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A B S T R A C T

In this work we introduce a modified pump-probe mode-mismatched thermal lens Z-scan
theoretical model for measurement of thermo-optical properties including absorption coefficient
and thermal diffusivity of semitransparent liquids. We present an exact solution for the
theoretical thermal lens (TL) signal which agrees pretty well with the experimental one under
different experimental configurations. The TL signal as a function of the detector position (𝐿)
has been analyzed using the pinhole size (𝜌0) as a critical parameter. We illustrate its validity
by calculating the TL signal in Z-scan experiment and situation with small and large values of
𝐿 as well as measuring the absorption coefficient and thermal diffusivity of water.

. Introduction

Thermal lens spectroscopy is a highly sensitive optical method widely used for measurement of absorption coefficient and
hotothermal parameters of semi-transparent samples [1–5]. It is based on the use of the thermal lens (TL) effect generated by
he spatially dependent temperature distribution induced in a sample following the absorption of an excitation laser beam [6–10].
he probing laser beam passes through the sample and its phase is affected by the TL effect thus producing a divergent or convergent
eam depending on the nature of the material. By measuring the variation of the probe beam intensity at the detector position, the TL
ignal can be measured and processed. The magnitude of the TL signal depends on photothermal parameters including the excitation
ower and the amount of light absorbed by the irradiated sample, which depends on the absorption coefficient. Previously developed
heoretical models, to study TL signals, were based on Fresnel-diffraction approximation, for situations in which the sample is located
t a fixed position [11]. Later on, Marcano et al. [12] developed a model for Z-scan experiment based on the same approximation,
hich also includes the aberration nature of the TL. This model successfully describes the behavior of the TL signal generated in
n experimental configuration based on focused excitation and collimated probe beams and measuring the transmission of probe
ight through a small aperture. They claimed an excellent agreement between theoretical and experimental values when performing
-scan experiments for specific case in which the radius of aperture (𝜌0) was ignored. However, in their results, the values of 𝐿
re very large (2000 cm) in order to match the theoretical and experimental TL signals, which is cumbersome in real experimental
onfiguration. Because of that, in more general cases it is necessary to consider the influence of 𝜌0 on the TL signal which presents
ncertainties if 𝐿 is too small.

In our proposal we expand previous TL model including 𝜌0 and the distance between sample and detector (𝐿) as well as
onsidering real situations in which 𝐿 takes large and short values. In both cases, our results essentially show pretty good matching
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Fig. 1. Schematic diagram of mode-mismatched TL Z-scan. Here p, e, 𝑎𝑝, 𝑎𝑒 are probe beam, excitation beam, beam waist positions of probe and excitation
beam respectively. 𝑎𝑒 is fixed at the origin of coordinate system 𝑍 = 0. Distance of the detector from origin 𝑍 = 0 is 𝐿, whereas sample to detector distance
is 𝜁 = 𝐿 − 𝑧 with 𝑍 = 0 in Z-scan experiment.

between the theoretical and experimental values. The paper is organized as follows. In section (II) we present the exact analytical
theory for Z-scan experiment in far field approximation and discuss theoretical results in mode- mismatched configuration with the
exact solution which includes 𝜌0 and 𝐿 dependences. In section (III) we perform Z-scan experiment with water and compare results
of absorption coefficient and thermal diffusivity values obtained using different TL models.

2. Modified theoretical model: general solution

In our calculation, we have considered the dual-beam mode-mismatched TL experimental configuration proposed by Marcano
et al. [12] as shown in Fig. 1. The position of the sample is taken as the origin of coordinate system (Z = 0). Following the same
procedure used in [11,12], the expression for the probe beam electric field amplitude after being distorted by the TL effect, is
calculated at the detector plane by the following expression,

𝑈 (𝑟, 𝑧, 𝑡) = 𝑖
𝜁𝜆𝑝

𝑒𝑥𝑝
{−2𝑖𝜋

𝜆𝑝
(𝜁 + 𝑟2

2𝜁
)
}

∫

2𝜋

0 ∫

∞

0
𝑈𝑖(𝑟1, 𝑧, 𝑡)

𝑒𝑥𝑝
{−𝑖𝜋

𝜆𝑝

𝑟21
𝜁

}

𝑒𝑥𝑝
{2𝑖𝜋𝑟𝑟1

𝜆𝑝𝜁
cos(𝜙1 − 𝜙2)

