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1 Introduction
The topic of delay differential equations concerns with a type of differential equa-
tions in which the derivative of the unknown function at a certain time is determined
by the values of the function at previous times. Many studies focus on well known
model equations where the delayed feedback function is given explicitly (Mackey-
Glass equation, Nicholson’s blowflies, Wright’s equation etc.), while others only
require some important properties for the feedback, for example monotonicity or
unimodularity. However, the study of some models from population dynamics and
epidemiology leads to differential equations where the delay terms arise as the solu-
tion of another system of differential equations. In this work, we consider initial value
problems for differential equations with such dynamically defined delayed feedback.
Our goal is to obtain fundamental properties of the system to ensure that the model
equations coming from biological applications are meaningful.
The paper is organized as follows. In Section 2 we introduce the general form of
systems of functional differential equations with dynamically defined delay term,
and we prove the existence and uniqueness of the solution in Section 3. Due to
possible biological interpretations, we give conditions so that the solution preserves
nonnegativity. In Section 4 we detail the autonomous case, determine equilibria of
the system and formulate the linearized equation, while Section 5 concerns with
two examples of applications in population dynamics and the spread of infectious
diseases with travel delay.

2 A system of differential equations with dynami-
cally defined delayed feedback

Consider the initial-value problem for the nonautonomous functional differential
equation

(1)
x′(t) = F(t, xt),

xσ = ϕ,

where x : R � Rn, n ∈ Z+, t, σ ∈ R and t ≥ σ. For τ > 0, we define our phase
space C = C([−τ, 0],Rn) as the Banach space of continuous functions from [−τ, 0]
to Rn, equipped with the usual supremum norm || · ||. Let ϕ ∈ C be the state of
the system at σ. We use the notation xt ∈ C, xt(θ) = x(t + θ) for θ ∈ [−τ, 0]. Let
F : R× C � Rn and let F have the special form F(t, φ) = f(t, φ(0)) +W (t, φ(−τ))
for φ ∈ C, f : R× Rn � Rn, W : R× Rn � Rn.
In the sequel we use the notation |v|k for the Euclidean norm of any vector v ∈ Rk

for k ∈ Z+. For k = 1 we omit lower index 1 for simplicity. We define a Lipschitz
condition as follows. For k, l ∈ Z+, we say that a function F : R×Rk � Rl satisfies
the Lipschitz condition (Lip) on each bounded subset of R× Rk if:

(Lip) For all a, b ∈ R and M > 0, there is a K(a, b,M) > 0 such that:

|F (t, x1)− F (t, x2)|l ≤ K|x1 − x2|k, a ≤ t ≤ b, |x1|k, |x2|k ≤M.

We assume that f : R×Rn � Rn is continuous and satisfies (Lip) on each bounded
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subset of R× Rn. For the definition of W , we make the following preparations. For
any s0 ∈ R and y∗ ∈ Rm, m ∈ Z+, we consider the initial value problem

(2)
y′(s) = g(s, y(s)),

y(s0) = y∗,

where y : R � Rm, s, s0 ∈ R, s ≥ s0, g : R×Rm � Rm, g is continuous on R×Rm and
satisfies the Lipschitz condition (Lip) on each bounded subset of R×Rm. The Picard-
Lindelöf theorem (see Chapter II, Theorem 1.1 and Chapter V, Theorem 2.1 in [2])
states that as g is continuous on a parallelepiped R : s0 ≤ s ≤ s0 + c, |y − y∗|m ≤ d
with the bound B for |g|m on R and g possesses the Lipschitz property (Lip),
there exists a unique solution of (2) y(s; s0, y∗) on the interval [s0, s0 + α] for
α = αs0,y∗,c,d := min{c, d

B
}, and the solution continuously depends on the initial

data. We make the following additional assumption:
(?) For every s0 and y∗, the solution y(s; s0, y∗) of (2) exists at least for τ units of
time, i.e. on [s0, s0 + τ ].

Remark 2.1. The reader may notice that (?) is equivalent to the following assump-
tion:
For every s0 and y∗, solution y(s; s0, y∗) exists for all s ≥ s0.

Remark 2.2. With various conditions on g, we can guarantee that assumption
(?) is fulfilled. For instance, for any s0 ∈ R and L ∈ R+, we define the constant
Lg = Lg(s0, L) as the maximum of |g|m on the set [s0, s0 + τ ] × {v ∈ Rm : |v|m ≤
2L} (continuous functions attain their maximum on every compact set). Then, the
condition that for every s0 ∈ R and L ∈ R+ the inequailty

(3) τ ≤ L

Lg

holds immediately implies that (?) is satisfied.
Indeed, for any s0 and y∗, choose c = τ , d = |y∗|m. Then the Picard-Lindelöf the-
orem guarantees the existence and uniqueness of solution y(s; s0, y∗) on [s0, s0 + α]

for α = min{τ, |y∗|m
B
}, where B is the bound for |g|m on the parallelepiped s0 ≤

s ≤ s0 + τ, |y − y∗|m ≤ |y∗|m. Choosing L = |y∗|m, it follows from the definition
of Lg(s0, L) that B ≤ Lg is satisfied, and using (3) we get τ ≤ |y∗|m

Lg
≤ |y∗|m

B
. We

conclude that α = τ , hence solution y(s; s0, y∗) exists on [s0, s0 + τ ], (?) is satisfied.

The less restrictive condition κ := infs0,L
L
Lg

> 0 implies the existence of the
solution of (2) on [s0, s0 + κ] for any s0. Then it follows that for any s0 the solution
exists for all s ≥ s0, which is equivalent to (?). If we assume that a global Lipschitz
condition (gLip) holds for g, that is, the Lipschitz constant for g in (Lip) can be
chosen independently of a, b and M , then for any s0 and y∗ the solution of (2) exists
for all s ≥ s0, thus also for τ units of time.

