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Abstract

Three problems of A. Kroó on multiple Chebyshev polynomials are
solved using the Borsuk-Ulam antipodal theorem.

Multiple Chebyshev polynomials have been introduced in the paper [4] by
András Kroó. Their definition is as follows. Let w1, . . . , wm be nonnegative
continuous weight functions on an interval [a, b] ⊂ R, neither of which vanishes
identically, and let n1, . . . , nm be positive integers. An (n1, . . . , nm)-Chebyshev
polynomial associated with (w1, . . . , wm) is a polynomial P (x) = xk + · · · of
some degree k ≤ n1 + · · ·+ nm such that for each j = 1, . . . ,m, zero is its best
wj-approximant among all polynomials of degree at most nj − 1, i.e. for every
polynomial q of degree at most nj − 1 we have

∥wjP∥[a,b] ≤ ∥wj(P + q)∥[a,b],

where ∥ · ∥[a,b] denotes the supremum norm on [a, b]. This is an analogue of
multiple orthogonal polynomials, see [4]. We also refer to [2, Secs. 3.5, 3.6] for
the classical case and for discussions of Chebyshev alternations/equioscillations
that we shall use below.

The paper [4] proves the existence of any (n1, . . . , nm)-Chebyshev polyno-
mial if the system (w1, . . . , wm) satisfies a certain weak-Chebyshev property. In
particular, it was proven that all (n1, . . . , nm)-Chebyshev polynomials exist for
exponential weights eiλ1x, . . . , eiλmx, λi ̸= λj . These results were obtained in [4]
as the p → ∞ case of similar Lp statements. In connection with these several
questions have been asked in [4]:
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• Are there weights different from exponential ones for which multiple Cheby-
shev polynomials exist?

• When multiple Chebyshev polynomials exist, then is there one with max-
imal degree (i.e. of degree n = n1 + · · ·+ nm)?

• Are multiple Chebyshev polynomials unique?

The aim of this paper is to answer these questions, namely we show that

• Multiple Chebyshev polynomials exist for all (w1, . . . , wm) and all (n1, . . . , nm).

• There may not exist one of maximal degree.

• In general, multiple Chebyshev polynomials are not unique.

We begin with

Theorem 1 For any weights (w1, w2, . . . , wm) a multiple Chebyshev polynomial
exists for any degrees (n1, n2, . . . , nm).

Note however, that, in view of Proposition 2 below, the degree may be smaller
than n. In the extreme case when all wj ’s are even functions and [a, b] is an
interval symmetric with respect to the origin, f(x) = x is clearly a (1, 1, · · · , 1)
multiple multiple Chebyshev polynomial, and so is any odd power x2k+1, 2k +
1 ≤ m. This shows that, in general, multiple Chebyshev polynomials are not
unique.

Proof. First we show that a multiple Chebyshev polynomial of any degree
(n1, . . . , nm) exists in L2k-norms, k = 1, 2, . . . (see below what exactly that
means):

∥f∥L2k(wj) =

{∫ b

a

f2kw2k
j

}1/2k

.

Set n = n1 + · · · + nm, let Sn be the unit sphere in Rn+1, and for ξ =
(ξ0, . . . , ξn) ∈ Sn set

fξ(x) = ξ0 + ξ1x+ · · ·+ ξnx
n.

Then ∥fξ∥2kL2k(wj)
is a homogenous polynomial of degree 2k of the variables

ξ0, . . . , ξn whenever k is a positive integer, so the partial derivatives below exist.
Define the vector (η1, . . . , ηn) as(
ξ0, ξ1, . . . , ξn1−1, ξ0, ξ1, . . . , ξn2−1, ξ0, ξ1, . . . , ξn3−1, . . . , ξ0, ξ1, . . . , ξnm−1

)
,
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and let is = j if n1 + · · ·+ nj−1 < s ≤ n1 + · · ·+ nj , s = 1, . . . , n, where we set
n0 = 0. The function

Fk(ξ) =

(
∂∥fξ∥L2k(wis )

∂ηs

)n

s=1

is a continuous odd function on Sn that maps Sn into Rn, hence, by the
Borsuk-Ulam antipodal theorem [1, p. 241], there is a ξ(k) such that Fk(ξ

(k)) =
(0, . . . , 0). If we look at the definition of the vector η then we can see that this
means that

∂∥fξ∥L2k(wj)

∂ξs ξ(k)
= 0

for all 0 ≤ s < nj , j = 1, . . . ,m. Then for any vector v = (c0, . . . , cnj−1) the
directional derivative in the direction of v also vanishes:

d∥fξ+tv∥L2k(wj)

dt t = 0
=:

∂∥fξ∥L2k(wj)

∂v ξ(k)
= 0 (1)

because this directional derivative is

nj−1∑
s=0

cs
∂∥fξ∥L2k(wj)

∂ξs ξ(k)
.

