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Note on the variance of generalized random polygons
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Abstract. We consider a probability model in which the hull of a sample of i.i.d. uniform
random points from a convex disc K is formed by the intersection of all translates of another
suitable fixed convex disc L that contain the sample. Such an object is called a random L-
polygon in K. We assume that both K and L have C2

+ smooth boundaries, and we prove
upper bounds on the variance of the number of vertices and missed area of random L-
polygons assuming different curvature conditions. We also transfer some of our result to a
circumscribed variant of this model.
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1. Introduction and results

Approximation of convex bodies by random polytopes that arise as the convex
hull of i.i.d. random points is an actively investigated topic in contemporary
geometry. Since the ground-breaking papers of Rényi and Sulanke [17–19] one
of the major directions is the study of asymptotic properties of random poly-
topes as the number of generating points tends to infinity. We refer to the
surveys by Bárány [2], Reitzner [16], and Schneider [21], and Weil, Wieacker
[22] for further information on the extensive literature of this rich field. In this
paper, rather than adhering to the classical notion of convexity, we use a mod-
ified definition, the so-called L-convex hull. This alternative approach allows
for a more nuanced perspective on the approximation properties of convex
bodies depending on the curvature of the boundary.

The classical convex hull of a closed set is the intersection of all closed
half-spaces containing the set. When reconstructing a convex domain from a
random sample of points, the most natural estimator is the convex hull of
the sample. However, if the boundary of the set is curved, then it may be
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more advantageous to replace the half-spaces by, for example, translates of
a suitable convex domain, with possibly non-constant curvature. This idea
naturally leads to the notion of L-convexity.

The geometric properties of L-convexity are treated in detail in the articles,
for example, by Balashov and Polovinkin [1], Polovinkin [14], Lángi, Naszódi
and Talata [11], and in a more general setting, by Kabluchko, Marynych and
Molchanov [10], and Marynych and Molchanov [12]. Here we only summarize
the most important information on L-convex sets that is directly used in our
arguments.

Let K and L be two convex discs (compact convex sets with nonempty
interior) in the Euclidean plane. We say that K is L-convex if it is equal
to the intersection of all translates of L that contain K. Let X ⊂ R

2 be a
compact set that is contained in a translate of L. We call the intersection of
all translates of L containing X the L-convex hull of X, and denote it by [X]L.
It is known that K is L-convex if and only if L is a Minkowski summand of
K, that is, there exists a convex set M such that L = K + M , see Schneider
[20] Section 3.2.

The classical notion of convexity is usually defined using segments. In anal-
ogy to this, we define the L-segment or L-spindle of the points x and y as the
L-convex hull of {x, y}. We say, see [11, Def. (1.2)], that a convex disc K is
L-spindle convex if it is contained in a translate of L and for any x, y ∈ K
it holds that [x, y]L ⊂ K. These two definitions are equivalent in the plane,
but both can be naturally extended to higher dimensions, where the set of
L-spindle convex bodies is a proper subset of L-convex ones, cf. [11], [1] or
[14]. The L-spindle convex hull of finitely many points is called an L-polygon.
If the boundary ∂L of L is smooth, an L-polygon P is said to have a vertex at
x ∈ ∂P if x is not smooth. We note that in the special case when L = rB2, the
radius r circular disc in R

2, the term r-spindle convexity is used. Properties
of the random r-spindle convex model have been investigated recently in, for
example, [7,9].

We consider the following probability model. Let K and L be two con-
vex discs with C2

+ smooth boundaries, and assume that K is L-convex. Let
x1, . . . , xn be i.i.d. random points in K chosen according to the uniform prob-
ability distribution (normalized Lebesgue measure). Let KL

n = [x1, . . . , xn]L
be the L-convex hull of x1, . . . , xn, a random L-polygon in K. We are inter-
ested in the distribution of the following two random variables: the missed area
A(K\KL

n ) and the number of vertices f0(KL
n ). Our main results are asymptotic

upper bounds for the variance of A(K \ KL
n ) and f0(KL

n ) as n → ∞.
Two special cases of this probability model were studied in [8] which overlap

with the cases discussed for circles in [7]. In the first case, the curvatures of
boundaries of K and L are strictly separated, that is, we assume that

max
x∈∂L

κL(x) < 1 < min
y∈∂K

κK(y), (1)
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where κL(x) is the curvature at x ∈ ∂L, and κK(y) is the curvature at y ∈ ∂K.
In this case, it is known (cf. [20, Sec. 3.2]) that at every point x ∈ ∂K there
exists a translate L + p such that K ⊂ L + p and x ∈ ∂L + p. We say that
L + p supports K in x.

