
Ákos Kiss (Ed.

13th Symposium on
Programming Languages and
Software Tools

SPLST13
Szeged, Hungary, August 26-27, 2013
Proceedings

U n iv e rs ity of Szeged

13th Symposium on Programming Languages and Software Tools
SPLSTT3
Szeged. Hungary. August 26-27. 2013
Proceedings

Edited by Ákos Kiss

University of Szeged
Faculty of Science and Informatics
Institute of Informatics
Árpád tér 2., Id-6720 Szeged, Hungary

ISBN 97S-963-306-228-9

Copyright © 2013 The editor and the authors

Organization

SPLST'13 was organized by the Department of Software Engineering. University
of Szeged.

General Chair

Akos Kiss (University of Szeged, Hungary)

Steering Committee

Zoltán Horváth (Eötvös Loránd University, Hungary)
Kai Koskimies (Tampere University of Technology, Finland)
Jaan Penjam (Institute of Cybernetics, Estonia)

Program Committee

Iiassan Charaf (Budapest University of Technology and Economics, Hungary)
Tibor Gyimóthy (University of Szeged, Hungary)
Zoltán Horváth (Eötvös Loránd University, Hungary)
Pekka Kilpeláinen (University of Eastern Finland, Finland)
Ákos Kiss (University of Szeged, Hungary)
Kai Koskimies (Tampere University of Technology, Finland)
Tamás Kozsik (Eötvös Loránd University, Hungary)
Peeter Laud (Cybernetica, Institute of Information Security, Estonia)
Erkki Mákinen (University of Tampere, Finland)
Jyrki Nummenmaa (University of Tampere, Finland)
Jukka Paakki (Lhiiversity of Helsinki, Finland)
András Pataricza (Budapest University of Technology and Economics, Hungary)
Jari Pelt.onen (Tampere University of Technology, Finland)
Jaan Penjam (Institute of Cybernetics, Estonia)
Attila Pethő (University of Debrecen, Hungary)
Margus Veanes (Microsoft. Research, Redmond, USA)

Additional Referees

Zoltán Alexin, Márk Asztalos, Vilmos Bilicki, István Bozó, Dimitrij Csetverikov,
Péter Elder, Rudolf Ferenc, Zsolt Gazdag, Ferenc Havasi, Zoltán Herczeg, Judit
Jász, Róbert Kitlei, Tamás Mészáros, Zoltán Micskei, Ákos Szőke, Zalán Szügyi,
Zoltán Újhelyi, András Vörös

IV

Table of Contents

Monitoring Evolution of Code Complexity in Agile/Lean Software
Development... 1

Yard Anting an, Miroslavu Staron, Wilhelm Meding, Per Osterström.
Iienric Bergenwall. Johan Wranker, Jörgen Hansson. Anders
Henriksson

Configuring Software for Reuse with V C L .. 16
Dan Daniel. Stan Jarzabek, Rudolf Ferenc

Identifying Code Clones with RefactorErl.. 31
Viktória Fördős. Melinda Tóth

Code Coverage Measurement Framework for Android Devices 46
Szabolcs Bognár. Tam,ás Gergely. Róbert R.ácz. Árpád Beszédes,
Vladimir Marinkovic

The Role of Dependency Propagation in the Accumulation of Technical
Debt for Software Implementations.. 61

Johannes Holvitie, Mikko-Jussi Laakso. Teemu Rafala. Erkki Kaila,
Viile Leppănen

A Regression Test Selection Technique for Magic System s.......................... 76
Gábor Novak, Csaba Nagy, Rudolf Ferenc

VOSD: A General-Purpose Virtual Observatory over Semantic Databases 90
Gergő Gombos, Tam,ás Matuszka. Balázs Pinczel. Gábor Rácz,
Attila Kiss

Service Composition for End-Users.. 100
Otto Hylli, Samuel Lahtinen. Anna Ruokonen. Kari Systă

Towards a Reference Architecture for Server-Side Mashup Ecosystem 114
Heikki Peltola, Arto Saiminen

Code Oriented Approach to 3D W idgets.. 126
Anna-Liisa Matti,la

The Browser as a Host Environment for Visually Rich Applications 141
Jari-Pekka Voutilainen. Tommi Mikkonen

Random number generator for C ++ template m etaprogram s.................... 156
Zalán Szügyi, Tamás Cséri, Zoltán Porkoláb

V

The Asymptotic Behaviour of the Proportion of Hard Instances of the
Halting P ro b lem .. 170

Antti Valma,ri

Implementat ion of Natural Language Semant ic Wildcards using Prolog . . 1S5
Zsolt Zsigmondi. Attila Kiss

Designing and Implementing Control Flow Graph for Magic 4th
Generation Language... 200

Richárd Dévai. Judit Jász. Csaba Nagy. Rudolf Ferenc

Runtime Exception Detection in Java Programs Using Symbolic Execution 215
István Kádár. Péter Hegedűs. Rudolf Ferenc

Composable hierarchical synchronization support for REPLICA................ 230
Jari-Matti Măkelă. Viile Leppănen, Mariti Forsell

Checking visual data flow programs with finite process m odels.................. 245
Jyrki Nummenmaa, Maija Marttila-Kontio. Ti/nio Nummenmaa

Efficient Saturation-based Bounded Model Checking of Asynchronous
Systems ... 259

Dániel Darvas. András Vörös. Tamás Bartha

Extensions to the C'EGAR. Approach on Petri N ets...................................... 274
Ákos Hajdú. András Vörös, Tamás Bartha. Zoltán Mártonka