We claim that this fξ(k) has the extremality property that for any j = 1, . . . ,m

∥fξ(k)∥L2k(wj) ≤ ∥fξ(k) + p∥L2k(wj) (2)

for any polynomial p of degree < nj . Indeed, suppose that is not true, and for
some p(x) = c0 + c1x+ · · ·+ cnj−1x

nj−1 we have

∥fξ(k)∥L2k(wj) ≥ ∥fξ(k) + p∥L2k(wj) + ε

with some ε > 0. Then for small λ > 0

∥fξ(k) + λp∥L2k(wj) = ∥(1− λ)fξ(k) + λ(fξ(k) + p)∥L2k(wj)

≤ ∥(1− λ)fξ(k)∥L2k(wj) + ∥λ(fξ(k) + p)∥L2k(wj)

≤ (1− λ)∥fξ(k)∥L2k(wj) + λ
(
∥fξ(k)∥L2k(wj) − ε

)
= ∥fξ(k)∥L2k(wj) − λε,

which shows that with v = (c0, . . . , cnj−1)

lim
λ→0+0

∥fξ(k) + λp∥L2k(wj) − ∥fξ(k)∥L2k(wj)

λ
=

∂∥fξ∥L2k(wj)

∂v ξ(k)

cannot be zero, which contradicts (1). Hence, (2) is true for all j and p.
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Let now ξ∗ ∈ Sn be a limit point of {ξ(k)}∞k=1, say ξ(k) → ξ∗ as k → ∞,
k ∈ N . We claim that, modulo a multiplicative constant, fξ∗ is an (n1, . . . , nm)
multiple Chebyshev polynomial for (w1, . . . , wm). Suppose to the contrary that
this is not the case, and for some j = 1, . . . ,m and for some polynomial p of
degree < nj we have with some ε > 0

∥(fξ∗ + p)wj∥ < (1− ε)4∥fξ∗wj∥,

where ∥ · ∥ = ∥ · ∥[a,b]. Then for all large k ∈ N we also have

∥(fξ(k) + p)wj∥ < (1− ε)3∥fξ(k)wj∥,

which implies

∥fξ(k) + p∥L2k(wj) ≤ ∥(fξ(k) + p)wj∥(b− a)1/2k < (1− ε)2∥fξ(k)wj∥, (3)

provided k is so large that (b − a)1/2k < 1/(1 − ε). On the other hand, the
family of functions

{fξwj , ξ ∈ Sn, 1 ≤ j ≤ m}

is uniformly equicontinuous on [a, b], hence there is a θ > 0 such that∣∣∣{x ∈ [a, b] |fξ(x)wj(x)| > (1− ε)∥fξwj∥}
∣∣∣ ≥ θ, ξ ∈ Sn, 1 ≤ j ≤ m,

where | · | stands for the Lebesgue-measure. But then for all k

∥fξ(k)∥L2k(wj) ≥ (1− ε)∥fξ(k)wj∥θ1/2k > (1− ε)2∥fξ(k)wj∥ (4)

if k is so large that θ1/2k > 1 − ε. Now for sufficiently large k ∈ N both (3)
and (4) must be true. However, that contradicts (2), and this contradiction
proves the claim that fξ∗ becomes, after proper normalization (to have leading
coefficient 1), an (n1, . . . , nm) multiple Chebyshev polynomial for the weights
(w1, . . . , wm).

Next, we show that multiple Chebyshev polynomials of maximal n1+· · ·+nm

degree may not exist.

Proposition 2 There are two continuous weights w1, w2 such that both of them
are positive on (−3, 3) and vanish outside that interval, and there is no (1, 1)
multiple Chebyshev polynomial of degree 2 for the pair (w1, w2).

Naturally, [−3, 3] could be replaced by any interval [a, b].
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Proof. Part 1. For some small ε > 0 (ε < 1/1000 certainly suffices) consider
the intervals

I−2 = [−2,−2 + ε], I−1 = [−1,−1 + ε], I1 = [1− ε, 1], I2 = [2− ε, 2], (5)

the sets K1 = I−1 ∪ I1 and K2 = I−2 ∪ I2, and let W1 be equal to 1 on K1 and
W2 equal to 1 on K2 and both of them be zero elsewhere. We claim that there
is no (1, 1)-multiple Chebyshev polynomial of degree 2 for these weights.

