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Abstract

The spatio-temporal dynamics of vertical autocatalytic fronts traveling horizontally in thin so-

lution layers closed to the air can be influenced by buoyancy-driven convection induced by density

gradients across the front. We perform here a combined experimental and theoretical study of

the competition between solutal and thermal effects on such convection. Experimentally, we focus

on the antagonistic chlorite-tetrathionate reaction for which solutal and thermal contributions to

the density jump across the front have opposite signs. We show that in isothermal conditions the

heavier products sink below the lighter reactants providing an asymptotic constant finger shape de-

formation of the front by convection. When thermal effects are present the hotter products, on the

contrary, climb above the reactants for strongly exothermic conditions. These various observations

as well as the influence of the relative weight of solutal and thermal effects and of the thickness

of the solution layer on the dynamics are discussed in terms of a 2D reaction-diffusion-convection

model parameterized by a solutal RC and a thermal RT Rayleigh number.
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I. INTRODUCTION

When two miscible non reactive fluids having different densities are brought to contact

in a horizontal solution layer with the interface parallel to the gravity field, the system is

always unstable giving rise to a “gravity current” such that the denser solution sinks below

the other one until the reach of a stratification of lighter fluid on top of the heavier one1,2.

Ultimately, the two miscible fluids mix completely to yield one homogeneous solution, the

density of which is the average of the densities of each initial separated solution. The

situation is drastically different when the density jump acts across a self-organized reactive

interface such as a traveling autocatalytic chemical front resulting from the coupling between

chemical reactions and diffusion and separating the reactants of density ρr from the products

of density ρp
3–6. The front experiences a density difference ∆ρ = ρp − ρr = ∆ρS + ∆ρT due

to a solutal part ∆ρS induced by compositional changes and a thermal part ∆ρT related to

the exothermicity of the reaction. For aqueous solutions ∆ρT is always negative above 4 ◦C

as the products are hotter in exothermic reactions, while ∆ρS can have either positive or

negative sign depending on whether the products are respectively solute heavier or lighter

than the reactants.

Buoyancy-driven instabilities resulting from these density differences across an autocat-

alytic front have been thoroughly studied in vertical geometries where the front travels along

the gravity field4–12. In that case, the combination of solutal and thermal contributions to the

density jump has been shown to lead to various instability scenarios depending on whether

∆ρS and ∆ρT have the same negative sign (cooperative case) or different signs (∆ρS > 0,

∆ρT < 0, antagonistic case)6,13,14.

In thin horizontal solution layers, it is known that convection can also deform the dynamic

of autocatalytic fronts or waves4,15–21. In the case of a simple reaction front propagating

horizontally, it has been shown both experimentally17,18,22 and numerically16,23 that instead

of a gravity current leading to a homogeneous solution, the coupling between reaction,

diffusion and convection triggered by the density difference leads in isothermal conditions

to one solitary vortex structure deforming the front and speeding it up. The vortex rotates

clockwise if the products are lighter than the reactants and climb above them (∆ρS <

0)16,20,23. On the contrary, the vortex rotates counterclockwise if the products are heavier

and sink below the reactants (∆ρS > 0). The situation with positive ∆ρS is symmetric to
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the one for negative solutal density jump23.

If thermal effects come into play, the combination of solutal and thermal density changes

can lead to new dynamics for propagation of autocatalytic fronts in horizontal set-ups24. It

has been shown numerically25 that, in the cooperative case, the fact that heat diffuses faster

than mass can lead to local hot spots behind the front corresponding to a local stratification

of heavy fluid on top of a light one. In the antagonistic case, the competition between

solutal effects and thermal effects warming up the solute heavy products can give rise to

an oscillatory dynamics which is not stationary in a framework moving at the reaction-

diffusion-convection speed.