Now we are ready for the definition ofW . For h : R×Rn � Rm, k : R×Rm � Rn,
let us assume that h and k are continuous and satisfy the Lipschitz condition (Lip).
For simplicity, we use the notation ys0,v(s) = y(s; s0, h(s0, v)) for the unique solution
of system (2) in the case y∗ = h(s0, v), v ∈ Rn. We define W : R× Rn � Rn as

(4) W (s, v) := k(s, ys−τ,v(s)) = k(s, y(s; s− τ, h(s− τ, v))).
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3 Basic properties
Our goal is to prove the usual existence and uniqueness theorem for (1). First we
obtain the following simple results.

Proposition 3.1. F is continuous on R× C.

Proof. The Picard-Lindelöf theorem and (?) guarantee that for every s0, y∗, there
exists a unique solution of system (2) on the interval [s0, s0 + τ ] and the solution
y(s; s0, y∗) continuously depends on the initial data. Moreover, h and k are continu-
ous which implies the continuity of W . The function f is also continuous, hence we
conclude that F is continuous on R× C.

Proposition 3.2. For any c, d ∈ R such that c < d and for any L ∈ R+, there
exists a bound J = J(c, d, L) such that for any s0 ∈ [c, d] and for any y∗ ∈ Rm such
that |y∗|m ≤ L, the inequality

|y(s; s0, y∗)|m ≤ J

holds for s ∈ [s0, s0 + τ ].

Proof. The Picard-Lindelöf theorem and (?) guarantee that for every s0 ∈ R and
y∗ ∈ Rm, there exists a unique solution y(s; s0, y∗) of system (2) on the interval
[s0, s0 + τ ], and the solution continuously depends on the initial data. Thus, for any
c, d ∈ R where c < d and for any L ∈ R+, the solution y(s; s0, y∗) as an R×R×Rm

variable function is continuous on the set {(s1, s2, v) : s1 ∈ [c, d+ τ ], s2 ∈ [c, d], s1 ≥
s2, |v|m ≤ L}. Continuous functions reach their maximum on any compact set,
i.e. there exists a constant J(c, d, L) such that |y(s; s0, y∗)|m ≤ J . The proof is
complete.

Now we show that besides continuity, F also satisfies a Lipschitz condition on
each bounded subset of R× C:
(LipC) For all a, b ∈ R and M > 0, there is a K(a, b,M) > 0 such that:

|f(t, φ)− f(t, ψ)|n ≤ K||φ− ψ||, a ≤ t ≤ b, ||φ||, ||ψ|| ≤M.

Lemma 3.3. F satisfies the Lipschitz condition (LipC) on each bounded subset of
R× C.

Proof. Fix constants a, b and M , a < b, M > 0. Our aim is to find K(a, b,M).
Due to the continuity of h, there exists a constant Lh(a, b,M) such that for any
||ψ|| ≤ M and s0 ∈ [a − τ, b − τ ], the inequality |h(s0, ψ(−τ))|m ≤ Lh holds. By
choosing c = a− τ , d = b− τ , L = Lh and y∗ = h(s0, ψ(−τ)) it follows from Propo-
sition 3.2 that for any s0 ∈ [a− τ, b− τ ], the inequality |ys0,ψ(−τ)(s)|m ≤ J(a, b, Lh)
holds for s ∈ [s0, s0 + τ ].

Let Kh = Kh(a, b,M) be the Lipschitz constant of h on the set [a−τ, b−τ ]×{v ∈
Rn : |v|n ≤ M}, let Kg = Kg(a, b,M) be the Lipschitz constant of g on the set
[a− τ, b]×{v ∈ Rm : |v|m ≤ J} (note that J is determined by a, b and M). For any
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||φ||, ||ψ|| ≤ M it holds that |φ(−τ)|n, |ψ(−τ)|n ≤ M . Since the solution of (2) can
be expressed as y(s; s0, y∗) = y∗ +

∫ s
s0
g(r, y(r; s0, y∗))dr, for any s0 ∈ [a − τ, b − τ ]

we have

(5)

|ys0,φ(−τ)(s)− ys0,ψ(−τ)(s)|m =

∣∣∣∣h(s0, φ(−τ)) +

∫ s

s0

g(r, ys0,φ(−τ)(r))dr

−
(
h(s0, ψ(−τ)) +

∫ s

s0

g(r, ys0,ψ(−τ)(r))dr

)∣∣∣∣
m

≤ |h(s0, φ(−τ))− h(s0, ψ(−τ))|m

+

∫ s

s0

|g(r, ys0,φ(−τ)(r))− g(r, ys0,ψ(−τ)(r))|mdr

≤ Kh||φ− ψ||

+

∫ s

s0

Kg|ys0,φ(−τ)(r)− ys0,ψ(−τ)(r)|mdr

for s ∈ [s0, s0 + τ ]. For a given s0 ∈ [a− τ, b− τ ] we define

Γ(s) = |ys0,φ(−τ)(s)− ys0,ψ(−τ)(s)|m
for s ∈ [s0, s0 + τ ]. Then (5) gives

Γ(s) ≤ Kh||φ− ψ||+Kg

∫ s

s0

Γ(r)dr,

and from Gronwall’s inequality we have that for any s0 ∈ [a− τ, b− τ ]

(6) Γ(s) ≤ Kh||φ− ψ||eKg(s−s0)

holds for s ∈ [s0, s0 + τ ].
For any t ∈ [a, b], it is satisfied that t− τ ∈ [a− τ, b− τ ], hence for s ∈ [t− τ, t] we
obtain

(7) |yt−τ,φ(−τ)(s)− yt−τ,ψ(−τ)(s)|m ≤ Kh||φ− ψ||eKg(s−(t−τ))

as a special case of (6) with s0 = t−τ . The constant J = J(a, b, Lh) was defined as the
bound for |ys0,ψ(−τ)(s)|m for any s0 ∈ [a−τ, b−τ ], ||ψ|| ≤M , s ∈ [s0, s0 +τ ]. For any
t ∈ [a, b], it follows that t−τ ∈ [a−τ, b−τ ], hence the inequality |yt−τ,ψ(−τ)(t)|m ≤ J
holds for any ||ψ|| ≤M . Let Kk = Kk(a, b,M) be the Lipschitz constant of k on the
set [a, b]×{v ∈ Rm : |v|m ≤ J}. Then for any t ∈ [a, b], ||φ||, ||ψ|| ≤M it holds that
|φ(−τ)|n, |ψ(−τ)|n ≤M , so we arrive to the following inequality:

|W (t, φ(−τ))−W (t, ψ(−τ))|n = |k(t, yt−τ,φ(−τ)(t))− k(t, yt−τ,ψ(−τ)(t))|n
≤ Kk|yt−τ,φ(−τ)(t)− yt−τ,ψ(−τ)(t)|m
≤ KkKh||φ− ψ||eKgτ ,

where we used (4) and (7).