Suppose to the contrary that f(x) = x2+αx+β is a (1, 1) multiple Chebyshev

polynomial. Then it has a 2-point Chebyshev equioscillation system x
(j)
1 < x

(j)
2

for the weight Wj , i.e. for j = 1, 2

• x
(j)
1 , x

(j)
2 ∈ Kj and f(x

(j)
1 ) = −f(x

(j)
2 ),

• |f(x(j)
1 )| = maxx∈Kj |f(x)|.

Now we need to distinguish three cases.

Case I. x
(1)
1 ∈ I−1, x

(1)
2 ∈ I1. If α > 5 then f is strictly increasing on [−2, 2], so

we must have x
(1)
1 = −1 and x

(1)
2 = 1. If α < −5 then f is strictly decreasing

on [−2, 2], and we must have again x
(1)
1 = −1 and x

(1)
2 = 1. On the other hand,

if −5 ≤ α ≤ 5, then f(−1) = f(x
(1)
1 ) + O(ε) and f(1) = f(x

(1)
2 ) + O(ε), so in

any case f(−1) = −f(1) + O(ε), i.e. 1 − α + β = −(1 + α + β) + O(ε), which
gives

β = −1 +O(ε). (6)

In a similar manner, if x
(2)
1 ∈ I−2, x

(2)
2 ∈ I2, then f(−2) = −f(2) + O(ε),

i.e. 4− 2α+ β = −(4 + 2α+ β) +O(ε) follows, and so

β = −4 +O(ε). (7)

Since for small ε (6) and (7) contradict one another, we must have in the

case considered that either x
(2)
1 , x

(2)
2 ∈ I−2 or x

(2)
1 , x

(2)
2 ∈ I2. If x

(2)
1 , x

(2)
2 ∈ I−2,

then f must have a zero in I−2, and then to match (6), it must be of the

form f(x) = (x + 2 + O(ε))(x − 1
2 + O(ε)). In this case |f(x(2)

1 )| = O(ε) while

f(2) = 6+O(ε), so x
(2)
1 cannot be a point where |f | = |f |W2 takes its maximum

on K2, which contradicts the definition of x
(2)
1 .

In a similar manner, if x
(2)
1 , x

(2)
2 ∈ I2 then f must have a zero in I2, and

then to match (6), it must be of the form f(x) = (x− 2 +O(ε))(x+ 1
2 +O(ε)).

Then again |f(x(2)
1 )| = O(ε) while f(−2) = 6 + O(ε), which again contradicts

the definition of x
(2)
1 .

Case II. x
(2)
1 ∈ I−2, x

(2)
2 ∈ I2 and Case I does not hold. As we have seen above,

in this case (7) is true, and we must have either x
(1)
1 , x

(1)
2 ∈ I−1 or x

(1)
1 , x

(1)
2 ∈ I1.
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In the first case f must have a zero in I−1, and then to match (7), it must be

of the form f(x) = (x + 1 + O(ε))(x − 4 + O(ε)), which gives |f(x(1)
1 )| = O(ε)

while f(1) = −6 + O(ε), a contradiction. If x
(1)
1 , x

(1)
2 ∈ I1 then f is of the

form f(x) = (x − 1 + O(ε))(x + 4 + O(ε)), which gives |f(x(1)
1 )| = O(ε) while

f(−1) = −6 +O(ε), again a contradiction.
Thus, neither of the cases I or II is possible, so we must have

Case III. x
(2)
1 , x

(2)
2 both belong either to I−2 or to I2, and at the same time

x
(1)
1 , x

(1)
2 both belong either to I−1 or to I1. However, this is also impossible:

• If x
(2)
1 , x

(2)
2 ∈ I−2 and x

(1)
1 , x

(1)
2 ∈ I−1, then f(x) = (x+1+O(ε))(x+2+

O(ε)), which implies |f(x(1)
1 )| = O(ε), f(1) = 6 +O(ε), a contradiction.

• If x
(2)
1 , x

(2)
2 ∈ I2 and x

(1)
1 , x

(1)
2 ∈ I−1, then f(x) = (x+ 1 + O(ε))(x− 2 +

O(ε)), which implies |f(x(1)
1 )| = O(ε), f(1) = −2 +O(ε), a contradiction.