VI

Runtim e Exception D etection in Java Programs
Using Symbolic Execution*

István Kádár, Péter Hegedűs, and Rudolf Ferenc
University of Szeged, Department of Software Engineering

Árpád tér 2. H-6720 Szeged, Hungary
{ikadar|hpeterIf erenc}@inf.u-szeged.hu

Abstract. Most of the runtime failures of a software system can be re­
vealed during test execution only, which has a very high cost. In Java -
programs, runtime failures are manifested as unhandled runtime excep­
tions.
In this paper we present an approach and tool for detecting runtime
exceptions in Java programs without having to execute tests on the soft­
ware. We use the symbolic execution technique to implement the ap­
proach. By executing the methods of the program symbolically we can
determine those execution branches that throw exceptions. Our algo­
rithm is able to generate concrete test inputs also that cause the program
to fail in runtime.
We used the Symbolic PathFinder extension of the Java PathFinder as
the symbolic execution engine. Besides small example codes we evaluated
our algorithm on three open source systems: jEdit, ArgoUML, and log4j.
We found multiple errors in the log4j system that were also reported as
real bugs in its bug tracking system.,
Keywords: Java Runtime Exception, Symbolic Execution, Rule Check­
ing, Java Virtual Machine

1 Introduction
Nowadays, it is a big challenge of the software engineering to produce great,
reliable and robust software systems. About 40% of the total development costs
go for testing [1], and the maintenance activities, particularly bug fixing of the
system also require a considerable amount of resources [2]. Our purpose is to
develop a new method and tool, which supports this phase of the software engi­
neering lifecycle with detecting runtime exceptions in Java programs, and finding
dangerous parts in the source code, that could behave as time-bombs during fur­
ther development. The analysis will be done without executing the program in
a real environment.

Runtime exceptions in the Java programming language are the instances of
class java.lang.RuntimeException, which represent a sort of runtime error, for
example an invalid type cast, an array over indexing, or division by zero. These
exceptions are dangerous because they can cause a sudden stop of the program,
as they do not have to be handled by the programmer explicitly.

Exploration of these exceptions is done by using a technique called symbolic
execution [3]. When a program is executed symbolically, it is not executed on

* This research was supported by the Hungarian national grant GOP-1.1.1-11-2011-
0038 and the TÁMOP 4.2.4. A/2-11-1-2012-0001 European grant.

215

concrete input data but input data is handled as symbolic variables. When the
execution reaches a branching condition containing a symbolic variable, the ex­
ecution continues on both branches. This way, all of the possible branches of
the program will be executed in theory. Java PathFinder (JPF) [4] is a software
model checker which is developed at NASA Ames Research Center. In fact, Java
PathFinder is a Java virtual machine that executes Java bytecode in a special
way. Symbolic PathFinder (SPF) [5] is an extension of JPF, which can perform
symbolic execution of Java bytecodes. The presented work is based on these
tools.

The paper explains how the detection of runtime exceptions of the Java pro­
gramming language was implemented using Java PathFinder and symbolic exe­
cution. Concrete input parameters of the method resulting a runtime exception
are also determined. It is also described how the number of execution branches,
and the state space have been reduced to achieve a better performance. The
implemented tool called Jpf Checker has been tested on real life projects, the
log4j, ArgoUML, and jEdit open source systems. We found multiple errors in
the log4j system that were also reported as real bugs in its bug tracking system.
The performance of the tool is acceptable since the analysis was finished in a
couple of hours even for the biggest system.

The remainder of the paper is organized as follows. We give a brief intro­
duction to symbolic execution in Section 2. After that in Section 3 we present
our approach for detecting runtime exceptions. Section 4 discusses the results of
the implemented algorithm on different small examples and real life open source
projects. Section 5 collects the works that related to ours. Finally, we conclude
the paper and present some future work in Section 6.

2 Symbolic Execution
During its execution, every program performs operations on the input data in
a defined order. Symbolic execution [3] is based on the idea that the program
is operated on symbolic variables instead of specific input data, and the output
will be a function of these symbolic variables. A symbolic variable is a set of the
possible values of a concrete variable in the program, thus a symbolic state is a
set of concrete states. When the execution reaches a selection control structure
(e.g. an if statement) where the logical expression contains a symbolic variable,
it cannot be evaluated, its value might be also true and false. The execution
continues on both branches accordingly. This way we can simulate all the possible
execution branches of the program.

During symbolic execution we maintain a so-called path condition (PC). The
path condition is a quantifier-free logical formula with the initial value of true,
and its variables are the symbolic variables of the program. If the execution
reaches a branching condition that depends on one or more symbolic variables,
the condition will be appended to the current PC with the logical operator AND
to indicate the true branch, and the negation of the condition to indicate the false
branch. With such an extension of the PC, each execution branch will be finked
to a unique formula over the symbolic variables. In addition to maintaining the

216

path condition, symbolic execution engines make use of the so called constraint
solver programs. Constraint solvers are used to solve the path condition by
assigning values to the symbolic variables that satisfy the logical formula. Path
condition can be solved at any point of the symbolic execution. Practically, the
solutions serve as test inputs that can be used to run the program in such a way
that the concrete execution follows the execution path for which the PC was
solved.

All of the possible execution paths define a connected and acyclic directed
graph called symbolic execution tree. Each point of the tree corresponds to a
symbolic state of the program. An example is shown in Figure 1.