Finally, let Kf (a, b,M) be the Lipschitz constant of f on the set [a, b] × {v ∈
Rn : |v|n ≤M}. Then for any t ∈ [a, b] and for any ||φ||, ||ψ|| ≤M , |φ(0)|n, |ψ(0)|n,
|φ(−τ)|n, |ψ(−τ)|n ≤M holds and thus

|F(t, φ)−F(t, ψ)|n ≤ |f(t, φ(0))− f(t, ψ(0))|n + |W (t, φ(−τ))−W (t, ψ(−τ))|n
≤ Kf ||φ− ψ||+KkKh||φ− ψ||eKgτ ,
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hence it is clear that Kf (a, b,M) + Kk(a, b,M)Kh(a, b,M)eτKg(a,b,M) is a suitable
choice for K(a, b,M), the Lipschitz constant of F for the set [a, b]×{ψ ∈ C : ||ψ|| ≤
M}.

We state the following simple remark.

Remark 3.4. If f , g, h and k satisfy a global Lipschitz condition (gLip), that is, if
Kf , Kg, Kh and Kk in the definition of the Lipschitz condition (Lip) can be chosen
independent of a, b and M , then a global Lipschitz condition (gLipC) for F arises,
i.e. there exists a Lipschitz constant K of F which is independent of a, b and M .

Now, as we have proved that F is continuous and satisfies the Lipschitz condition
(LipC), all conditions of Theorem 3.7 in [4] are satisfied. We arrive to the following
result.

Theorem 3.5. Let σ ∈ R, M > 0. There exists A > 0, depending only on M such
that if φ ∈ C = C([−τ, 0],Rn) satisfies ||φ|| ≤M , then there exists a unique solution
x(t) = x(t;σ, φ) of (1), defined on [σ − τ, σ + A]. In addition, if K is the Lipschitz
constant for F corresponding to [σ, σ + A] and M, then

max
σ−τ≤η≤σ+A

|x(η;σ, φ)− x(η;σ, ψ)|n ≤ ||φ− ψ||eKA for any ||φ||, ||ψ|| ≤M.

Assuming stronger conditions on f , g, h and k, we arrive to a more general
existence result. We follow Remark 3.8 in [4].

Remark 3.6. If f , g, h and k satisfy condition (gLip), then condition (gLipC)
arises for F and we do not need to make any restrictions on A in Theorem 3.5.
More precisely, its statements hold for all A > 0. In this case, the solution exists for
all t ≥ σ and the inequality

||xt(φ)− xt(ψ)|| ≤ ||φ− ψ||eK(t−σ)

holds for all t ≥ σ.

Most functional differential equations that arise in population dynamics or epi-
demiology deal only with nonnegative quantities. Therefore it is important to see
what conditions ensure that nonnegative initial data give rise to nonnegative solu-
tion.
We reformulate (1) using the definition of F . Since F(t, xt) = f(t, x(t))+W (t, x(t−
τ)), we consider the following differential equation system, which is equivalent to
(1):

(8)
x′(t) = f(t, x(t)) +W (t, x(t− τ)),

xσ = ϕ.

We claim that under reasonable assumptions the solution of system (8) preserves
nonnegativity for nonnegative initial data. Let us suppose that for each t ∈ R, h
and k map nonnegative vectors to nonnegative vectors. We also assume that for
every i ∈ {1, . . . n}, j ∈ {1, . . .m}, u ∈ Rn

+, w ∈ Rm
+ and t, s ∈ R, ui = 0 implies
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fi(t, u) ≥ 0 and wj = 0 implies gj(s, w) ≥ 0. Then for nonnegative initial value the
solution of system (2) is nonnegative, which implies that for every i ∈ {1, . . . n},
v ∈ Rn

+ and t ∈ R, the inequality (k(t, y(t; t− τ, h(t− τ, v))))i = Wi(t, v) ≥ 0 holds.
Hence fi(t, u) + Wi(t, v) ≥ 0 is satisfied for u, v ∈ Rn

+, ui = 0, t ∈ R, all conditions
of Theorem 3.4 in [4] hold and we conclude that nonnegative initial data give rise
to nonnegative solution of system (8). Clearly, systems (8) and (1) are equivalent,
which implies that the result automatically holds for system (1). We summarize our
assumptions and consequence.

Proposition 3.7. Suppose that h : R × Rn � Rm and k : R × Rm � Rn map
nonnegative vectors to nonnegative vectors for each t ∈ R, moreover assume that

∀i, t,∀u ∈ Rn
+ :ui = 0⇒ fi(t, u) ≥ 0,

∀j, s,∀w ∈ Rm
+ :wj = 0⇒ gj(s, w) ≥ 0.

Then for nonnegative initial data the solution of system (1) preserves nonnegativity
i.e. x(t) ≥ 0 for t ≥ σ where it is defined.