• If x
(2)
1 , x

(2)
2 ∈ I−2 and x

(1)
1 , x

(1)
2 ∈ I1, then f(x) = (x− 1 + O(ε))(x+ 2 +

O(ε)), which implies |f(x(1)
1 )| = O(ε), f(−1) = −2+O(ε), a contradiction.

• If x
(2)
1 , x

(2)
2 ∈ I2 and x

(1)
1 , x

(1)
2 ∈ I1, then f(x) = (x−1+O(ε))(x−2+O(ε)),

which implies |f(x(1)
1 )| = O(ε), f(−1) = 6 +O(ε), a contradiction.

This proves the claim of Part 1 that no (1, 1) multiple Chebyshev polynomial
of degree 2 exists for (W1,W2).

Part 2. Next, we extend W1,W2 from the sets K1 and K2 to continuous weights
w1, w2 that are positive on (−3, 3) and vanish outside that interval, in such
a way that for any polynomial f(x) = x2 + αx + β the norms ∥fw1∥[−3,3]

and ∥fw2∥[−3,3] can be attained only on K1, resp. K2. That is easy, e.g. if
∥f∥K1 = ∥fW1∥K1 = M , then, by Markov’s inequality (see [2]) applied to the
interval I1, we get |f ′(x)| = |2x + α| ≤ 8M/ε on I1, so |α| ≤ 8M/ε + 2, and
|f ′(x)| ≤ 8M/ε+11 for all x ∈ [−3, 3]. As a consequence, for x ∈ [−3, 3] \ I1 we
have |f(x)| ≤ M + (8M/ε+ 11)dist(x,K1)|, and so if

w1(x) <
M

M + (8M/ε+ 11)dist(x,K1)
(8)

on [−3, 3] \ I1 and w1(x) = 0 outside (−3, 3), then |f(x)|w1(x) attains its maxi-
mum M only on K1. Now, by V. A. Markov’s inequality (see [2]) for the second
derivative on Is = I1 or Is = I−1 (depending where the maximum of |f | occurs
on K1), we get that 2 = ∥f ′′∥Is ≤ (4/ε2)(4 · 3/3)M , i.e. M ≥ ε2/8. Since the
right-hand side in (8) is monotone increasing in M , the inequality (8) certainly
holds if

w1(x) <
ε2/8

ε2/8 + (ε+ 11)dist(x,K1)
, x ∈ [−3, 3] \ I1, (9)
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which can be easily achieved fulfilling at the same time the relations w1(x) > 0
for x ∈ (−3, 3) and w1(x) = 0 for x ̸∈ (−3, 3). The extension of W2 is similar.

Now since |f |w1 can attain its maximal value only onK1 and |f |w2 can attain
its maximal value only on K2, a multiple (1, 1) Chebyshev polynomial f(x) =
x2 + αx + β for the pair (W1,W2) would also be a multiple (1, 1) Chebyshev
polynomial for the pair (w1, w2), which is not the case as we have seen in Part
1.

The discussion so far shows that non-unicity of multiple Chebyshev poly-
nomials and non-existence with maximal degree can happen when the smallest
intervals containing the support of the different wj ’s overlap. On the other
hand, when the weights w1, . . . , wm are supported on disjoint intervals, then
unicity easily follows. Indeed, suppose that w1, . . . , wm are zero outside some
closed intervals I1, . . . , Im ⊆ [a, b] with pairwise disjoint interior. If P and Q
are two (n1, . . . , nm)-Chebyshev polynomials, then wjP and wjQ must have
nj +1 Chebyshev equioscillations (of possibly different amplitudes for wjP and
for wjQ) on Ij , therefore both P and Q must have nj zeros inside Ij . Thus, P
and Q both must be of maximal n = n1 + · · ·+ nm degree, which implies that
P − Q is of degree < n (the highest terms cancel). Next, note that wj must
vanish at both endpoints of Ij , with the exception of a or b, i.e. if a or b belongs
to Ij then wj does not need to vanish at a or b. As a consequence, the points
of equioscillations cannot include the endpoints of Ij except perhaps for a or b.
To simplify the language below let us agree that when we say “inside Ij” then
this means the interior of Ij except that if a or b belongs to Ij then we also
include them in the interior. Now P −Q also has nj zeros “inside Ij”. Indeed,
this is clear if the amplitudes of equioscillations on Ij for wjP and for wjQ
are different, and in these cases one gets nj different zeros in the interior of Ij .
When the amplitudes in question are the same, then, by the same argument, for
any λ < 1 the polynomial P − λQ has nj distinct zeros lying in the interior of
Ij , and for λ → 1 we get that P −Q also has nj (not necessarily distinct) zeros
“inside Ij” counting multiplicity. This is true for all j and we get altogether
n1 + · · ·+ nm = n zeros for P −Q. But P −Q, being of degree smaller than n,
can have n zeros only if P −Q ≡ 0, which proves the unicity. We note that the
disjoint interval case has also been settled by [4, Corollaries 3,4].

