A More General Maximal Bernstein-type Inequality

Péter Kevei *
MTA-SZTE Analysis and Stochastics Research Group
Bolyai Institute, Aradi vértanik tere 1, 6720 Szeged, Hungary
e-mail: kevei@math.u-szeged.hu

David M. Mason'
University of Delaware
213 Townsend Hall, Newark, DE 19716, USA
e-mail: davidm@udel.edu

May 24, 2012

Abstract
We extend a general Bernstein-type maximal inequality of Kevei and Mason (2011) for
sums of random variables.
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1 Introduction

Let X1, X5,... be a sequence of random variables, and for any choice of 1 < k <[ < 0o we
denote the partial sum S(k,l) = Zi:k X, and define M (k,l) = max{|S(k,k)|,...,|S(k,0)|}. It
turns out that under a variety of assumptions the partial sums S(k,) will satisfy a generalized
Bernstein-type inequality of the following form: for suitable constants A > 0, a > 0, b > 0 and
O<vy<2forallm>0,n>1andt >0,

at?
< — . .
P{|S(m+1,m+n)]>t}_Aexp{ n+bt7} (1.1)

Kevei and Mason [2] provide numerous examples of sequences of random variables X1, Xo, ...,
that satisfy a Bernstein-type inequality of the form (1.1). They show, somewhat unexpectedly,
without any additional assumptions, a modified version of it also holds for M (14 m,n +m) for
all m > 0 and n > 1. Here is their main result.

Theorem 1.1. Assume that for constants A >0, a > 0, b > 0 and v € (0,2), inequality (1.1)
holds for allm > 0,n > 1 and t > 0. Then for every 0 < ¢ < a there exists a C' > 0 depending
only on A,a, b and v such that for allm>1, m >0 andt >0,

2
P{M(m+1,m+n)>t}§C’exp{—nfbﬂ}. (1.2)
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There exists an interesting class of Bernstein-type inequalities that are not of the form (1.1).
Here are two motivating examples.

Example 1. Assume that Xi, Xs,..., is a stationary Markov chain satisfying the conditions of
Theorem 6 of Adamczak [1] and let f be any bounded measurable function such that Ef (X;) =
0. His theorem implies that for some constants D > 0, d; > 0 and do > 0 for all t > 0 and
n>1,

_ Dt?
P{|Sn(HI =t} <D 1exp (_ndl—l—tdglogn> ) (1.3)

where S, (f) = >, f(X;), and D/d; is related to the limiting variance in the central limit
theorem.

Example 2. Assume that Xi, Xo,..., is a strong mixing sequence with mixing coefficients
a(n), n > 1, satisfying for some d > 0, o (n) < exp (—2dn). Also assume that EX; = 0 and for
some M > 0, |X;| < M, for all i > 1. Theorem 2 of Merlevede, Peligrad and Rio [4] implies
that for some constant D > 0 for all t > 0 and n > 1,

Dt?
P{IS,| > 1} < Dexp (— ) | (1.4
nv? + M? + tM (logn)

where S, = Y | X; and v? = sup;- (Var (Xi) +23 5 [cov (Xi,Xj)]> .

The purpose of this note to establish the following extended version of Theorem 1.1 that will
show that a maximal version of inequalities (1.3) and (1.4) also holds.

Theorem 1.2. Assume that there exist constants A > 0 and a > 0 and a sequence of non-
decreasing non-negative functions {gn},~; on (0,00), such that for allt >0 andn > 1, g, (t) <
gn+1 (t) and for all0 < p <1

2
Ji_)rgoinf {gn(tt)logt tgn (1) > pn} = 00, (1.5)
where the infimum of the empty set is defined to be infinity, such that for allm >0, n > 1 and
t>0,

P{|S(m+1,m +n)| >t}§Aexp{—at2}. (1.6)

n+ gn(t)

Then for every 0 < ¢ < a there exists a C > 0 depending only on A,a and {gn}n21 such that
foralln>1, m>0andt >0,

o2
P{M(m+1,m+n)>t}§Cexp{—n+tgn(t)}. (1.7)

Note that condition (1.5) trivially holds when the functions g, are bounded, since the corre-
sponding sets are empty sets. However, in the interesting cases g,’s are not bounded, and in
this case the condition basically says that g, (t) increases slower than ¢2.

Essentially the same proof shows that the statement of Theorem 1.2 remains true if in the
numerator of (1.6) and (1.7) the function ¢? is replaced by a regularly varying function at infinity
f(t) with a positive index. In this case the #? in condition (1.5) must be replaced by f(¢). Since
we do not know any application of a result of this type, we only mention this generalization.