In this context, it is the objective of this article to investigate both experimentally and nu-

merically the influence of antagonistic solutal and thermal effects on the dynamics of exother-

mic vertical fronts of the chlorite-tetrathionate (CT) reaction26,27 traveling horizontally in

thin covered solution layers. The CT reaction is known to be an exothermic antagonistic

autocatalytic reaction with negative ∆ρT but positive ∆ρS
11, i.e., the products are solute

heavier but hotter than the solute lighter reactants at room temperature. Experimentally,

the solutal and thermal effects can be varied independently by modifying the thickness of

the reactor and working at different mean temperature. We show then experimentally that

in isothermal conditions, the heavy products sink under the lighter reactants while, when

heat effects are dominating, the products are sufficiently hot to be lighter and rise above

the reactants. The experimental dynamics is discussed in the light of a 2D model coupling

the Stokes equation for the flow speed to reaction-diffusion-convection (RDC) equations for

the concentration of the autocatalytic product and temperature. Combined experimental

and numerical parameter studies allow to analyze the respective role of solutal and thermal

effects in the dynamics as well as the influence of the height of the solution layer on the

number of rolls observed in concentration fields.

The article is organized as follows: in section I, we describe the experimental results

showing the influence of thermal effects on the propagation of fronts. Section II discusses

the 2D model and numerical simulations used to understand the competition between solutal

and thermal effects while conclusions are drawn in section III.
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TABLE I: Composition of reactant solution

[K2S4O6]/mM 5

[NaClO2]/mM 20

[NaOH]/mM 2.5

[Congo red]/mM 0.574

II. EXPERIMENTAL

Throughout the experiments reagent-grade chemicals of the CT reaction were used

(Sigma, Aldrich, Reanal) with the exception of sodium-chlorite, which was recrystallized

twice from the commercially available technical-grade material.28 A Hele-Shaw cell was con-

structed with two 8 mm thick Plexiglas walls of length Lx = 50 cm with a gap width of

height Lz set to 1, 1.5, 2, 2.5, 3, or 4 cm and a thickness Ly equal to 1, 2, or 3 mm (see

Fig.1). Once the cell was filled with the reactant solution with composition in Table 1, two

vertically oriented Pt wires (0.25 mm in diameter) served as front initiator by applying a 3 V

potential difference between them for a few seconds. The horizontally propagating reaction

fronts were monitored by a CCD camera attached to a computer-driven imaging system,

which captured the images at 2–10 s intervals. The acidity fronts were visualized by congo

red pH indicator, while enhanced contrast was achieved by an appropriate cut-off filter. For

experiments at 3 ◦C the solution was previously cooled, then poured in the Hele-Shaw cell

sandwiched between two thermostated transparent jackets. Fronts were initiated once the

system reached the required temperature. The solution densities at both 3 ◦C and room

temperatures were measured by an AP Paar DMA 58 digital densitometer within 10−5 g/cm3

precision.

The front position was given as the point of inflection in the gray scale values along the

direction of propagation (x coordinate), from which the mean front position was determined

by averaging it along the direction perpendicular to propagation (z coordinate). For stable

patterns the final front geometry was characterized by the mixing length and the temporal

average of the front profiles. The mixing length was defined as the standard deviation of the

mean front position, while the temporal average was the time average of the front profiles

with the mean front position shifted to zero.

Under isothermal conditions the products of the CT reaction system are denser than the
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reactants and the system exhibits simple convection11. In an experimental setup this condi-

tion may be obtained by using small reactant concentrations in a very thin solution layer,

in which case the heat evolved is effectively dissipated to the surrounding. A horizontally

propagating vertical chemical front therefore yields a gravity current in which the heavier

products sink under the fresh lighter reactants.22 For an exothermic reaction in thicker so-

lutions the thermal contribution that would otherwise result in multicomponent convection

may be best eliminated by running the reaction in aqueous solution at 3 ◦C, where an antic-

ipated 1–2 ◦C increase in temperature only leads to negligible thermal contribution to the

density change.

The simple convection due to such a solutal density jump leads hence to a deformed front

propagating at constant velocity and with constant shape after a short transition period.