1. i n t x , y, d i s t ;
2
3 . i f Cx > y) {
4 . d i s t = x - y ;
5 . > e l s e {
6 . d i s t * y - x ;
7 . >
8 . i f (d i s t < 0)
9 . w r i te C 'E r r o r ")

PC; tnic. x = X ,y » Y i

P C : t r u c . X > Y j
t r u e f Q i s e

! P C : X > Y , d i s t « X - Y j
........ ...J.............

P C : X > Y , d i s t = X - Y < 0 j
t r u e , ^ f a l s é

. P C X - ' i > X - Y > 0,
'! END

! PC: X < Y, dist ■ Y-X!

I PC: X < Y. dist = Y-X < 0
tnu^— __ _ talse

i P G i X ~ Y * Y - X 2 0,1
END

(a) (b)

Fig. 1: (a) Sample code that determines the distance of two integers on the number line
(b) Symbolic execution tree of the sample code handling variable x and y symbolically

Figure 1 (a) shows a sample code that determines the distance of two integers
x and y. The symbolic execution of this code is illustrated on Figure 1 (b) with
the corresponding symbolic execution tree. We handle x and y symbolically, their
symbols are X and Y respectively. The initial value of the path condition is true.
Reaching the first if statement in line 3, there are two possibilities: the logical
expression can be true or false; thus the execution branches and the logical
expression and its negation is added to the PC as follows:

true A X > Y =$> X > Y , and true A -*{X > Y) =$■ X < Y

The value of variable dist will be a symbolic expression, X-Y on the true
branch and Y-X on the false one. As a result of the second if statement (line 8)
the execution branches, and the appropriate PCs are appended again. On the
true branches we get the following PCs:

X > Y A X - Y <0=> X > Y A X < Y ,

X < Y A Y — X < 0 = > X < Y A X > Y

It is clear that these formulas are unsolvable, we cannot specify such X and
Y that satisfy the conditions. This means that there axe no such x and y inputs
with which the program reaches the write (’’Error”) statement. As long as the PC
is unsatisfiable at a state, the sub-tree starting from that state can be pruned,
there is no sense to continue the controversial execution.

217

It is impossible to explore all the symbolic states. It takes unreasonably long
time to execute all the possible paths. A solution for this problem can be e.g. to
limit the depth of the symbolic execution tree or the number of states which, of
course, inhibit to examine all the states. The next subsection describes what are
the available techniques in Symbolic PathFinder to address this problem.

2.1 Java PathFinder and Symbolic PathFinder

Java PathFinder (JPF) [4] is a highly customizable execution environment that
aims at verifying Java programs. In fact, JPF is nothing more than a Java
Virtual Machine which interprets the Java bytecode in a special way to be able
to verify certain properties. It is difficult to determine what kind of errors can
be found and which properties can be checked by JPF, it depends primarily
on its configuration. The system has been designed from the beginning to be
easily configurable and extendable. One of its extensions is Symbolic PathFinder
(SPF) [5] that provides symbolic execution of Java programs by implementing a
bytecode instruction set allowing to execute the Java bytecode according to the
theory of symbolic execution.

JPF (and SPF) itself is implemented in Java, so it also have to run on a
virtual machine, thus JPF is actually a middleware between the standard JVM
and the bytecode. The architecture of the system is illustrated on Figure 2.

Java program I
(system under test) j

j.ntoic faUfireier

! Java PathFinder
configuration report

.jpf
Host JVM

Fig. 2: Java PathFinder as a virtual machine itself runs on a JVM, while performing a
verification of a Java program

To start the analysis we have to make a configuration file with .jpf extension
in which we specify different options as key-value pairs. The output is a report
that contains e.g. the found defects. In addition to the ability of handling log­
ical, integer and floating-point type variables as symbols, SPF can also handle
complex types symbolically with the lazy initialization algorithm [6], and allows
the symbolic execution of multi-threaded programs too.

SPF supports multiple constraint solvers and defines a general interface to
communicate them. Cvc3 is used to solve linear formulas, choco can handle non­
linear logical formulas too, while IASolver use interval arithmetic techniques
to satisfy the path condition. Among the supported constraint solvers, CORAL
proved to be the most effective in terms of the number of solved constraints and
the performance [7].

To reduce the state space of the symbolic execution SPF offers a number
of options. We can specify the maximum depth of the symbolic execution tree,

218

and the number of elementary formulas in the path condition can also be lim­
ited. Further possibility is that with Options symbolic, minint, symbolic.maxint,
symbolic.minreal, and symbolic.maxreal we can restrict the value ranges of the
integer and floating point types. W ith the proper use of these options the state
space and the time required for the analysis can be reduced significantly.

3 Detection of Runtime Exceptions
We developed a tool that is able to automatically detect runtime exceptions
in an arbitrary Java program. This section explains in detail how this analysis
program, the JPF checker works.

To check the whole program we use symbolic execution, which is performed
by Symbolic PathFinder. However, we do not execute the whole program sym­
bolically to discover all of the possible paths, instead we symbolically execute
the methods of the program one by one. This results in a significant reduction
in the state space of the symbolic execution.

An important question is which variables to be handled symbolically. In gen­
eral, execution of a method mainly depends on the actual values of its parameters
and the referred external variables. Thus, these are the inputs of a method that
should be handled symbolically to generally analyze it. Currently, we handle the
parameters and data members of the class of the analyzed method symbolically.