4 The autonomous case

4.1 Fundamental properties

As a special case of system (1), we may derive similar results for the autonomous
system. Let x : R � Rn, y : R � Rm, t, s ∈ R, let f : Rn � Rn, g : Rm � Rm,
h : Rn � Rm, k : Rm � Rn. Let us assume that f, g, h and k satisfy the Lipschitz
condition (Lip), which can be stated as follows. For k, l ∈ Z+, we say that a function
F : Rk � Rl satisfies the Lipschitz condition (Lip) if for allM > 0 there is aK(M) >
0 such that for |x1|k, |x2|k ≤M the inequality |F (x1)−F (x2)|l ≤ K|x1−x2|k holds.
There is no need to assume the continuity for f, g, h and k since these functions are
independent of t and hence this property follows from the Lipschitz condition (Lip).
For τ > 0, let C = C([−τ, 0],Rn) be the phase space as we defined it in Section 2.
Then system (1) has the form

(9)
x′(t) = F(xt),

x0 = ϕ,

where t ≥ 0, ϕ ∈ C is the state of the system at t = 0, F : C � Rn and F has the
special form F(φ) = f(φ(0))+W (φ(−τ)), φ ∈ C. For any y∗ ∈ Rm, system (2) turns
into

(10)
y′(s) = g(y(s)),

y(0) = y∗,

where s ≥ 0. Similarly as in Section 2, the Picard-Lindelöf theorem guarantees the
existence and uniqueness of the solution of system (10) on [0, α] for some α > 0. We
make the following additional assumption:

(??) For every y∗, solution y(s; 0, y∗) of (10) exists at least for τ units of time.

This is equivalent to the assumption that y(s; 0, y∗) exists on [0,∞) for every y∗,
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which holds if g satisfies (gLip) (see Remark 2.2). We use the notation y0,v(s) =
y(s; 0, h(v)) for the unique solution of system (10) in the case y∗ = h(v), and we
define W : Rn � Rn by

(11) W (v) := k(y0,v(τ)) = k(y(τ ; 0, h(v))),

where v ∈ Rn. It is straightforward that the Lipschitz condition (LipC) and there-
fore the continuity hold for F , since this function is only a special case of the F
defined in Section 2. Moreover if we assume that f , g, h and k satisfy the global
Lipschitz condition (gLip), then we obtain that condition (gLipC) holds for F (for
the definitions of (gLip) and (gLipC) see Remark 3.4). As an immediate consequence
of Theorem 3.5, we state the following corollary.

Corollary 4.1. Suppose that M > 0. There exists A > 0, depending only on M
such that if φ ∈ C satisfies ||φ|| ≤ M , then there exists a unique solution x(t) =
x(t; 0, φ) of (9), defined on [−τ, A]. In addition, if K is the Lipschitz constant for
F corresponding to M, then

max
−τ≤η≤A

|x(η; 0, φ)− x(η; 0, ψ)|n ≤ ||φ− ψ||eKA for any ||φ||, ||ψ|| ≤M.

The following remark rises automatically as the autonomous case of Remark 3.6.

Remark 4.2. If f , g, h and k satisfy the global Lipschitz condition (gLip), then
we do not need to make any restrictions on A in Corollary 4.1. More precisely, its
statements hold for all A > 0. In this case, the solution exists for all t ≥ 0 and the
inequality

||xt(φ)− xt(ψ)|| ≤ ||φ− ψ||eKt

holds for all t ≥ 0.

Clearly, we can adapt Proposition 3.7 to the autonomous system with similar
conditions.

Corollary 4.3. Suppose that h : Rn � Rm and k : Rm � Rn map nonnegative
vectors to nonnegative vectors, moreover assume that

∀i,∀u ∈ Rn
+ :ui = 0⇒ fi(u) ≥ 0,

∀j,∀w ∈ Rm
+ :wj = 0⇒ gj(w) ≥ 0.

Then for nonnegative initial data the solution of system (9) preserves nonnegativity
i.e. x(t) ≥ 0 for t ≥ 0 where it is defined.

4.2 Equilibria and linearization

Consider the nonlinear functional differential equation system (9):

x′(t) = F(xt),

where F(φ) = f(φ(0)) +W (φ(−τ)) for φ ∈ C. Then x(t) = x̄ ∈ Rn is a steady-state
solution of (9) if and only if F(ˆ̄x) = 0, where ˆ̄x ∈ C is the constant function equal to
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x̄. Suppose there exists such an equilibrium. We formulate the linearized equation
system about the equilibrium x̄. We obtain the linear system

(12) z′(t) = DF(ˆ̄x)zt,

where DF(ˆ̄x) : C � Rn is a bounded linear operator and z : R � Rn. Due to the
special form of F , (12) can be written as

z′(t) = A1z(t) + A2z(t− τ),

where A1 = Df(x̄) ∈ Rn×n and A2 = DW (x̄) ∈ Rn×n.

Proposition 4.4. Let us suppose that g, h and k are continuously differentiable.
Then the matrix DW (x̄) can be represented with g, h and k as follows:

DW (x̄) = Dk(y(τ ; 0, h(x̄)))e
∫ τ
0 Dg(y(r;0,h(x̄)))drDh(x̄).

Proof. Theorem 3.3 in Chapter I in [1] states that as g has continuous first derivative,
the solution y(s; 0, y∗) of system (10) is continuously differentiable with respect to s
and y∗ on its domain of definition. The matrix ∂y(s;0,y∗)

∂y∗
∈ Rm×m satisfies the linear

variational equation

(13) Y ′(s) = Dg(y(s; 0, y∗))Y (s)

where Y : R � Rm×m (we use slightly different notations as [1]) and ∂y(0;0,y∗)
∂y∗

= I,
where I denotes the identity. As from (13) it follows that Y (s) = e

∫ s
0 Dg(y(r;0,y∗))drY (0),

for Y (0) = I we conclude that for s = τ

(14)
∂y(τ ; 0, y∗)

∂y∗
= e

∫ τ
0 Dg(y(r;0,y∗))dr

holds. From (11) it follows that for v ∈ Rn

(15)
DW (v) = Dk(y(τ ; 0, h(v)))

∂y(τ ; 0, h(v))

∂v

= Dk(y(τ ; 0, h(v)))
∂y(τ ; 0, h(v))

∂y∗
Dh(v),

hence from (14) and (15) we have

(16) DW (v) = Dk(y(τ ; 0, h(v)))e
∫ τ
0 Dg(y(r;0,h(v)))drDh(v).