Fodor, Papvári and Vı́gh [8] proved that if K and L are two C2
+ convex

discs that satisfy (1), then

lim
n→∞E(f0(KL

n )) · n− 1
3 = c · A(K)−1/3

∫
S1

(κK(u) − κL(u))
1
3

κK(u)
du, (2)

lim
n→∞E(A(K \ KL

n )) · n
2
3 = c · A(K)2/3

∫
S1

(κK(u) − κL(u))
1
3

κK(u)
du,

where c = (2/3)1/3Γ(5/3), S1 is the unit circle and Γ is Euler’s gamma func-
tion. Integration on S1 is with respect to arc-length. The special case when L
is a circular disc of radius r > 1 was proved in [7, Theorem 1.1].

The second setup we study is when K = L with C2
+ boundary. It was

observed in [7] (see Theorem 1.2 (1.7)) that in the special case when L = B2,
the expected number of the vertices approaches a constant as n → ∞. It
was proved by Fodor, Papvári and Vı́gh [8] that a similar phenomenon occurs
for general L. This result was extended by Marynich and Molchanov for d-
dimensions in [12] with no smoothness condition on L, and they also corrected
the constant in [8].

Fodor and Vı́gh [9] proved upper bounds for the variance of the area and
vertex number in the case when K = B2. Fodor, Grünfelder and Vı́gh [6]
proved matching lower bounds when the curvature of ∂K is larger than 1 at
all boundary points.

We use the following common notation for asymptotic inequalities. Let f
and g be two real sequences. We write f � g if there is a positive constant γ0
such that |f(n)| ≤ γ0g(n) for every n ∈ N. If both f � g and g � f hold we
write f ≈ g.

Our main results are the following.

Theorem 1. If the convex discs K and L satisfy (1), then

Var(f0(KL
n )) � n

1
3 , (3)

Var(A(KL
n )) � n− 5

3 , (4)

where the implied constants depend only on K and L.

Theorem 2. Let L be a convex disc with C2
+ smooth boundary. Then

Var(f0(LL
n)) � 1, (5)

Var(A(LL
n))) � n−2, (6)

where the implied constants depend only on L.
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The upper bound on the variance yields the strong law of large numbers
for the missed area.

Theorem 3. Let K and L be convex discs that satisfy (1). Then it holds with
probability 1 that

lim
n→∞ A(K \ KL

n ) · n
2
3 = 3

√
2A(K)2

3
Γ

(
5
3

) ∫
S1

(κK(u) − κL(u))
1
3

κK(u)
du.

In proving the upper bounds in Theorems 1 and 2, we follow the methods of
[15] and [9], but the transition from circles to the L-convex case is non-trivial.
Besides borrowing methods from [8] new ideas are also needed in several places.

Theorem 3 can be proved by standard methods, see, for instance, [3], [9]
and [15].

2. Geometric preparations

In this section we recall some definitions and statements from [8]. Let K and
L be convex discs such that K is L-convex. A subset D of K is called an L-cap
if there exists a p ∈ R

2 such that D = cl (K \ (L+ p)), where cl (·) denotes the
closure of a set. As a simplification, we may also use the term cap instead of
L-cap if there is no risk of misunderstanding.

Let M be a smooth convex disc, meaning that it has a unique outer unit
normal u(M,x) at each boundary point x ∈ ∂M . If M is strictly convex, then
for any unit vector u, there exists a unique boundary point x(M,u) of M
with the property that u = u(M,x(u)). Based on this, we use the notation
κM (u) = κM (x(M,u)) for the curvature if ∂M is C2

+.
We recall [8, Lemma 2.1] (see also [7, Lemma 4.1]) that for each L-cap

D = cl (K \ (L + p)), there exists a unique point x0 ∈ D ∩ K and a number
t ≥ 0 such that y0 = x0−tu(K,x0) ∈ D∩(∂ L+p) and u(L+p, y0) = u(K,x0).
We call x0 the vertex and t the height of D. We denote the unique L-cap
determined by u ∈ S1 and t ≥ 0 by D(u, t). Let A(u, t) = A(D(u, t)), and let
l(u, t) be the arc length of D ∩ (∂L + p).