Finally, we prove that in the case just discussed (w1, . . . , wm are zero outside
some closed intervals I1, . . . , Im with pairwise disjoint interior) also the existence
of a multiple Chebyshev polynomial of maximal degree follows rather easily
from Brower’s fixed point theorem (note that this statement also follows from
Theorem 1 and from the unicity proof just given, however the following direct
and simple proof is rather instructive).

Set, as before, n = n1+· · ·+nm. If Xj = (x
(j)
1 , . . . , x

(j)
nj ) ∈ I

nj

j , j = 1, . . . ,m,
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then let

X := (X1, . . . , Xm) = (x
(1)
1 , . . . , x(1)

n1
, x

(2)
1 , . . . , x(2)

n2
, . . . , x

(m)
1 , . . . , x(m)

nm
)

be the vector in
∏m

j=1 I
nj

j which is obtained by listing the coordinates ofX1, X2, . . . , Xm

one after the other in this order. Conversely, if X = (x1, . . . , xn) ∈
∏m

j=1 I
nj

j ,
then let X1 = (x1, . . . , xn1), X2 = (xn1+1, xn1+2, . . . , xn1+n2), etc., so that
X = (X1, . . . , Xm). Also, for a vector Y = (y1, . . . , yl) define

PY (x) =
l∏

s=1

(x− ys).

For an X ∈
∏m

j=1 I
nj

j consider the point X ′ = (X ′
1, . . . , X

′
m) ∈

∏m
j=1 I

nj

j ,
where X ′

j , j = 1, . . . ,m, has, as its coordinates, the zeros—in increasing order—
of the nj-th classical weighted Chebyshev polynomial for the weight

Wj(x) = wj(x)
∏
s̸=j

|PXs(x)|.

This Wj is a nonnegative and not identically zero function on Ij , so, by the clas-
sical Chebyshev argument (which is valid for weights like Wj that may have ze-
ros), there exists a polynomial Unj (x) = xnj + · · · which minimizes the weighted
norm ∥WjUnj∥Ij among all polynomials xnj + · · ·. Again by the classical ar-
gument, this WjUnj must have a set of nj + 1 Chebyshev equioscillations on
Ij , which implies that Unj is unique. Thus, the X ′

j consists of the zeros of Unj

listed in increasing order. The unicity of Unj also implies its continuity: if Wj

changes continuously, then so does Unj (this continuity claim is easy to prove,
or see [3]). As a consequence, X ′

j depends continuously on X.

In other words, X → X ′ is a continuous mapping of
∏m

j=1 I
nj

j into itself,
therefore, by the Brower fixed point theorem, it has a fixed point: X = X ′. But
that means that each PXj is the nj-th Chebyshev polynomial for the weight Wj .
Now on Ij we have WjPXj ≡ wjPX or WjPXj ≡ −wjPX (all sign changes of∏

s̸=j PXs(x) are outside Ij), i.e., by the construction of the mapping X → X ′,
the weighted polynomial wjPX has an (nj + 1)-equioscillation set on Ij , say

wjPX(x(nj)
s ) = (−1)nj+1−sA, x

(nj)
1 < x

(nj)
2 < . . . < x

(nj)
nj+1, x(nj)

s ∈ Ij

with A = ∥wjPX∥[a,b]. Now if we had for some 1 ≤ j ≤ m and for some
polynomial q of degree < nj the relation ∥wj(PX + q)∥[a,b] < A, then for s =
1, . . . , nj + 1 the equality

sign(wjq(x
(nj)
s )) = sign

(
wj(PX + q)(x(nj)

s )− wjPX(x(nj)
s )

)
= sign

(
−wjPX(x(nj)

s )
)
= (−1)nj−s
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would be true, which is not possible for a polynomial q ̸≡ 0 of degree < nj .
Hence, PX is a multiple Chebyshev polynomial for (w1, . . . , wm) and (n1, . . . , nm)
of maximal degree n = n1 + · · ·+ nm.

The author is grateful to András Kroó for stimulating discussions.
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