Proof. Choose any 0 < ¢ < a. We prove our theorem by induction on n. Notice that by the
assumption, for any integer ng > 1 we may choose C' > Ang to make the statement true for
all 1 < n < ng. This remark will be important, because at some steps of the proof we assume
that n is large enough. Also since the constants A and a in (1.6) are independent of m, we can
without loss of generality assume m = 0.

Assume the statement holds up to some n > 2. (The constant C' will be determined in the
course of the proof.)

Case 1. Fix a t > 0 and assume that

gn1(t) < an, (1.8)

for some 0 < o < 1 be specified later. (In any case, we assume that an > 1.) Using an idea of
[5], we may write for arbitrary 1 < k <n,0< ¢ <1 and p+ g =1 the inequality

P{M(1,n+1) >t} <P{M(1,k) >t} + P{|S(1,k +1)| > pt}
+ P{M(k+2,n+1) > qt}.
Let )
— n—+ gn—i—l(qt) —q gn-i—l(t)
14+ ¢2
Note that u < n —1if 0 < a < 1 is chosen small enough depending on ¢, for n large enough.
Notice that

t2 B q2t2

= . 1.9
Wt g n—ut gra(a) (19)
Set
k= lu]. (1.10)
Using the induction hypothesis and (1.6), keeping in mind that 1 < k < n — 1, we obtain
ct? ap2t2
P{M(1,n+1) >t} <Cex {—}+Aex {— }
el ) > SCOP\ T PU R+ 1+ gema (D)
2,42
+ Cexp {— = }
n—k+ gn—r(qt)
) ) (1.11)
<Cexp{—6t}+Aexp{— ap’t }
a k+ In+1 (t) kE+1+ gn+1(pt)
2,42
cq-t
+ Cex {— } .
PUT 0=k + gnralat)

Notice that we chose k to make the first and third terms in (1.11) almost equal, and since by
(1.10)
2 - 12
k+gni1(t) — n—k+ gniai(qt)
the first term is greater than or equal to the third.
First we handle the second term in formula (1.11), showing that whenever g,11(t) < an,

{ ap’t? } < { ct? }
exp{ — <exps — .
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For this we need to verify that for g,11(t) < an,
ap? c

> ,
E+14gnpi(pt) = n4 14 gnyai(t)

(1.12)

which is equivalent to

ap?(n+ 1+ gni1(t)) > c(k + 1 + gny1(pt)).

Using that
1
k=l Sutl=1+70 [+ gns1(at) — @°gnr (1)]
it is enough to show

n <ap2 - ch2> + ap? — 2¢
2 c 2
+ | gnr1(t)ap” — gnr1(pt)c — 54 (gnt1(qt) — ¢ gn+1(2)) | > 0.

Note that if the coefficient of n is positive, then we can choose « in (1.8) small enough to make
the above inequality hold. So in order to guarantee (1.12) (at least for large n) we only have to
choose the parameter p so that ap? — ¢ > 0, which implies that

2% >0 (1.13)

SAS

holds, and then select a small enough, keeping mind that we assume an > 1 and k£ <n — 1.
Next we treat the first and third terms in (1.11). Because of the remark above, it is enough to
handle the first term. Let us examine the ratio of C exp{—ct?/(k+gn+1(t))} and C exp{—ct?/(n+
1+ gn+1(t))}. Notice again that since u + 1 > k, the monotonicity of g,+1(¢) and gn4+1(t) < an
implies

t) — g2 t
n+1—k2n_u:n_"+9n+1(Q) gn+1(t)

14 ¢?
o = (1= *)gnia(t)
2 2
- ol —q°)

=:cin.
At this point we need that 0 < ¢; < 1. Thus we choose « small enough so that
@ —a(l-q¢*) >o. (1.14)
Also we get using ¢gn+1(t) < an the bound
(n+ 1+ gnp1(1)(k + gnp1 (1)) < 2n*(1 + @) = con?,

which holds if n large enough. Therefore, we obtain for the ratio

1 1 cert? 1
exp —ct? — <expy — <e 7,
k+ gn+1(t) n+14+gnt1 (t) Ccomn
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whenever ccit?/(can) > 1, that is t > y/con/(cc1). Substituting back into (1.11), for ¢ >
Vean/(ccr) and gn4+1(t) < an we obtain

P{M(1,n+1) >t}

< (EC + A) exp{—ctQ/(n +14gn1(t)} < Cexp{—ctQ/(n + 14 gns1(t)},

where the last inequality holds for C' > Ae/(e — 2).
Next assume that t < \/con/(ccq). In this case choosing C' large enough we can make the bound
> 1, namely

t2
C’exp{— ¢ } >Cexp{—002n} :Ce_CQ/Cl > 1,
n+ 14 gna(t) coym

if ¢ > ec2/c1,

Case 2. Now we must handle the case g,+1(t) > an. Here we apply the inequality
P{M(1,n+1) >t} < P{M(1,n) >t} + P{|S(1,n+1)| > t}.