Finally, setting v = x̄ in (16) we arrive to the equality

DW (x̄) = Dk(y(τ ; 0, h(x̄)))e
∫ τ
0 Dg(y(r;0,h(x̄)))drDh(x̄).

Note that Dk(y(τ ; 0, h(x̄))) ∈ Rn×m, Dg(y(r; 0, h(x̄))) ∈ Rm×m and Dh(x̄) ∈ Rm×n,
hence the result of the matrix multiplication is indeed DW (x̄) ∈ Rn×n. The proof is
complete.
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It follows from (11) that x̄ satisfies the equation −f(x̄) = k(y(τ ; 0, h(x̄))).
However, x̄ being a steady-state solution of (9) does not necessarily imply that
y(s, 0;h(x̄)) = h(x̄) for s ∈ [0, τ ] i.e. h(x̄) is an equilibrium of (10). It is easy to
construct examples for f , g, h and k such that such situation occurs.
We say that x̄ ∈ Rn is a total equilibrium of systems (9) and (10) if x(t) = x̄ is a
steady-state solution of (9) and y(s) = h(x̄) is a steady-state solution of (10). The
equilibrium solution y(s) = ȳ, ȳ ∈ Rm of (10) satisfies the equation g(ȳ) = 0, and
since h(x̄) = ȳ and −f(x̄) = k(y(τ ; 0, h(x̄))) should hold for the total equilibrium,
we conclude that x̄ arises as the solution of the system

(17)
−f(x̄) = k(h(x̄)),

g(h(x̄)) = 0.

It follows from (17) that in the special case when f and g are invertable functions,
the total equilibrium can be expressed by x̄ = f−1(−k(g−1(0))), and we also obtain
that ȳ = h(f−1(−k(g−1(0)))).
We remark that if functions g, h and k are continuously differentiable and x̄ is the
total equilibrium of systems (9) and (10), then it follows from Proposition 4.4 that
the matrix DW (x̄) has the form DW (x̄) = Dk(h(x̄))eτDg(h(x̄))Dh(x̄).

5 Applications

5.1 A basic model from population dynamics

A simple model describing the growth of a single population with fixed period of
temporary separation is given by

(18)
n′(t) = b(n(t))− d(n(t))− q(n(t)) + V (n(t− τ)),

n0 = ϕ,

where t denotes time and functions b, d and q stand for recruitment, mortality and
temporary separation (e.g. migration). Let τ > 0 be the fixed period of separation.
We define the phase space C+ as the nonnegative cone of C = C([−τ, 0],R), let
ϕ ∈ C+. We assume that b, d, q : R � R satisfy the Lipschitz condition (Lip) on
each bounded subset of R, which implies their continuity on R. Since b, d and q
denote the recruitment, mortality and separation functions, it should hold that they
map nonnegative values to nonnegative values. Function V expresses the inflow of
individuals arriving to the population at time t after τ units of time of separation.
For the thorough definition of V , the growth of the separated population needs
describing. We assume that individuals who left the population due to separation
in different times do not make contact to each other. Hence for each time t∗, the
evolution of the density of the separated population with respect to the time elapsed
since the beginning of separation is given by the following differential equation, when
separation started at time t∗:

(19)
d

ds
m(s; t∗) = bS(m(s; t∗))− dS(m(s; t∗)),

m(0; t∗) = q(n(t∗)),

where s denotes the time elapsed since the beginning of separation and functions
bS and dS stand for recruitment and mortality during separation. At s = 0, the
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density of the separated population is determined by the number of individuals
who start separation at time t∗, hence the initial value for system (19) is given by
m(0; t∗) = q(n(t∗)). We assume that bS,dS : R � R satisfy the Lipschitz condition
(Lip) on each bounded subset of R, this also means they are continuous on R. The
Picard-Lindelöf theorem ensures that for any initial value m∗ there exists a unique
solution y(s; 0,m∗) of system (19) on [0, α] for some α > 0. We make the additional
assumption that the unique solution exists at least for τ units of time for every m∗,
we have seen in Section 2 that this assumption can be fulfilled with some conditions
on bS and dS. In order to guarantee that nonnegative initial data give rise to non-
negative solution of (19), we assume that the inequality bS(0) − dS(0) ≥ 0 holds,
this condition can be satisfied with many reasonable choices of the recruitment and
mortality functions. We assumed that separation lasts exactly for τ units of time,
i.e. the feedback in (18) at t∗+ τ is determined by the solution of (19) at s = τ . We
define the feedback function V : R � R as V (v) := y(τ ; 0, q(v)).

For x : [0,∞) � R and f : R � R, let x(t) = n(t), f(x) = b(x)− d(x)− q(x). For
a given t∗, define y(s) = m(s; t∗) and let g(y) = bS(y)− dS(y), where y : [0, τ ] � R,
g : R � R. Furthermore, for h, k : R � R let h(v) = q(v), k(v) = v. Then system
(18) can be written in a closed form as (9) and for each t∗ (10) is a compact form
of (19).
Clearly, functions f , g, h and k satisfy the Lipschitz condition (Lip) on each bounded
subset of R, moreover (??) also holds by assumption. Hence F , defined by F(φ) =
f(φ(0))+W (φ(−τ)) for φ ∈ C+ satisfies the Lipschitz condition (LipC), so Corollary
4.1 states that system (18) has a unique solution defined on [−τ, A] for some A > 0.
By assuming that condition (gLip) holds for b, d, q, bS and dS, we get that f , g, h
and k satisfy the global Lipschitz condition (gLip) and A = ∞. We have assumed
that q = h maps nonnegative values to nonnegative values, which obviously holds
for k as well, moreover we gave the condition bS(0) − dS(0) ≥ 0. In addition, if we
suppose that b(0) − d(0) − q(0) ≥ 0 is satisfied (e.g. b(0) = d(0) = q(0) = 0 holds
in many models), then Corollary 4.3 implies that for nonnegative initial data the
solution of system (18) preserves nonnegativity, that is, C+ is invariant.