By increasing the thickness of the solution layer, the convective motion is enhanced as the

fluid velocity in the bulk increases leading to longer mixing lengths as shown in Fig.2(a-c).

The mixing length scales with the height in Fig.2 according to

Lm/L0 = (0.56± 0.03) (Lz/L0)
1.19±0.04 for Ly = 1 mm, (1)

Lm/L0 = (0.95± 0.10) (Lz/L0)
1.34±0.09 for Ly = 2 mm, (2)

Lm/L0 = (1.32± 0.13) (Lz/L0)
1.31±0.08 for Ly = 3 mm (3)

with L0 = 1 cm unit length. The coefficients of the scaling laws increase with height as

anticipated, while the exponent can be considered as constant (1.31 ± 0.09) because the

change in it is within the experimental error as shown below.

At room temperature, on the contrary, the thermal density jump across the front plays

an important role. The heat evolution in the course of the reaction leads indeed to a smaller

total increase in the density, resulting in mixing lengths shorter than those observed for

the appropriate width at 3 ◦C as presented in Fig.2(d,e). For a solution thickness of 3

mm, a different scenario occurs. Due to the ineffective heat loss to the surrounding, the

thermal contribution now dominates, therefore the warmer products are less dense than

the fresh reactants across the front. The gravity current is inverted and the warm products

accumulate above the reactants. A constant front profile does not exist as previously because

the products start to cool and hence sink following the autocatalytic reaction, resulting in

a row of convection rolls as seen in Fig.2(f).

The number of cellular deformations trailing the leading tip of the front on the top
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boundary increases with the height of the solution layer as their intrinsic size is observed to

be generally independent of the height (see Fig.4).

III. THEORETICAL ANALYSIS

In experiments, the geometry is effectively three dimensional. Solutal effects are varied

when varying the thickness Ly which changes the relative importance of friction forces on

the wall. In parallel, thermal effects can be either eliminated by performing the experiments

at 3◦C or varied by performing the experiment at room temperature but increasing the

thickness Ly. This decreases the relative importance of heat losses in the dynamics and

effectively increases the temperature of the products. Fortunately, a 2D model is found to

capture the important qualitative features of the system. Indeed in practice, the dynamics

results from the competition between solutal and thermal effects the relative importance of

which can be casted into Rayleigh numbers of a 2D model as we show it now.

A. Model

To gain insight into the influence of competing solutal and thermal effects on the dynamics

of fronts, we turn to numerical simulations of a simple 2D dimensionless model23 coupling

the Stokes equation (4) for the 2D velocity v = (u,w) of the flow to RDC equations for the

concentration c of the autocatalytic product involved into a cubic kinetics (6) and for the

temperature T (7). The dimensionless governing equations read

∇p = ∇2v + (RC c + RT T ) iz , (4)

∇ · v = 0 , (5)

∂c

∂t
+ v.∇c = ∇2c + c2(1− c) , (6)

∂T

∂t
+ v.∇T = Le∇2T + c2(1− c) , (7)

where iz is the unit vector in the z-direction, p is the pressure and the Lewis number,

Le = DT /D, is the ratio between the thermal DT and molecular D diffusivities. The

dimensionless solutal and thermal Rayleigh numbers, RC and RT , are defined respectively
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as

RC = −∂ρ

∂c

a0 L3
c g

D µ
, (8)

RT = − ∂ρ

∂T

∆T L3
c g

D µ
, (9)

where ∂ρ/∂c and ∂ρ/∂T are the solutal and thermal expansion coefficients of the solution,

respectively. Lc is a characteristic reaction-diffusion length scale23, ao the initial concentra-

tion of the reactant, g the gravitational acceleration and µ the viscosity of the solution. The

solutal Rayleigh number RC is positive if the density decreases in the course of reaction and

negative otherwise while the thermal Rayleigh number RT is always positive since the reac-

tion is exothermic (∆T > 0) and ∂ρ/∂T is negative for water at T > 4 ◦C. For experiments

performed at 3 ◦C, we have ∂ρ/∂T ∼ 0 and hence RT ∼ 0 effectively, i.e., we explore an

isothermal situation. The dimensionless density field is explicitly obtained as

ρ(x, z, t) = −RC c(x, z, t)−RT T (x, z, t) . (10)