}

𝑟1𝑑𝑟1𝑑𝜙1

(1)

where 𝜁 = 𝐿− 𝑧, 𝜆𝑝, 𝜆𝑒 are probe and excitation beam wavelengths respectively, (𝑟1, 𝜙1), (𝑟, 𝜙2) are polar coordinates at sample and
detector planes, respectivelly and 𝑈𝑖(𝑟, 𝑧, 𝑡) is the probe beam field amplitude with additional phase arising from the TL effect. In
order to solve Eq. (1), Bessel function of zeroth-order is introduced using the following property

∫

2𝜋

0
exp

{2𝑖𝜋𝑟𝑟1
𝜆𝑝𝜁

cos(𝜙1 − 𝜙2)
}

𝑑𝜙1 = 2𝜋𝐽0
( 2𝜋𝑟𝑟1

𝜆𝑝𝜁

)

(2)

Using Eq. (2), the expression of Eq. (1) can be further simplified. The probe beam electric field amplitude at the detector plane
takes the following form

𝑈 (𝑟, 𝑧, 𝑡) = 𝑖
𝜁𝜆𝑝

2𝜋 exp
{−2𝑖𝜋

𝜆𝑝

(
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}

∫
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exp
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𝑟1𝑑𝑟1

(3)

The initial probe beam electric field amplitude 𝑈𝑖(𝑟1, 𝑧, 𝑡) in Eq. (3) can be defined as the product of the probe beam electric field
amplitude without TL effect |

|

𝑈𝑖
|

|

and an exponential phase factor introduced by the TL effect; exp{−𝑖 𝜋
𝜆𝑝

( 𝑟21
𝑅 + 2𝛷(𝑟1, 𝑧, 𝑡)

)

}. Here
𝛷(𝑟1, 𝑧, 𝑡) is the phase shift on the probe beam wavefront due to the temperature gradient,

(2𝜋∕𝜆𝑝)𝛷(𝑟, 𝑧, 𝑡) = (2𝜋∕𝜆𝑝)𝑙
𝑑𝑛
𝑑𝑇

{𝛥𝑇 (𝑟, 𝑧, 𝑡) − 𝛥𝑇 (𝑟, 0, 𝑡)} (4)

where 𝑙 is the thickness of the sample, 𝛥𝑇 (𝑟, 𝑧, 𝑡) is the temperature change, 𝑑𝑛∕𝑑𝑇 is the refractive index gradient and R is the radius
of curvature. For a Gaussian beam passing through a very narrow region, we can use the approximation 𝑅 ≫ 𝑟1. For a Gaussian
excitation beam an expression for 𝛷(𝑟1, 𝑧, 𝑡) can be obtained from non-steady state heat diffusion equation as [11];

𝛷(𝑔, 𝑧, 𝑡) = −
𝛷0
2 ∫

1

𝑡′

{

1 − exp(−2𝑚(𝑧)𝑔)𝜏
}

𝜏
𝑑𝜏 (5)

𝛷0 =
𝛼𝑙𝑃𝑒𝑑𝑛∕𝑑𝑇

𝜅𝜆𝑝
(6)

where 𝑡′ = 1∕(1 + 2𝑡∕𝑡𝑐 (𝑧)). 𝑃𝑒 is the excitation beam power, 𝜅 is thermal conductivity and 𝛼 is the absorption coefficient of the
sample. Additionally we have introduced two parameters 𝑔 = (

𝑟21 ) and 𝑚 = (𝜔𝑝 )2 which define the degree of mismatching between
2

𝜔2
𝑝 𝜔𝑒
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probe and excitation beams. Assuming 𝛷 ≪ 1 we can ignore higher order terms in expansion of phase factor i.e. exp{−𝑖(2𝜋∕𝜆𝑝)𝛷} ≈
(1 − 𝑖2𝜋𝛷∕𝜆𝑝). Thus Eq. (3) takes the following form

𝑈 (𝑟, 𝑧, 𝑡) = 𝐵(𝑧, 𝑟)∫

∞

0
exp{−𝑔 − 𝑖𝑣(𝑧)𝑔}(1−𝑖𝛷)

𝐽0
(

𝑟
√

𝑔𝜂(𝑧)
)

𝑑𝑔
(7)

The parameters in Eq. (7) are defined as follows,

𝜂(𝑧) =2𝜋𝜔𝑝(𝑧)∕𝜆𝑝𝜁

𝑣(𝑧) =(𝑧 − 𝑎𝑝)∕𝑧𝑝 + (𝑧𝑝∕𝜁 )[1 + (𝑧 − 𝑎𝑝)2∕𝑧2𝑝]
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√
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𝐵(𝑧, 𝑟) =𝑖𝜔𝑝(𝑧)(
√
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× (2𝜁 + 𝑟2∕𝜁 ) + 𝑖𝑎𝑟𝑐𝑡𝑎𝑛(𝑧∕𝑧𝑝)]