Our goal is not only to indicate the runtime exceptions a method can throw
(its type and the line causing the exception), but also to determine a param­
eterization that leads to throwing those exceptions. In addition, we determine
this parameterization not only for the analyzed method which is at the bottom
of the call stack, but for all the other elements in the call stack (i.e. recursively
for all the called methods).

Our work can be divided into two steps:

1. It is necessary to create a runtime environment which is able to iterate
through all the methods of a Java program, and start their symbolic execu­
tion using Symbolic PathFinder.

2. We need a JP F extension which is built on its listener mechanism, and which
is able to indicate potential runtime exceptions and related parameterization
while monitoring the execution.

3.1 The Runtim e Environment

The concept of the developers of Symbolic PathFinder was to start running the
program in normal mode like in a real life environment, than at given points,
e.g. at more complex or problematic parts in the program switch to symbolic
execution mode [8]. The advantage of this approach is that, since the context is
real, it is more likely to find real errors. E.g. the values of the global variables are
all set, but if these variables are handled symbolically we can examine cases that
never occur dining a real run. A disadvantage is that it is hard to explore the
problematic points of a program, it requires prior knowledge or preliminary work.
Another disadvantage is that you have to run the program manually namely, that
the control reach those methods which will be handled symbolic by the SPF.

219

In contrast, the tool we have developed is able to execute an arbitrary method
or all methods of a program symbolically. The advantage of this approach is that
the user does not have to perform any manual runs, the entire process can be
automated. Additionally, the symbolic state space also remains limited since
we do not execute the whole program symbolically, but their parts separately.
The approach also makes it possible to analyze libraries that do not have a
main method such as log4j. One of the major disadvantages is the that we back
away from the real execution environment, which may lead to false positive error
reports.

For implementing such an execution environment we have to achieve some­
how that the control flow reaches the method we want to analyze. However,
due to the nature of the virtual machine, JPF requires the entry point of the
program, which is the class containing the main method. Therefore, we generate
a driver class for each method containing a main method that only passes the
control to the method we want to execute symbolically and carries out all the
related tasks. Invoking the method is done using the Java Reflection API. We
also have to generate a JPF configuration file that specifies, among others, the
artificially created entry point and the method we want to handle symbolically.
After creating the necessary files, we have to compile the generated Java class
and finally, to launch Symbolic PathFinder.

jar Jar ' Explorer '

method 1 \ \

method 2)} \
..I \

• -Generator

/ ...
. /; /------- -------- , ;y

method n K

driverjclass:

SPF

•ipf

Fig. 3: Architecture of the runtime environment

The architecture of the system is illustrated in Figure 3. The input jar file
is processed by the Jar Explorer, which reads all the methods of the classes from
the jar file and creates a list from them. The elements of the list is taken by the
Generator one by one. It generates a driver class and a JP F configuration file for
each method. After the generation is complete, we start the symbolic execution.
3.2 Im plem enting a L istener Class
During functioning, JPF sends notifications about certain events. This is real­
ized with so-called listeners, which are based on the observer design pattern. The
registered listener objects are notified about and can react to these events. JPF
can send notifications of almost every detail of the program execution. There are
low-level events such as execution of a bytecode instruction, as well as high-level
events such as starting or finishing the search in the state space. In JPF, basi­
cally two listener interfaces exist: the SearchListener and VMListener interface.
While the former includes the events related to the state space search, the lat­
ter reports the events of the virtual machine. Because these interfaces are quite

220

large and the specific listener classes often implement both of them, adapter
classes are introduced that implement these interfaces with empty method bod­
ies. Therefore, to create our custom listener we derived a class from this adapter
and implemented the necessary methods only.

Our algorithm for detecting runtime exceptions is briefly summarized below.
By performing symbolic execution of a method all of its paths are executed, in­
cluding those that throw exceptions. When an exception occurs, namely when the
virtual machine executes an ATHROW bytecode instruction, JPF triggers and
excpetionThrown event. Thus, we implemented the exceptionThrown method in
our listener class. The pseudo code of our exceptionThrown implementation is
shown in Figure 4.

1. exceptionThrownO {
2. exception = getPendingExceptionO ;
3. if (isInstanceOfRuntimeException(exception)) {
4. pc = getCurrentPc0;
5. solve(pc);
6. summary = new FoundExceptionSummary();
7. summary.setExceptionType(exception);
8. summary.setThrownFrom(exception);
9. summary.setParameterization(parsePc(pc, analyzedMethod));
10. invocationChain = buildlnvocationChainO ;
11. f or each. (Method m : invocationChain) {
12. summary.addStackTraceElement(m, parsePc(pc, m));
13. >
14. foundExceptions.add(summary);
15. >
16. }

Fig. 4: Pseudo code of the exceptionThrown event

First, we acquire the thrown Exception object (line 2), then we decide whether
it is a runtime exception (i.e. whether it is an instance of the class RuntimeEx-
ception) (line 3). If it is, we request the path condition related to the actual path
and use the constraint solver to find a satisfactory solution (lines 4-5). Lines 6-9
set up a summary report that contains the type of the thrown exception, the
line that throws it and a parameterization which causes this exception to be
thrown. The parameterization is constructed by the parsePCQ method, which
assigns the satisfactory solutions of the path condition to the method param­
eters. Lines 10-13 take care of collecting and determining parameterization for
the methods in the call stack. If the source code does not specify any constraint
for a parameter on the path throwing an exception (i.e. the path condition does
not contain the variable), then there is no related solution. This means that it
does not matter what the actual value of that parameter is, it does not affect
the execution path, the method is going to throw an exception due to the values
of other parameters. In such cases parsePc() method assigns the value “any” to
these parameters.