Ahead of the front, the reactants (where c = T = 0) have a dimensionless density ρr = 0

due to our choice of non-dimensionalization, while the dimensionless density of the products

behind the front (where c = T = 1) is ρp = −RC −RT .

Numerical solutions of equations (4-7) are analyzed on a 2D domain of height Lz and

width Lx using the numerical procedure described in Ref.23. At each boundary of the

domain we require zero-flux boundary conditions for the chemical concentration c and the

temperature T . The hydrodynamic boundary conditions are rigid walls with no slip for the

vertical boundaries and slip walls for the horizontal boundaries, i.e.,

∂c

∂x
=

∂T

∂x
= u =

∂w

∂x
= 0 at x = 0 , x = Lx , (11)

∂c

∂z
=

∂T

∂z
= u = w = 0 at z = 0 , z = Lz , (12)

where Lx and Lz now represent the dimensionless length and height of the layer, respectively.

The length of the system and slip walls do not influence the results as long as the reactor

length is taken sufficiently long for the front not to interact with a lateral boundary on the

time of interest.
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B. Results

In experiments performed at 3 ◦C where thermal effects can be neglected, the length of

the finger is larger when the thickness Ly of the cell increases. This effect cannot be captured

by the present 2D model other than by understanding that increasing Ly decreases friction

effects which could be understood as working with a larger effective RC . A numerical study

of the influence of increasing RC shows that this leads to longer fingers23 in agreement with

the experimental results of Fig.2(a-c). Increasing the height Lz in isothermal conditions

leads to a change of the numerical mixing length as 0.692L2
z which in dimensional units

gives for the cubic scheme used here Lm = 0.692 ao

√
(k/D)L2

z, where k denotes a kinetic

constant. The equation illustrates that a scaling law exists with an exponent greater than

the one observed experimentally. The value itself, however, is different (see (1)-(3)) therefore

for quantitative comparison, a full 3D modeling is necessary.

The relative effects of solutal and thermal density changes across the front can however

well be captured by fixing RC to a given negative value such that the products are solute

heavier than the reactants and varying RT . Increasing RT from zero corresponding to an

isothermal situation up to larger positive values describes the expected situation for fronts

with increasing exothermicity (see Fig.5). We fix therefore RC = −10 and first start from

RT = 0 to have a pure solutal effect like the one studied at 3 ◦C. There the products are

heavier and sink below the reactants as seen on both experimental (Fig.2(a-c)) and numerical

(Fig.5top) results. Then we increase RT , so the products progressively become hotter and

thus lighter. First the thermal effect is weak (see RT = +5 in Fig.5), hence it is only slightly

stabilizing the solutal effects but does not revert the sinking of the products. For RT = 10,

the total density jump across the front is zero but nevertheless we see convection because

heat and mass do not diffuse at the same rate (Le 6= 1) which leads to an uneven distribution

of density. For RT = 15 we obtain an oscillatory regime previously described in details25. At

larger RT , the front reverses its deformation with products being now sufficiently hotter and

hence sufficiently lighter to climb on top of the reactants at room temperature just as seen

experimentally when heat effects are increased when comparing Fig.2(d-e) with Fig.2(f).

When thermal effects are sufficiently strong to lead to rising products, the intensity of the

front deformation is observed experimentally to increase with the cell height Lz (Fig.4). To

understand this effect, we have numerically investigated the effect of increasing Lz keeping
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the Rayleigh numbers to the values RC = −10, RT = +15 allowing to obtain rising products.