(8)

Here 𝑧𝑝,𝑒 =
√

𝜋𝜔𝑜𝑝,𝑜𝑒∕𝜆𝑝,𝑒 and 𝑎𝑝, 𝑎𝑒 are their Rayleigh parameters and waist positions of the beams, whereas 𝜔𝑜𝑝 and 𝜔𝑜𝑒 the radii at
the waist, of the probe and the pump beams respectively. Integration over g in Eq. (7) can be done analytically using the following
integral,

∫

∞

0
exp

{
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= 1
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exp
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{
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We define new variables as:

𝑀0(𝑧, 𝜏) =
1

√

(1 + 2𝑚(𝑧)𝜏)2 + 𝑣(𝑧)2
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{

−
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(10)

We can rewrite Eq. (9) in terms of the new variables in Eq. (10)

𝑀(𝑧, 𝑟, 𝜏) =𝑀0(𝑧, 𝜏) exp(−𝑟2𝑀1(𝑧, 𝜏)𝜂(𝑧)2)

exp
(

𝑖[𝑟2𝜂(𝑧)2𝑀2(𝑧, 𝜏) +𝑀3(𝑧, 𝜏)]
) (11)

Using Eqs. (5) and (11), the probe beam electric field amplitude at the detector plane in Eq. (7) can be simplified as follows,

𝑈 (𝑟, 𝑧, 𝑡) =𝐵(𝑧, 𝑟)
{

𝑀(𝑧, 𝑟, 0) + 𝑖
𝛷0
2 ∫

1

𝑡′
[𝑀(𝑧, 𝑟, 0)

− 𝑀(𝑧, 𝑟, 𝜏)]𝑑𝜏
𝜏

}

(12)

The probe beam transmission intensity through 𝜌0 is defined as

𝑇 (𝑧, 𝑡) = ∫

𝜌0

0
|𝑈 (𝑟, 𝑧, 𝑡)|2 2𝜋𝑟𝑑𝑟 (13)

The TL signal is defined as the relative change of the probe beam transmission when the aperture is located in far field [12]

𝑆(𝑧, 𝑡) =
𝑇 (𝑧, 𝑡) − 𝑇 (0) (14)
3
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Fig. 2. Z-scan signal obtained from Eq. (15) Fig. 2(a), Eq. (16) Fig. 2(b) in mode-mismatched scheme for various values of 𝐿. The parameters are
𝑧𝑝 = 70 cm, 𝑧𝑒 = 0.05 cm, 𝑎𝑝 = −20, 𝑎𝑒 = 0, 𝐷 = 1.431 × 10−3 cm2

s , 𝜌0 = 0.1 cm 𝜔𝑝0 = 0.038 cm and 𝜔𝑒0 = 0.001 cm, 𝑡 = 0.0714 s.

here 𝑇 (0) is the value of T(z,t) for 𝛷 = 0. After integration over r the expression for S(z,t) as a function of the sample position is
alculated as follows

𝑆(𝑧, 𝑡) = ∫

1

𝑡′

2𝑀1(𝑧, 0)𝑀0(𝑧, 𝜏)𝜙0

(1 − exp{−2𝜌20𝑀1(𝑧, 0)𝑦2})𝑀0(𝑧, 0)𝑀4(𝑧, 𝜏)
𝑑𝜏
𝜏

[

sin
{

arctan
[𝑀2(𝑧, 0) −𝑀2(𝑧, 𝜏)
𝑀1(𝑧, 0) +𝑀1(𝑧, 𝜏)

]

+𝑀3(𝑧, 0) −𝑀3(𝑧, 𝜏)
}

− exp{−2𝜌20(𝑀1(𝑧, 0) +𝑀1(𝑧, 𝜏)𝑦2)} sin
{

arctan
[𝑀2(𝑧, 0) −𝑀2(𝑧, 𝜏)
𝑀1(𝑧, 0) +𝑀1(𝑧, 𝜏)

]

+ 𝜌20𝑦
2(𝑀2(𝑧, 0) −𝑀2(𝑧, 𝜏)) +𝑀3(𝑧, 0) −𝑀3(𝑧, 𝜏)

}]

(15)

Apart from the dependence on the sample position, the TL signal in Eq. (15) depends on the aperture size 𝜌0 as well. This dependence
can be conveniently ignored when the aperture size is much smaller than the probe beam radius at the detector plane. This situation
can be reached for larger values of 𝐿; however, in real situation the distance 𝐿 is small (100 cm) and the dependence on 𝜌0 must be
considered. In the situation when the contribution of 𝜌0 is ignored, the TL signal can be described by a simple expression as Eq.(42)
of [11] or Eq. (23) of [12].