221

It is also possible that a parameter has a concrete value. Figure 5 illustrates
such an example. When we start the symbolic execution of method x(), its pa­
rameter a is handled symbolically. As x() calls y() its parameter a is still a
symbol, but b is a concrete value (42). In a case like this, parsePcQ have to get
the concrete value from the stack of the actual method.

1. void xCint a) {
2. short b = 42;
3. y(a, b);
4. }

5. void yCint a, short b) -[
6 .
7. throw new NullPointerExceptionO ;
8 .
9. >

Fig. 5: An example call with both symbolic and concrete parameters

We note that the presented algorithm reports any runtime exceptions re­
gardless of the fact whether it is caught by the program or not. The reason of
this is that we think that relying on runtime exceptions is a bad coding practice
and a runtime exception can be dangerous even if it is handled by the pro­
gram. Nonetheless, it would be easy to modify our algorithm to detect uncaught
exceptions only as SPF provides a support for it.

4 Results
The developed tool was tested in a variety of ways. The section describes the
results of these test runs. We analyzed manually prepared example codes contain­
ing instructions that cause runtime exceptions on purpose; then we performed
analysis on different open-source software to show that our tool is able to detect
runtime exceptions in real programs, not just in artificially made small examples.
The subject systems are the log4j (http://logging.apache.org/log4j/) logging li­
brary, the ArgoUML modeling tool (http://argouml.tigris.org/), and the jEdit
text editor program (http://www.jedit.org/). We prove the validity of the de­
tected exceptions by the bug reports, found in the bug tracking systems of these
projects, that describe program faults caused by those runtime exceptions that
are also found by the developed tool.

4.1 A M anually Prepared Example

A small manually prepared example code is shown on Figure 6. The method un­
der test is callRun() which calls method run() in line 12. Running our algorithm
on this code gives two hits: the first is an ArraylndexOutOfBoundsException,
the second is a NullPointerException. The first exception is thrown by method
run() at line 24. A parameterization leading to this exception is callRun(7, 11).
Method run() will be called only if x > 6 (line 10) that is satisfied by 7 and
it is called with the concrete value 9 and symbol y. At this point there is no
condition for y. Method run() can reach fine 24 only if y > 10, the indicated
value 11 is obtained by satisfying this constraint. Throwing of the Arraylndex­
OutOfBoundsException is due to the fact that in line 22 we declare a 5-element
array but the following for loop runs from 0 to .t . The value of x at this point is
9 which leads to an exception.

222

http://logging.apache.org/log4j/
http://argouml.tigris.org/
http://www.jedit.org/

The train of thought is similar in case of the second exception. The problem is
that variable % created in line 27 initialized only in line 29 to a value different form
null, but not in the else block, therefore line 33 throws a NullPointerException.
This requires that the value of y not to be greater than 10 and not to be less
than 5. These restrictions are satisfied by e.g. 5, and value 7 for x is necessary
to invoke rim(). So the parameterizations are callRun(7, 5) and run(9, 5). The
analysis is finished in less than a second.

20. public void runfint x, in t y) {
public class Example5 { 21. i f (y > 10) -C

22. in t [] tomb = new in t [5] ;
8. void callRunCint x, in t y) { 23. for (in t i = 0; i < x; i++)
9. Integer i = null; 24. tombfi] = i;
10. i f Cx > 6) { 25. >
11. in t b = 9; 26. } else -[
12. runCb, y); 27. Integer i = null;
13. i = Integer.valueOf(b);; 28. i f (y < B) {
14. System .out.prin tln(i); 29. i = Integer.valueOf(4);
15. } else { 30. i .floatValueO ;
16. i = Integer.valueOf(3);; 31. I else {
17. System .out.println(i); 32. System.out.p rin tln(
18. > 33. i . floatValueO;
19. > 34. >

35. >
36. }}

Fig. 6: Manually prepared example code with the analysis of method callRunQ

4.2 Analysis of Open-source System s

Analysis of log4j 1.2.15, ArgoUML 0.28 and jEdit 4.4.2 were carried out on a
desktop computer with an Intel Core Í5-540M 2.53 GHz processor and 8 GB of
memory. In all three cases the analysis was done by executing all the methods
of the release jar files of the projects symbolically.

a Successful runs SJPF/SPF fails a Successful runs s Defective methods log4j ArgoUML jEdit

(a) (b) (c)

Fig. 7: (a)Number of methods examined in the programs and the number of JPF or
SPF faults (b) Number of successfully analyzed methods and the number of defective
methods (c) Analysis time

223

Figure 7 (a) displays the number of methods we analyzed in the different pro­
grams. We started analyzing 1242 methods in log4j of which only 757 were suc­
cessful, in 474 cases the analysis stopped due to the failure of the Java PathFinder
(or Symbolic PathFinder). There are a lot of methods in ArgoUML which also
could not be analyzed, more than half of the checks ended with failure. In case
of jEdit the ratio is very similar. Unfortunately, in general JPF stopped with a
variety of error messages.

Despite the frequent failures of JPF, our tool indicated a fairly large number
of runtime exceptions in all three programs. Figure 7 (b) shows the number
of successfully analyzed methods and the methods with one or more runtime
exceptions. The hit rate is the highest for log4j and despite its high number of
methods, relatively few exceptions were found in ArgoUML.