5.2 Epidemic model with travel delay and entry screening

We formulate a dynamic model describing the spread of an infectious disease in
two regions, and also during travel from one region to the other. We assume that
the time required to complete travel between the regions is not neglectable, this
leads to delay differential equations in the model setup. Several recent works (see
e.g. [3] and [5]) considered SIS type transportation models where the delay terms
arise explicitely. Here we present an epidemic model where delay is defined via the
solution of another system of differential equations.
We divide the entire populations of the two regions into the disjoint classes S1, I1,
R1, J1, S2, I2, R2 and J2. Lower index denotes the current region, letters S and
R represent the compartments of susceptible and recovered individuals. We assume
that individuals are traveling between the regions and travelers are requested to
undergo an entry screening procedure before entering a region after travel. The
purpose of the examination is to detect travelers who are infected with the disease
and isolate them in order to minimize the chances of an infected agent spreading the

11



Figure 1: Flow chart of disease transmission and travel dynamics. The disease trans-
mission in the two regions is shown in two different columns, the disease progresses
vertically from the top to the bottom (solid arrows). Dashed arrows represent that
individuals are traveling, dot-dashed arrows show the dynamics of the disease spread
during the course of the travel.

infection in a disease free region. Such interventions were proven to have significant
effect in mitigating the severity of epidemic outbreaks. Some individuals who have
been infected with the disease get screened out by the arrival to a region and they
become isolated and belong to class J . Others whose infection remained hidden by
the examination or those who are sick but do not travel are in class I and we simply
call them infecteds. Let S1(t), I1(t), R1(t), J1(t), S2(t), I2(t), R2(t) and J2(t) be
the number of individuals belonging to S1, I1, R1, J1, S2, I2, R2 and J2 at time
t, respectively. Susceptible, infected and recovered individuals of region 1 travel to
region 2 by travel rate µ1. The travel rate of individuals in classes S2, I2 and R2

from region 2 to region 1 is denoted by µ2. Isolated individuals are not allowed to
travel, moreover we assume that they do not make contact with individuals of other
classes until they recover. Model parameters γ1 and γ2 represent the recovery rate of
infected and isolated individuals in region 1 and region 2, we denote the transmission
rates in region 1 and region 2 by β1 and β2.
Let s1, i1, r1, s2, i2 and r2 be the classes of susceptible, infected and recovered
individuals during travel to region 1 and to region 2. We denote the recovery rate
of traveling infecteds by γT , they can transmit the disease by rate βT during travel.
Let τ > 0 denote the time required to complete a one-way travel, which is assumed
to be fixed. To describe the disease dynamics during travel, for each t∗ we define
s1(s; t∗), i1(s; t∗), r1(s; t∗), s2(s; t∗), i2(s; t∗) and r2(s; t∗) as the density of individuals
with respect to s who started travel at time t∗ and belong to classes s1, i1, r1, s2, i2
and r2, where s ∈ [0, τ ] denotes the time elapsed since the beginning of the travel.
The total density of traveling individuals is constant during the travel started at t∗,
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Key model parameters
β1, β2 transmission rate in region 1 and in region 2
µ1, µ2 traveling rate of individuals in region 1 and in region 2
γ1, γ2 recovery rate of infected and isolated individuals

in region 1 and in region 2
p1, p2 probability of screening out infected travelers

arriving to region 1 and to region 2
τ duration of travel between the regions
βT transmission rate during travel
γT recovery rate during travel

Table 1: Key model parameters

that is,

s1(s; t∗) + i1(s; t∗) + r1(s; t∗) = s1(0; t∗) + i1(0; t∗) + r1(0; t∗),

s2(s; t∗) + i2(s; t∗) + r2(s; t∗) = s2(0; t∗) + i2(0; t∗) + r2(0; t∗)

for all s ∈ [0, τ ]. Choosing s = τ , t∗ = t − τ , terms s1(τ ; t − τ), r1(τ ; t − τ) and
s2(τ ; t − τ), r2(τ ; t − τ) express the inflow of susceptible and recovered individuals
arriving to region 1 to compartments S1, R1 and region 2 to compartments S2, R2 at
time t, respectively. We assume that travelers undergo an examination by the arrival
to region 1 and 2, which detects infection by infecteds with probability 0 < p1, p2 < 1.
This implies that the densities p1i1(τ ; t− τ) and p2i2(τ ; t− τ) determine individuals
who enter J1 and J2 at time t since p1 and p2 are the probabilities that infected
travelers get screened out by the arrival. However, infected travelers enter classes I1

and I2 with probabilities 1− p1 and 1− p2 by the arrival, hence (1− p1)i1(τ ; t− τ)
and (1− p2)i2(τ ; t− τ) give the inflow to classes I1 and I2 at time t.
The flow chart of the model is depicted in Figure 1, see Table 1 for the key model
parameters. We obtain the following system of differential equations for the disease
spread in the regions, where disease transmission is modeled by standard incidence:

(20)

S ′1(t) = −β1
S1(t)I1(t)

S1(t) + I1(t) +R1(t)
− µ1S1(t) + s1(τ ; t− τ),

I ′1(t) = β1
S1(t)I1(t)

S1(t) + I1(t) +R1(t)
− γ1I1(t)− µ1I1(t) + (1− p1)i1(τ ; t− τ),

R′1(t) = γ1(I1(t) + J1(t))− µ1R1(t) + r1(τ ; t− τ),

J ′1(t) = −γ1J1(t) + p1i1(τ ; t− τ),

S ′2(t) = −β2
S2(t)I2(t)

S2(t) + I2(t) +R2(t)
− µ2S2(t) + s2(τ ; t− τ),

I ′2(t) = β2
S2(t)I2(t)