We see on Fig.6 that the concentration field becomes more and more distorted when Lz

increases. For Lz = 10 we observe only one oscillatory tongue deforming periodically the

concentration field while an increasing number of tongues is obtained for larger Lz. A close

inspection of the related stream function field shown in Fig.7 reveals that increasing Lz does

not increase the number of vortices which remains here equal to 3 but rather their lateral

extension and intensity. The concentration field inside the finger is therefore increasingly

distorted and shows more and more recirculating zones as seen both experimentally (Fig.4)

and numerically (Fig.6) even though the underlying velocity field keeps the same number

of vortices. Further work to compare the concentration field measured by color changes like

on Fig.4 with particle image velocimetry measurements in absence of any color indicator of

the reaction would be interesting as it may give insight into the details of the underlying

velocity field.

IV. CONCLUSIONS

The competition between solutal and thermal contributions to a density jump across

an antagonistic autocatalytic chemical front can lead to different spatio-temporal dynamics

depending on the relative weight of each effect. We have investigated here such various situa-

tions both experimentally and numerically. In experiments performed with the antagonistic

CT system, isothermal conditions are obtained by performing experiments at 3 ◦C while

increasing thermal effects are achieved by increasing the thickness of the reactor to decrease

the influence of thermal losses. In a 2D model of the system, the relative importance of each

effect can be modulated by varying the relative values of the solutal RC and thermal RT

Rayleigh numbers. In pure isothermal conditions, the solute heavier products sink below the

reactants while if heat effects are important enough to heat the products and make them

globally lighter than the reactants, a finger with reversed shape, i.e., hot products rising

on top of the colder reactants is obtained. It is found both experimentally and numerically

that the spatio-temporal dynamics and the number of cellular deformations observed in the

concentration field increase with the magnitude of thermal effects.
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Plexiglas (8 mm)

gap

spacer (1 − 3 mm)

Pt−electrodes

12 cm

+
−

50 cm
Lz

Lx

Ly

FIG. 1: Sketch of the experimental set-up. The gap in which the front propagates has a length Lx,

a height Lz, and a thickness Ly.

(c) (f)

(e)(b)

(a) (d)

2 cm

FIG. 2: Comparison of experimental dynamics without (a-c) and with (d-f) heat effects in a system

of thickness Ly =1 mm, 2 mm and 3 mm from top to bottom with Lz = 4 cm.
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FIG. 3: Dimensional experimental mixing length Lm of the front deformation as a function of the

height Lz of the layer for three different thicknesses Ly: 1 mm (4); 2 mm (2); 3 mm (©) for

experiments performed at 3 ◦C, i.e., for the fingers shown on Fig.2 (a-c), in turn.

(b)

(c)

(a)

1 cm

FIG. 4: Influence of the height of the layer Lz on the number of rolls observed experimentally in

the concentration field when solutal and thermal effects are competing. From top to bottom Lz =

1 cm (a), 2 cm (b) and 4 cm (c), in turn in a system with thickness Ly = 3mm.
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FIG. 5: Numerical study of the influence of increasing thermal effects for a fixed dimensionless

layer thickness Lz = 10 with Le = 5, RC = −10, and RT = 0; 5; 10; 15; 50 from top to bottom.

The z direction has been magnified in order to see the details of the velocity field, but the five

panels are displayed at the same scale.
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FIG. 6: Numerical study of the influence of the dimensionless height of the layer Lz observed when

solutal and thermal effects are competing with Le = 5, RC = −10, RT = 15 and Lz = 10; 15; 20; 30

from top to bottom. The z direction has been magnified in order to see the details of the velocity

field, but the four panels are displayed at the same scale.
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FIG. 7: Numerical study of the influence of the dimensionless height of the layer Lz on the intensity

of vortices seen in the stream function plots with Le = 5, RC = −10, RT = 15 and Lz =

10; 15; 20; 30 from top to bottom. The stream function is renormalized between 0 and 1 and is

plotted at the same scale as in Fig.6.
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