The analysis times are shown in Figure 7 (c). Analysis of log4j completed
within an hour, while analysis of ArgoUML, that contains more than 7500 meth­
ods, took 3 hours and 42 minutes. Although jEdit contains fewer methods than
ArgoUML, its full analysis were more time-consuming. The performance of our
algorithm is acceptable, especially considering that the analysis was performed
on an ordinary desktop PC not on a high-performance server. However, it can
be assumed that the analysis time would grow with less failed method analysis.

It is important to note, that not all indicated exceptions are real errors. This
is because the analysis were performed in an artificial execution environment
which might have introduced false positive hits. When we start the symbolic
execution of a method we have no information about the circumstances of the
real invocation. All parameters and data members are handled symbolically, that
is, it is considered that their value can be anything although it is possible that
a particular value of a variable never occurs.

Despite the fact that not all the reported exceptions are real program errors
they are definitely representing real risks. During the modification of the source
code there are inevitably changes that introduce new errors. These errors often
appear in form of runtime exceptions (i.e. in places where our algorithm found
possible failures). So the majority of the reported exceptions do not report real
errors, but potential sources of danger that should be paid special attention.

4.3 A Real Error

In this subsection a log4j defect is shown which is reported in its bug tracking
system, and caused by a runtime exception found also by our tool. The affected
bug1 reports the stoppage of an application using log4j version 1.2.14 caused by a
NullPointerException. The reporter got the Exception from line 59 of Throwable-
Information.java thrown by method org.apache.log4j-spi.ThrowableInformation.
getThrowableStrRepO as shown in the given stack trace. The code of the method
and the problematic line detected by our analysis is shown on Figure 8.

The problem here is that the initialization of the throwable data member of
class Throwablelnformation is omitted, its value is null causing a NullPointerEx­
ception in line 59. This causes that the log() method of log4j can also throw an

1 https: / /issues, apache.org/bugzilla/showTug.cgi?id=44038

224

public class Tkrowablelaformation implements java.io.Serializable {
private transient Throwable throwable;

54.
55.
56.
57.
58.
59.
60.
61.
62.
63.

public String[] getThrowableStrRep0 {
if(rep != null) {
return (String0) rep.clone();

} else {
VectorWriter vw = new VectorWriter ();
tlirowable.printStackTrace (vw) ;
rep = vw.toStringArrayO ;
return rep;

y

>

Fig. 8: Source code of method org.apache.logdj.spi.Throwablelnformation.getThrow-
ableStrRep() included in the bug report

exception which should never happen. Our tool found other errors as well which
demonstrate its strength of being capable of detecting real bugs.

5 Related Work
In this section we present works that are related to our research. First, we intro­
duce some well-known symbolic execution engines, then we show the possible ap­
plications of the symbolic execution. We also summarize the problems that have
been solved successfully by Symbolic PathFinder that we used for implementing
our approach. Finally, we present the existing approaches and techniques for
runtime exception detection.

The idea of symbolic execution is not new, the first publications and execu­
tion engines appeared in the 1970’s. One of the earliest work is by King that lays
down the fundamentals of symbolic execution [3] and presents the EFFIGY sys­
tem that is able to execute PL/I programs symbolically. Even though EFFIGY
handles only integers symbolically, it is an interactive system with which the
user is able to examine the process of symbolic execution by placing breakpoints
and saving and restoring states. Another work from the 1970’s by Boyer et al.
presents a similar system called SELECT [9] that can be used for executing LISP
programs symbolically. The users are allowed to define conditions for variables
and return values and get back whether these conditions are satisfied or not as
an output. The system can be applied for test input generation; in addition, for
every path it gives back the path condition over the symbolic variables.

Starting from the last decade the interest about the technique is constantly
growing, numerous programs have been developed that aim at dynamic test
input generation using symbolic execution. The EXE (Execution generated Ex­
ecutions) [10] presented by Cadar et al. at the Stanford University is an error
checking tool made for generating input data on which the program terminates
with failure. The input generation is done by the STP built-in constraint solver

225

that solves the path condition of the path causing the failure. EXE achieved
promising results on real life systems. It found errors in the package filter imple­
mentations of BSD and Linux, in the udhcpd DHCP server and in different Linux
file systems. The runtime detection algorithm presented in this work solves the
path condition to generate test input data similarly to EXE. The basic differ­
ence is that for running EXE one needs to declare the variables to be handled
symbolically while for Jpf Checker there is no need for editing the source code
before detection.

The DART [11] (Directed Automata Random Testing) by Godefroid et al.
tries to eliminate the shortcomings of the symbolic execution e.g. when it is
unable to handle a condition due to its unlinear nature. DART executes the pro­
gram with random or predefined input data and records the constraints defined
by the conditions on the input variables when it reaches a conditional statement.
In the next iteration taking into account the recorded constraints it runs the pro­
gram with input data that causes a different execution branch of the program.
The goal is to execute all the reachable branches of the program by generating
appropriate input data. The CUTE and jCUTE systems [12] by Sen and Agha
extend DART with multithreading and dynamic data structures. The advantage
of these tools is that they are capable of handling complex mathematical con­
ditions due to concrete executions. This can be also achieved in Jpf Checker by
using the concolic execution of SPF; however, symbolic execution allows a more
thorough examination of the source code. Further description and comparison
of the above mentioned tools can be found e.g. in the work of Coward [13].