S2(t) + I2(t) +R2(t)
− γ2I2(t)− µ2I2(t) + (1− p2)i2(τ ; t− τ),

R′2(t) = γ2(I2(t) + J2(t))− µ2R2(t) + r2(τ ; t− τ),

J ′2(t) = −γ2J2(t) + p2i2(τ ; t− τ).
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For each t∗, the following system describes the evolution of the densities during the
travel which started at time t∗:

(21)

d

ds
s1(s; t∗) = −βT s1(s; t∗)i1(s; t∗)

s1(s; t∗) + i1(s; t∗) + r1(s; t∗)
,

d

ds
i1(s; t∗) = βT

s1(s; t∗)i1(s; t∗)

s1(s; t∗) + i1(s; t∗) + r1(s; t∗)
− γT i1(s; t∗),

d

ds
r1(s; t∗) = γT i1(s; t∗),

d

ds
s2(s; t∗) = −βT s2(s; t∗)i2(s; t∗)

s2(s; t∗) + i2(s; t∗) + r2(s; t∗)
,

d

ds
i2(s; t∗) = βT

s2(s; t∗)i2(s; t∗)

s2(s; t∗) + i2(s; t∗) + r2(s; t∗)
− γT i2(s; t∗),

d

ds
r2(s; t∗) = γT i2(s; t∗),

where again we assume standard incidence for the disease transmission. Note that
the dimensions of systems (20) and (21) are different.
For s = 0, the densities are determined by the rates individuals start their travels
from one region to the other at time t∗. Hence, the initial values for system (21) at
s = 0 are given by

(22)


s1(0; t∗) = µ2S2(t∗), s2(0; t∗) = µ1S1(t∗),

i1(0; t∗) = µ2I2(t∗), i2(0; t∗) = µ1I1(t∗),

r1(0; t∗) = µ2R2(t∗), r2(0; t∗) = µ1R1(t∗).

Now we turn our attention to the terms s1(τ ; t− τ), (1− p1)i1(τ ; t− τ), r1(τ ; t− τ),
p1i1(τ ; t− τ), s2(τ ; t− τ), (1− p2)i2(τ ; t− τ), r2(τ ; t− τ) and p2i2(τ ; t− τ) in system
(20), which are the densities of individuals arriving to classes S1, I1, R1, J1, S2, I2, R2

and J2 at time t, respectively. At time t, these terms are determined by the solution
of system (21) with initial values (22) for t∗ = t−τ at s = τ . An individual may move
to a different compartment during travel, for example a susceptible individual who
travels from region 1 may arrive as infected to region 2, as given by the dynamics
of system (21).
Next we specify initial values for system (20) at t = 0. Since travel takes τ units of
time to complete, arrivals to region 1 are determined by the state of classes S2, I2

and R2 at t− τ and vice versa, via the solution of systems (21) and (22). Thus, we
set up the initial functions as follows:

(23)


S1(θ) = ϕS,1(θ), S2(θ) = ϕS,2(θ),

I1(θ) = ϕI,1(θ), I2(θ) = ϕI,2(θ),

R1(θ) = ϕR,1(θ), R2(θ) = ϕR,2(θ),

J1(0) = ϕJ,1(θ), J2(0) = ϕJ,2(θ),

where θ ∈ [−τ, 0] and for each j ∈ {1, 2}, K ∈ {S, I, R, J}, ϕK,j is continuous.

For x : [0,∞) � R8 and f : R8 � R8, define x(t) = (S1(t), I1(t), R1(t), J1(t),
S2(t), I2(t), R2(t), J2(t))T and define f = (f1, f2, f3, f4, f5, f6, f7, f8)T . For a given
t∗, let y(s) = (s1(s; t∗), i1(s; t∗), r1(s; t∗), s2(s; t∗), i2(s; t∗), r2(s; t∗))

T and let g =
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(g1, g2, g3, g4, g5, g6)T , where y : [0, τ ] � R6 and g : R6 � R6. Define g as gi(y) equals
the right hand side of the equation for yi in system (21). For instance,

g5(y) = βT
y4y5

y4 + y5 + y6

− γTy5.

Then for each t∗, (10) is a compact form of (21) with the initial value y∗ in (22) for
m = 6. Define h = (h1, h2, h3, h4, h5, h6) : R8 � R6 as

h1(v) = µ2v5, h4(v) = µ1v1,

h2(v) = µ2v6, h5(v) = µ1v2,

h3(v) = µ2v7, h6(v) = µ1v3,

let k = (k1, k2, k3, k4, k5, k6, k7, k8) : R6 � R8 be given as
k1(v) = v1, k5(v) = v4,

k2(v) = (1− p1)v2, k6(v) = (1− p2)v5,

k3(v) = v3, k7(v) = v6,

k4(v) = p1v2, k8(v) = p2v5.

The feasible phase space is the nonnegative cone C+ of C = C([−τ, 0],R8). Define
fi(x) to be the right hand side of the equation of xi in (20) without the inflow from
travel. For instance,

f1(x) = −β1
x1x2

x1 + x2 + x3

− µ1x1.

Clearly our system (20) with initial conditions (23) can be written in a closed form
as (9) for n = 8.
Our aim is to show that there exists a unique positive solution of system (20),
moreover nonnegative initial data give rise to nonnegative solution. We showed in the
previous sections that these results can be obtained by assuming certain conditions
on f , g, h and k. Now we check if these conditions hold for the f, g, h and k defined
for the SIRJ model. It is not hard to see that h and k possess the global Lipschitz
condition (gLip), now we prove that it holds for f and g as well.

Proposition 5.1. Functions f and g, as defined for the SIRJ model, satisfy the
global Lipschitz condition (gLip) on each bounded subset of R8

+ and R6
+.