By Lemma 2.2 in [8], for a fixed u ∈ S1

lim
t→0+

�(u, t)t−
1
2 = 2γ(u), lim

t→0+
A(u, t)t−

3
2 =

4
3
γ(u), (7)

where γ(u) =
√

2/(κK(u) − κL(u)).
If (1) holds, then for any pair of points x, y ∈ K there exist exactly two

translates of L which contain x and y on its boundary. Each one of these
two translates determines an L-cap, we denote these caps by D−(x, y) and
D+(x, y) such that A(D−(x, y)) ≤ A(D+(x, y)). Let A−(x, y) = A(D−(x, y))
and A+(x, y) = A(D+(x, y)). There exists a constant δ > 0 depending only
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on K and L, such that A+(x, y) > δ holds for any x, y ∈ intK, cf. [8, Lemma
2.3].

Let 0 < εK < minx∈∂K κ(x). By a similar argument as in [9], one can show
that the Hausdorff distance dH(K,KL

n ) ≥ εK of K and KL
n is at most εK with

high probability. In order to see this, assume that dH(K,KL
n ) ≥ εK . Then

there exists a point x on the boundary of KL
n such that εKB2 + x ⊂ K. Thus,

there is a translate of L which supports KL
n in x and defines an L-cap D of

height at least εK . Since the minimum of the areas of L-caps of K with height
at least εK is positive, there exists a constant c0, depending on K, L, and εK ,
such that the probability that a random point falls into D is at least c0. Thus

P(dH(K,KL
n ) ≥ εK) ≤ (1 − c0)

n
. (8)

3. Proof of Theorem 1

The first part of the proof is based on an argument of Reitzner [15] and had
already been used in [9] in the spindle convex setting (the case when L = B2),
therefore we only highlight the most important steps which use the L-convex
property.

Let x ∈ K be arbitrary, and let xixj be an edge of KL
n . We say that an edge

xixj is visible from x if x is not contained in the translate of L that determines
xixj . For x ∈ K, we denote the set of edges of KL

n visible from x by Fn(x), and
the cardinality of Fn(x) by Fn = Fn(x). Let xn+1 be a uniform random point
from K, independent of x1, . . . , xn. If xn+1 �∈ KL

n , then the same argument as
in [9] and the Efron-Stein jackknife inequality [5] yield that

Var f0(KL
n ) ≤ (n + 1)E(f0(KL

n+1) − f0(KL
n ))2 � nE(F 2

n(xn+1)).

Let I = (i1, i2) be an ordered pair of indices from {1, . . . , n} with i1 �= i2.
Denote by FI the shorter boundary arc of the unique translate L + p with
xi1 , xi2 ∈ ∂ L + p on which xi1 and xi2 follow each other in positive order. Let
1(·) denote the indicator function of an event.

We know from (8), that assuming that dH(K,KL
n ) < εK introduces an

error O((1 − cK)n). Therefore, we obtain, similarly as in [9], that

E(Fn(xn+1)2) � 1
A(K)n+1

∑
I

∑
J

∫
K

∫
K

. . .

∫
K

1(FI ∈ Fn(xn+1))1(FJ ∈ Fn(xn+1))

× 1(dH(K,KL
n ) ≤ εK) dx1 . . . dxndxn+1 + O((1 − cK)n),

(9)

where summation is over all ordered pairs I and J from {1, . . . , n}.
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We can choose εK so small that A(K\KL
n ) < δ, so only the arc defined by

xi and xj can be an edge of KL
n .

Let D be an L-cap with vertex x. For a line e perpendicular to u(K,x),
denote by e+ the closed half-plane containing x. Then there exists a maximal
(classical) cap C−(D) = K ∩ e+, which is contained in D, and a minimal cap
C+(D) = e′

+ ∩ K, which contains D.
Let 0 ≤ k ≤ 2 be an integer. We denote the shorter arc defined by x1

and x2 by F1, and the shorter arc defined by x3−k and x4−k by F2, and
D1 = D−(x1, x2) and D2 = D−(x3−k, x4−k), respectively. Let diam(·) denote
the diameter of a set. Thus, using the same argument (this part does not use
L-convexity) as on pages 1148–1149 of [9], we obtain that

(9) �
2∑

k=0

n4−k

∫
K

. . .

∫
K

(
1 − A(D1)

A(K)

)n−4+k

A(D1)1(D1 ∩ D2 �= ∅)

× 1(diam C+(D1) ≥ diam C+(D2))1(dH(K,KL
n ) ≤ εK) dx1 . . . dx4−k.