There are also approaches and tools for generating test suites for .NET pro­
grams using symbolic execution. Pex [14] is a tool that automatically produces
a small test suite with high code coverage for .NET programs using dynamic
symbolic execution, similar to path-bounded model-checking. Jamrozik et al. in­
troduce an extension of the previous approach called augmented dynamic sym­
bolic execution [15], which aims to produce representative test sets with DSE
by augmenting path conditions with additional conditions that enforce target
criteria such as boundary or mutation adequacy, or logical coverage criteria. Ex­
periments with the Apex prototype demonstrate that the resulting test cases
can detect up to 30% more seeded defects than those produced with Pex.

Song et al. applied the symbolic execution to the verification of networking
protocol implementations [16]. The SymNV tool creates network packages with
which a high coverage can be achieved in the source code of the daemon, therefore
potential rule violations can be revealed according to the protocol specifications.

The SAFELI tool [17] by Fu and Qian is a SQL injection detection program
for analyzing Java web applications. It first instruments the Java bytecode then
executes the instrumented code symbolically. When the execution reaches a SQL
query the tool prepares a string equation based on the initial content of the web
input components and the built-in SQL injection attack patterns. If the equation
can be solved the calculated values are used as inputs which the tool verifies by
sending a HTML form to the server. According to the response of the server it
can decide whether the found input can be a real attack or not.

226

The main application of the Java PathFinder and its symbolic execution
extension is the verification of the internal projects in NASA. Bushnell et al.
describes the application of Symbolic PathFinder in TSAFE (Tactical Separation
Assisted Flight Environment) [18] that verifies the software components of an air
control and collision detection system. The primary target is to generate useful
test cases for TSAFE that simulates different wind conditions, radar images,
flight schedules, etc.

The detection of design patterns can be performed using dynamic approaches
as well as with static program analysis. With the help of a monitoring software
the program can be analyzed during manual execution and conclusions about the
existence of different patterns can be made based on the execution branches. In
his work, von Detten [19] applied symbolic execution with Symbolic PathFinder
supplementing manual execution. This way, more execution branches can be
examined and the instances found by traditional approaches can be refined.

Ihantola [20] describes an interesting application of JPF in education. He
generates test inputs for checking the programs of his students. His approach is
that functional test cases based on the specification of the program and their
outcome (successful or not) is not enough for educational purposes. He generates
test cases for the programs using symbolic execution. This way the students can
get feedbacks like “the program works incorrectly if variable a is larger than
variable b plus 10” .

Sinha et al. deal with localizing Java runtime errors [21]. The introduced
approach aims at helping to fix existing errors. They extract the statement th a t '
threw the exception from its stack trace and perform a backward dataflow analy­
sis starting from there to localize those statements that might be the root causes
of the exception.

The work of Weimer and Necula [22] focuses on proving safe exception han­
dling in safety critical systems. They generate test cases that lead to an exception
by violating one of the rules of the language. Unlike Jpf Checker they do not gen­
erate test inputs based on symbolic execution but solving a global optimization
problem on the control flow graph (CFG) of the program.

The JCrasher tool [23] by Csallner and Smaragdakis takes a set of Java
classes as input. After checking the class types it creates a Java program which
instantiates the given classes and calls each of their public methods with random
parameters. This algorithm might detect failures that cause the termination
of the system such as runtime exceptions. The tool is capable of generating
JUnit test cases and can bé integrated to the Eclipse IDE. Similarly to Jpf
Checker JCrasher also creates a driver environment but it can analyze public
methods only and instead of symbolic execution it generates random data which
is obviously not feasible for examining all possible execution branches.

6 Conclusions and Future Work
The introduced approach for detecting runtime exceptions works well not just on
small, manually prepared examples but it is able to find runtime exceptions which
are the causes of some documented runtime failures (i.e. there exists an issue for
them in the bug tracking system) in real world systems also. However, not all the

227

detected possible runtime exceptions will actually cause a system failure. There
might be a large number of exceptions that will never occur running the system
in real environment. Nonetheless, the importance of these warnings should not
be underrated since they draw attention to those code parts that might turn to
real problems after changing the system. Considering these possible problems
could help system maintenance and contributes to achieving a better quality
software. As we presented in Section 4 the analysis time of real world systems
are also acceptable, therefore our approach and tool can be applied in practice.

Unfortunately the Java PathFinder and its Symbolic PathFinder extension
- which we used for implementing our approach - contain a lot of bugs. It made
the development very troublesome, but the authors at the NASA were really
helpful. We contacted them several times and got responses very quickly; they
fixed some blocker issues particularly for our request.

The achieved results are very promising and we continue the development of
our tool. Our future plan is to eliminate the false positive and those hits that are
irrelevant. We would also like to provide more details about the environment of
the method in which the runtime exception is detected. The implemented tool
gives only the basic information about the reference type parameters whether
they are null or not, and we cannot tell anything about the values of the member
variables of the class playing a role in a runtime exception. These improvements
of the algorithm are also in our future plans.

The presented approach is not limited to runtime exception detection. We
plan to utilize the potentials of the symbolic execution by implementing other
types of error and rule violation checkers. E.g. we can detect some special types
of infinite loops, dead or unused code parts, or even SQL injection vulnerabilities.