Proof. Due to the similarities in the definitions of f and g, it is sufficient to prove
the condition only for one of them, e.g. for f . The function f : R8 � R8 possesses
the global Lipschitz condition (gLip) if there exists a Lipschitz constant K > 0 such
that |f(p)− f(q)|8 ≤ K|p− q|8 holds for any p,q ∈ R8

+. First, we show that there
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exists a K1 > 0 such that |f1(p)− f1(q)| ≤ K1|p− q|8. For p,q ∈ R8
+, it holds that

|f1(p)− f1(q)| =
∣∣∣∣−β1

p1p2

p1 + p2 + p3

− µ1p1 + β1
q1q2

q1 + q2 + q3

+ µ1q1

∣∣∣∣
≤ µ1|q1 − p1|+ β1

∣∣∣∣ q1q2

q1 + q2 + q3

− p1p2

p1 + p2 + p3

∣∣∣∣
= µ1|q1 − p1|+ β1

∣∣∣∣ q1q2

q1 + q2 + q3

− q1p2

q1 + q2 + q3

+
q1p2

q1 + q2 + q3

− q1p2

q1 + p2 + q3

+
q1p2

q1 + p2 + q3

− q1p2

q1 + p2 + p3

+
q1p2

q1 + p2 + p3

− q1p2

p1 + p2 + p3

+
q1p2

p1 + p2 + p3

− p1p2

p1 + p2 + p3

∣∣∣∣
≤ µ1|q1 − p1|+ β1

(∣∣∣∣ q1q2

q1 + q2 + q3

− q1p2

q1 + q2 + q3

∣∣∣∣
+

∣∣∣∣ q1p2

q1 + q2 + q3

− q1p2

q1 + p2 + q3

∣∣∣∣+

∣∣∣∣ q1p2

q1 + p2 + q3

− q1p2

q1 + p2 + p3

∣∣∣∣
+

∣∣∣∣ q1p2

q1 + p2 + p3

− q1p2

p1 + p2 + p3

∣∣∣∣+

∣∣∣∣ q1p2

p1 + p2 + p3

− p1p2

p1 + p2 + p3

∣∣∣∣)
= µ1|q1 − p1|+ β1

(
|q2 − p2|

∣∣∣∣ q1

q1 + q2 + q3

∣∣∣∣+ |p2 − q2|·∣∣∣∣ q1p2

(q1 + q2 + q3)(q1 + p2 + q3)

∣∣∣∣+ |p3 − q3|
∣∣∣∣ q1p2

(q1 + p2 + q3)(q1 + p2 + p3)

∣∣∣∣
+|p1 − q1|

∣∣∣∣ q1p2

(q1 + p2 + p3)(p1 + p2 + p3)

∣∣∣∣+ |q1 − p1|
∣∣∣∣ p2

p1 + p2 + p3

∣∣∣∣)
≤ µ1|q1 − p1|+ β1 (2|q2 − p2|+ |p3 − q3|+ 2|p1 − q1|)
≤ (µ1 + 5β1)|q− p|8
= K1|q− p|8,

where we used that the inequality a
a+b+c

≤ 1 holds for any a, b, c ∈ R+. We define
K1 = µ1 + 5β1, similarly we obtain that

|f5(p)− f5(q)| =
∣∣∣∣−β2

p5p6

p5 + p6 + p7

− µ2p5 + β2
q5q6

q5 + q6 + q7

+ µ2q5

∣∣∣∣
≤ K5|q− p|8

for K5 = µ2 + 5β2. Furthermore,

|f2(p)− f2(q)| =
∣∣∣∣β1

p1p2

p1 + p2 + p3

− γ1p2 − µ1p2 − β1
q1q2

q1 + q2 + q3

+ γ1q2 + µ1q2

∣∣∣∣
≤ (µ1 + γ1)|q2 − p2|+ β1 (2|q2 − p2|+ |p3 − q3|+ 2|q1 − p1|)
≤ (µ1 + γ1 + 5β1)|q− p|8
= K2|q− p|8,

where µ1+γ1+5β1 is a suitable choice forK2. Clearly by choosingK6 = µ2+γ2+5β2,
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we can derive the inequality

|f6(p)− f6(q)| =
∣∣∣∣β2

p5p6

p5 + p6 + p7

− γ2p6 − µ2p6 − β2
q5q6

q5 + q6 + q7

+ γ2q6 + µ2q6

∣∣∣∣
≤ K6|q− p|8.

Moreover,

|f3(p)− f3(q)| = |γ1(p2 + p4)− µ1p3 − γ1(q2 + q4) + µ1q3|
≤ (2γ1 + µ1)|q− p|8
= K3|q− p|8

for K3 = 2γ1 + µ1 and

|f7(p)− f7(q)| = |γ2(p6 + p8)− µ2p7 − γ2(q6 + q8) + µ2q7|
≤ K7|q− p|8

with the choice of K7 = 2γ2 + µ2, and finally the inequalities

|f4(p)− f4(q)| = | − γ1p4 + γ1q4|
≤ γ1|q− p|8
= K4|q− p|8,

|f8(p)− f8(q)| = | − γ2p8 + γ2q8|
≤ γ2|q− p|8
= K8|q− p|8

hold for K4 = γ1, K8 = γ2. To obtain the global Lipschitz constant for f , we simply
choose K =

√
K2

1 +K2
2 +K2

3 +K2
4 +K2

5 +K2
6 +K2

7 +K2
8 . The proof is complete.

Function g, defined for the SIRJ model, possesses the global Lipschitz condition
(gLip) on R6

+, it is also obvious that for nonnegative initial data system (21) pre-
serves nonnegativity. We conclude that for nonnegative initial data there exists a
unique nonnegative solution of system (21) on [0,∞). The global Lipschitz property
(gLip) of f , h and k are also satisfied, hence Corollary 4.1 and Remark 4.2 state
that there exists a unique solution of (20) on [−τ,∞) with initial conditions (23).
Clearly h and k map nonnegative vectors to nonnegative vectors and the nonnega-
tivity conditions of Corollary 4.3 also hold, thus nonnegative initial data give rise
to a nonnegative solution of (20), which means that C+ is invariant.
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