𝑆(𝑧, 𝑡) = 𝛷0 arctan
{ 4𝑚(𝑧)𝑣(𝑧)𝑡∕𝑡𝑐 (𝑧)
𝑣(𝑧)2 + (1 + 2𝑚(𝑧))2 + (1 + 2𝑚(𝑧) + 𝑣(𝑧)2)2𝑡∕𝑡𝑐 (𝑧)

}

(16)

The expression in Eq. (15) is similar to the one derived by Marcano et al. [12] (see Eq. 20, 21 and Eq. 22); However our calculations
reveal three different issues; (i) the exponential in the second term of the numerator of Eq. (21) [12] is incomplete, the correct form
of the exponent should be exp[−{𝐹 (𝑧, 𝑡) + 𝐹 (0, 𝑡)}𝑌 (𝑧)2𝑟20]; (ii) the sign of the term −𝜂(𝑧, 0) + 𝜂(𝑧, 𝑡) in Eq. (22) is inconsistent with
ur calculations, the correct form is 𝜂(𝑧, 0) − 𝜂(𝑧, 𝑡); (iii) Eq. (23) [12] or Eq. (42) of [11] ignores the 𝜌0 dependence, but it must
e considered for small values of 𝐿. The dependence of the TL signal on 𝜌0 and 𝐿 can be analyzed using Eqs. (15) and (16) and
omparing the results.

In Figs. 2(a) and 2(b), we plot the TL Z-scan signals obtained from Eqs. (15) and (16) in mode-mismatched scheme for various
etector positions. For 𝐿 = 1000 cm and 𝐿 = 2000 cm the TL signals are identical. The TL signal calculated with Eq. (15) is smaller
han the TL signal calculated using Eq. (16) for smaller values of 𝐿. For example in the case of 𝐿 = 100 cm, the maximum signal
f Fig. 2(a) is only 23% of the signal peak of Fig. 2(b). This result indicates that there is a strong dependence of the TL signal with
, contrary to the situation when 𝜌0 contribution was ignored in case of Eq. (16) in [12] and Eq. (42) of [11]. As seen in Fig. 2(a)

he peak value of the TL signal shows interesting dependence on L. To illustrate this dependence we plot the Z-scan signal at 𝑧 = 0
s a function of L at different times as shown in Fig. 3.

In Fig. 3 we see that 𝑆(0, 𝑡) increases when 𝐿 increases, reaching a maximum value, and afterwards begins to decrease when
etector position moves further away. This behavior is not observed in the inset of Fig. 3 where 𝑆(0, 𝑡) reaches its maximum with
horter values of 𝐿 and decreases afterwards as we increase 𝐿. In Fig. 4(a) the dependence of the signal on different Rayleigh
arameters is shown. The results show that, the signal is nearly independent on the probe beam Rayleigh parameter 𝑧𝑝. We show
he calculation of the TL signal for 𝑧𝑒 = 0.05 cm and zp = 200, 2000, 5000, 10 000 cm, as indicated. The rest of the parameters are
s in Fig. 2. In Fig. 4(b), the dependence of the TL signal are plotted using Eq. (16) for same parameters.
4
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Fig. 3. Dependence of the TL signal peak at 𝑧 = 0 versus L at different times for Eq. (15). The inset of the figure corresponds to Eq. (16). The rest of parameters
are 𝑧𝑝 = 70 cm, 𝑧𝑒 = 0.05 cm, 𝑎𝑝 = −20, 𝑎𝑒 = 0, 𝐷 = 1.431 × 10−3 cm2

s , 𝜌0 = 0.1 cm 𝜔𝑝0 = 0.038 and 𝜔𝑒0 = 0.001. The origin of horizontal scale is set at L = 50 cm.

