφ)− (1− σ)ω)

=
∂K

∂ω
(µ+ θ + σφ)− (1− σ) > 0.

First, ∂K
∂ω > 1

µ since

1− cµ+ d(η + ω) + 2µc√
(1− cµ+ d(η + ω))2 + 4µdc(η + ω)

> 1

∂K

∂ω
=

1

2µ

(
1 +

1− cµ+ d(η + ω) + 2µc√
(1− cµ+ d(η + ω))2 + 4µdc(η + ω)

)
>

1

µ
,

second, from

θ + σφ > −µσ
µ+ θ + σφ > µ(1− σ)

we have 1
µ >

1−σ
µ+θ+σφ . We conclude that

∂K

∂ω
>

1

µ
>

1− σ
µ+ θ + σφ

(26)

and hence β0 decreases as ω increases.

Proposition VI.6. For the endemic equilibrium
Ĭ2 it holds that ∂

∂ω Ĭ2,
∂
∂η Ĭ2 > 0, the inequalities

∂
∂ω Ĭ1,

∂
∂η Ĭ1 < 0 are satisfied for the endemic equilibrium

Ĭ1. The equilibrium Ĭ1 = Ĭ2 = −B
2A increases in both ω

and η.

Proof of Proposition VI.6: As

∂AC

∂ω
= −σβ(µ+ θ + σφ)

∂K

∂ω
+ σβ(1− σ),

∂AC

∂η
= −σβ(µ+ θ + σφ)

∂K

∂η
,

we derive (24), moreover it follows from (26), ∂B
∂ω =

−σβ ∂K∂ω < 0, ∂B
∂η = −σβ ∂K∂η < 0 and B −√

B2 − 4AC < 0 that

∂

∂ω

(√
B2 − 4AC −B

)
> 0,

∂

∂η

(√
B2 − 4AC −B

)
> 0.

Similarly, using B +
√
B2 − 4AC < 0 we get (25) and

thus

∂

∂ω
Ĭ1 =

− ∂
∂ω

(√
B2 − 4AC +B

)
2A

< 0,

∂

∂η
Ĭ1 =

− ∂
∂η

(√
B2 − 4AC +B

)
2A

< 0,



moreover

∂

∂ω
Ĭ2 =

∂
∂ω

(√
B2 − 4AC −B

)
2A

> 0,

∂

∂η
Ĭ2 =

∂
∂η

(√
B2 − 4AC −B

)
2A

> 0.

The equilibrium Ĭ1 = Ĭ2 = −B
2A is increasing in both ω

and η since A is independent of these parameters and
∂B
∂ω < 0, ∂B

∂η < 0.
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