Using assumption (1.6) and the induction hypothesis, we have

ct? at?
P{M(1,n+1) >t} < Cexp {_TH‘g(t)} +A6Xp{_n+ 1+g +1(t)}

ct? at?
< - A - .
< Cexp T gt + Aexp S S—
+

We will show that the right side < C exp{—ct?/(n+1+g,.+1(t))}. For this it is enough to prove

exp {Ctz{ (n T Z’lg“(t)) n+1 +1gn+1(t)> }
_ tla—c

}g L
n+ 1+ gni(t)

(1.15)

+A€
—ex
C p

Using the bound following from g¢,,+1(¢) > an and recalling that an > 1 and 0 < a < 1, we get

t2 a2t2 t2
> =c3—,
(n+ g1 )+ 1+ gor1 () — (L+ )1 +20)gns1 (2 gnri (1)?
and
t?(a — c) 2 ala—c) t?

> = Cq.
n+14+gptr1(t) = gny1(t) 14 2a In+1(t)

Choose § > 0 so small such that 0 < z < ¢ implies e—cca? <1-— ‘3673:1@2.
For t/gn+1(t) > d the left-hand side of (1.15) is less then

A

_ 2
e cc3d + 67

which is less than 1, for C large enough.



For t/gn4+1(t) < 0 by the choice of § the left-hand side of (1.15) is less then

L e t2 +A { 12 }
-+ Sexpl————a
2 gny1(t)? C In+1(t)

ces 12 - A { 12 }
> —exXpy ————<C4 (-
2 gnt1 (t)Q C gn+1 (t) !

By (1.5), for any 0 < 7 < 1 and all large enough n, gn+1(t)1 {gns1 (t) > an} < nt?, so that for
all large n, whenever g, 11 (t) > an, we have

which is less than 1 if

t2
5 >177

In+1 (t)

and again by (1.5) for all large n, whenever g,11 (t) > an, t2/gn41(t) > (3/cq ) logt. Therefore
for all large n, whenever g, (t) an,

t2
e}
Gnr1(t)
2Ceccs

which is smaller than ¢t~==72, for ¢ large enough, i.e. for n large enough. The proof is complete.
O

By choosing g, (t) = bt” for all n > 1 we see that Theorem 1.2 gives Theorem 1.1 as a special case.
Also note that Theorem 1.2 remains valid for sums of Banach space valued random variables
with absolute value |-| replaced by norm || - ||. Theorem 1.2 permits us to derive the following
maximal versions of inequalities (1.3) and (1.4).

Application 1. In Example 1 one readily checks that the assumptions of Theorem 1.2 are
satisfied with A = D! and a = D/d;

0= ().
dq

We get the maximal version of inequality (1.3) holding for any 0 < ¢ < 1 and all n > 1 and
t>0

P{| max Sy(f)| > t} < Cexp <—0Dt2> , (1.16)

1<m<n nd1 + tdg log n

for some constant C' > D! depending on ¢, D~!, D/d; and {gn}n21.

Application 2. In Example 2 one can verify that the assumptions of the Theorem 1.2 hold
with A = D and a = D/v? and

gn (1) = 02

M? tM
o <U2> (logn)Q,

which leads to the maximal version of inequality (1.4) valid for any 0 < ¢ < 1 and all n > 1 and

t>0 )
Dt
P{ max |Sy,| > t} < Cexp <— € 2) (1.17)
1<ms<n nv? + M2 + tM (logn)
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for some constant C' > D depending on ¢, D/v? and {9n},>1- See Corollary 24 of Merlevede
and Peligrad [3] for a closely related inequality that holds for all n > 2 and ¢ > K logn for some
K >0.

Remark There is a small oversight in the published version of the Kevei and Mason paper.
Here are the corrections that fix it.

1. Page 1057, line -9: Replace “1 <k <n” by “1 <k <n”.

2. Page 1057, line -7: Replace this line with

<P{M(Lk)>t}+P{S(L,k+1)>pt} +P{M(k+2,n+1)>qt}.

3. Page 1058: Replace “k + bp"t?” by “k+ 1+ bp?t?” in equations (2.4) and (2.5), as well as in
line -13.

4. Page 1058: Replace “ap? — ¢” by “ap? — 2¢” in line -9.
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