Fig. 4. Fig. 4(a) is the Z-scan calculated from Eq. (15) for different values of the probe beam Rayleigh parameters. The Rayleigh parameter of the excitation
beam is ze = 0.05 cm. The values of (𝑧𝑝 = 200, 𝑧𝑝 = 2000, 𝑧𝑝 = 50000, 𝑧𝑝 = 10000) are shown in red, blue, purple and black respectively. Detector to sample
position 𝐿 is set at 100 cm, while the rest of parameters are the same as in Fig. 2. Fig. 4(b) shows the Z-scan for same parameters using Eq. (16). The value
of 𝜙0 is −0.013. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

3. Experimental part

In order to validate the presented modified model, we calculate the absorption coefficient and the thermal diffusivity of water
using the experimental setup shown in Fig. 5. As a probe beam we used a 2 mW He–Ne laser (05-UR-111, Melles Griot) collimated
by a set of lenses L3 (LB1027-A, f = 40 mm, Thorlabs) and L4 (LB1676-A, f = 100 mm, Thorlabs), respectively. The distance
between lenses was adjusted in order to change the Rayleigh parameter of the probe beam. A 532 nm diode-pumped solid state
laser (DPSS) (MGL-III- 532 nm-1000, UltraLasers) was used as the excitation light which was intensity modulated at 7 Hz using a
signal generator (SG) (Rigol DG 2041 A, Batronix). A collimation system with lens L1 (LB1027-A, f = 40 mm, Thorlabs) and L2
(LB1676-A, f = 100 mm, Thorlabs) generated a 3 mm collimated excitation beam which was focused onto the sample by lens L3
(LB1676-A, f = 100 mm, Thorlabs).

The radius of the excitation beam (10 μm) was measured using a commercial dual scanning slit beam profiler (BP209-VISM,
Thorlabs). The Silicon detector (PDA 36A-EC, Thorlabs) converted the intensity changes of the probe beam through a 1 mm pinhole
(encapsulated in detector) into analog voltage. The interference filter 632.8 nm (MELLES GRIOT) removed any residual light at
532 nm.

For a 2 mm cell, L = 100 cm and 650 mW power we measured the TL signal for different positions of sample cell (Z-scan
measurement) as shown in (Fig. 6(a)) for Z = 0. Additionally, we performed fitting on Z-scan measurement (Fig. 6(b)) and (Fig. 6(c))
5
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Fig. 5. Experimental configuration of the pump-probe TL setup. Ph: photodetector; L1–L5: lenses; M1–M2: turning mirrors, M3: dichroic mirror, F: filter.

Fig. 6. (a) TL signal obtained from digital oscilloscope (b)–(c) Mode-mismatched curve fit of experimental data points with Eqs. (15) and (16), respectively:
The parameters used for curve fit 𝑧𝑝 = 70 cm, 𝑧𝑒 = 0.05 cm, 𝑎𝑝 = −20, 𝑎𝑒 = 0, 𝐷 = 1.431 × 10−3 cm2

s , 𝜔𝑝0 = 0.038 cm and 𝜔𝑒0 = 0.001 cm, t = 0.0714 s.

using Eqs. (15) and (16) respectively. Considering 𝜙0 and D as adjustable parameters [13] we got 𝜙0= − 0.013 and 𝐷=1.43 × 10−3
from the curve fit in first case whereas for the later, we obtain 𝜙0 = −0.024. Using the photothermal parameters of water:
𝑑𝑛∕𝑑𝑇 = 0.91 × 10−4 K−1, 𝜅 = 5.98 × 10−3 W/cm K, 𝑃𝑒 = 650 mW and 𝜆𝑝 = 632.8 nm, the value of absorption coefficient can
be obtained from Eq. (6) which gives a value of 𝛼 = 4.16 × 10−4 cm−1. The obtained results for 𝛼 and D match pretty well with
previously reported values [3,14].

As indicated in the caption of (Fig. 6(b)), the fitting was performed using the experimental value of L. However, for the fitting
performed with Eq. (16) in (Fig. 6(c)), the value of 𝐿 was adjusted to a very large value (𝐿 = 2000 cm) which does not match the real
experimental situation and is inconsistent. Similarly, this is in agreement with the measurement performed in the Ref. [12] in which
𝐿 was also adjusted to a large value. Collectivelly, these results demonstrate the significance of the pinhole size and its correlation
with 𝐿. In addition, indicate the validity of the proposed modified TL model for which 𝐿 takes logical values in agreement with the
experimental ones.

4. Conclusion

We presented a modified TL model for Z-scan measurement, which describes more precisely the behavior of the TL signal under
different experimental situations. Furthermore, we show the feasibility of using the generalized model for different experimental
configurations including small and large values of 𝐿. The theory enables to perform fitting on the experimental data using the values
of 𝛷0 and D as fitting parameters and there is a pretty well agreement between the values of 𝐿 both in theory and experiment. To
test the validity of our model, we performed mode-mismatched Z-scan experiment using double distilled and deionized water as a
sample. The obtained values for the absorption coefficient and thermal diffusivity match pretty well with the literature values.
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