References

1. Pressman, R.S.: Software Engineering: A Practitioner’s Approach. McGraw-Hill
Science/Engineering/Math (November 2001)

2. Tassey, G.: The Economic Impacts of Inadequate Infrastructure for Software Test­
ing. Technical report, National Institute of Standards and Technology (2002)

3. King, J.C.: Symbolic Execution and Program Testing. Communications of the
ACM 19(7) (July 1976) 385-394

4. Java PathFinder Tool-set. h ttp ://babelfish .arc .nasa.gov /trac /jp f
5. Păsăreanu, C.S., Rungta, N.: Symbolic PathFinder: Symbolic Execution of Java

Bytecode. In: Proceedings of the IEEE/ACM International Conference on Auto­
mated Software Engineering. ASE TO, New York, NY, USA, ACM (2010) 179-180

6. Khurshid, S., Păsăreanu, C.S., Visser, W.: Generalized Symbolic Execution for
Model Checking and Testing. In: Proceedings of the 9th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems. TACAS’03,
Berlin, Heidelberg, Springer-Verlag (2003) 553-568

7. Souza, M., Borges, M., d’Amorim, M., Păsăreanu, C.S.: CORAL: Solving Complex
Constraints for Symbolic Pathfinder. In: Proceedings of the Third International
Conference on NASA Formal Methods. NFM’ll , Berlin, Heidelberg, Springer-
Verlag (2011) 359-374

8. Păsăreanu, C.S., Mehlitz, P.C., Bushnell, D.H., Gundy-Burlet, K., Lowry, M., Per­
son, S., Pape, M.: Combining Unit-level Symbolic Execution and System-level

228

http://babelfish.arc.nasa.gov/trac/jpf

Concrete Execution for Testing NASA Software. In: Proceedings of the 2008 In­
ternational Symposium on Software Testing and Analysis. ISSTA ’08, New York,
NY, USA, ACM (2008) 15-26

9. Boyer, R.S., Elspas, B., Levitt, K.N.: SELECT - a Formal System for Testing and
Debugging Programs by Symbolic Execution. In: Proceedings of the International
Conference on Reliable Software, New York, NY, USA, ACM (1975) 234-245

10. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE: Automat­
ically Generating Inputs of Death. In: Proceedings of the 13th ACM Conference
on Computer and Communications Security. CCS ’06, New York, NY, USA, ACM
(2006) 322-335

11. Godefroid, P., Klarlund, N., Sen, K.: DART: Directed Automated Random Testing.
In: Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation. PLDI ’05, New York, NY, USA, ACM (2005) 213-223

12. Sen, K., Agha, G.: CUTE and jCUTE: Concolic Unit Testing and Explicit Path
Model-checking Tools. In: Proceedings of the 18th International Conference on
Computer Aided Verification. CAV’06, Berlin, Springer-Verlag (2006) 419-423

13. Coward, P.D.: Symbolic Execution Systems - a Review. Software Engineering
Journal 3(6) (November 1988) 229-239

14. Tillmann, N., De Halleux, J.: Pex: White Box Test Generation for .NET. In:
Proceedings of the 2nd International Conference on Tests and Proofs. TAP’08,
Berlin, Heidelberg, Springer-Verlag (2008) 134-153

15. Jamrozik, K., Fraser, G., Tillman, N., Halleux, J.: Generating Test Suites with
Augmented Dynamic Symbolic Execution. In: Tests and Proofs. Volume 7942 of
Lecture Notes in Computer Science., Springer Berlin Heidelberg (2013) 152-167

16. Song, J., Ma, T., Cadar, C., Pietzuch, P.: Rule-Based Verification of Network
Protocol Implementations Using Symbolic Execution. In: Proceedings of the 20th
IEEE International Conference on Computer Communications and Networks (IC-
CCN’ll). (2011) 1-8

17. Fu, X., Qian, K.: SAFELI: SQL Injection Scanner Using Symbolic Execution. In:
Proceedings of the 2008 Workshop on Testing, Analysis, and Verification of Web
Services and Applications. TAV-WEB ’08, New York, ACM (2008) 34-39

18. Bushnell, D., Giannakopoulou, D., Mehlitz, P., Paielli, R., Păsăreanu, C.S.: Veri­
fication and Validation of Air Traffic Systems: Tactical Separation Assurance. In:
Aerospace Conference, 2009 IEEE. (2009) 1-10

19. von Detten, M.: Towards Systematic, Comprehensive Trace Generation for Behav­
ioral Pattern Detection Through Symbolic Execution. In: Proceedings of the 10th
ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools.
PASTE ’l l , New York, NY, USA, ACM (2011) 17-20

20. Ihantola, P.: Test Data Generation for Programming Exercises with Symbolic
Execution in Java PathFinder. In: Proceedings of the 6th Baltic Sea Conference
on Computing Education Research. Baltic Sea ’06, New York, ACM (2006) 87-94

21. Sinha, S., Shah, H., Görg, C., Jiang, S., Kim, M., Harrold, M.J.: Fault Localization
and Repair for Java Runtime Exceptions. In: Proceedings of the 18th International
Symposium on Software Testing and Analysis. ISSTA ’09, New York, NY, USA,
ACM (2009) 153-164

22. Weimer, W., Necula, G.C.: Finding and Preventing Run-time Error Handling
Mistakes. In: Proceedings of the 19th Annual ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages, and Applications. OOPSLA
’04, New York, NY, USA, ACM (2004) 419-431

23. Csallner, C., Smaragdakis, Y.: JCrasher: an Automatic Robustness Tester for Java.
Software Practice and Experience 34(11) (September 2004) 1025-1050

229