(10)

Lemma 1. If D1∩D2 �= ∅, dH(K,KL
n ) ≤ εK and diam C+(D1) ≥ diam C+(D2),

then there exists a constant c1 depending only on K and L such that

D2 ⊂ c1(D1 − xD1) + xD1 .

Proof. We first show that there exists a constant c̃, which depends only on K
and L, such that if D is an L-cap of sufficiently small height, then the following
holds:

c̃(C−(D) − x) ⊃ C+(D) − x.

For this, let us denote the heights of C−(D) and C+(D) by h− and h+. Due to
convexity, it is sufficient to find a constant c̃ > 0 such that h+/h− < c̃ holds
for every L-cap of sufficiently small height in K.

Let R1 ∈ (1/κmin
K , 1), and consider the closed circular disc B̂ = R1B

2 +x−
R1uK(x), of radius R1, which is the support circle at point x of the disc K.
Then B̂ ⊃ K and so D = cl (K\(L+p)) ⊂ cl (B̂\(L+p)) = D̂. For the heights
ĥ− and ĥ+ of the classical caps C−(D̂) and C+(D̂), ĥ− = h− and ĥ+ > h+

hold.
Now consider the closed circular disc B̃ = B2 + x − (h− + 1)uK(x) of

radius 1, supported by L at the point x − h−uK(x). Then B̃ ⊂ L + p and
D̂ = cl (B̂\(L + p)) ⊂ cl (B̂\B̃) = D̃. Furthermore, for the heights h̃− and
h̃+ of the caps C−(D̃) and C+(D̃), h̃− = ĥ− = h− and h̃+ > ĥ+ > h+ hold.
From elementary geometry it is clear that there exists a constant c̃ such that
h̃+/h̃− < c̃, and so

h+

h−
<

h̃+

h̃−
< c̃

holds as well.
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Reitzner proved (see [15, pp. 2149–2150]) that if D1∩D2 �= ∅, dH(K,KL
n ) ≤

εK and diamC+(D1) ≥ diam C+(D2), then there exists a constant c̄ depending
only on K, for which C+(D2) ⊂ c̄(C+(D1)−xD1)+xD1 , where xD1 is the vertex
of the cap D1. The two claims together prove the lemma. �

Thus A(D2) ≤ c21A(D1), and therefore∫
K

. . .

∫
K

1(D1 ∩ D2 �= ∅)1(diam C+(D1) ≥ diam C+(D2))

×1(dH(K,KL
n ) ≤ εK) dx3 . . . dx4−k � A(D1)2−k,

and

(10) �
2∑

k=0

n4−k

∫
K

∫
K

(
1 − A(D1)

A(K)

)n−4+k

A(D1)
3−k1(dH(K, KL

n ) ≤ εK) dx1dx2.

(11)

The pair of points (x1, x2) is parameterized in the same way as [8]:

(x1, x2) = Φ(u, t, u1, u2),

where u ∈ S1 and t ≤ t0 such that D(u, t) = D−(x1, x2). Let L(u, t) denote
the arc D(u, t)∩ (∂ L+x(K,u)−x(L, u)− tu), then x1, x2 ∈ L(u, t). The outer
unit normals associated to L + x(K,u) − x(L, u) − tu on the arc L(u, t) define
a connected arc of S1. Denote this arc by L∗(u, t). At points x1 and x2, denote
the outer normal vectors of L + x(K,u) − x(L, u) − tu by u1 and u2, i.e.,

xi = x(K,u) − x(L, u) − tu + x(L, ui), i = 1, 2,

where u1, u2 ∈ L∗(u, t).
Since every L-cap has a unique vertex and height, Φ is well defined, and

according to [8], it is bijective and differentiable on a domain (u, t, u1, u2), with
the possible exception of a set of measure zero. The Jacobian of Φ is

|JΦ| =
|u1 × u2|

κL(u1)κL(u2)

(
1

κL(u)
− 1

κK(u)
+ t

)
=

|u1 × u2|
κL(u1)κL(u2)

k(u, t),

where |u1 × u2| is the vector product of u1 and u2. From a simple compactness
argument, we obtain that k(u, t) � 1. Here, the notation � is used in the sense
of t → 0, which is implied by n → ∞.

Let L(u, t) = ∂D1 ∩ intK and A(u, t) = A(D1), then we get the following
for the integral with a suitable t∗(u) depending only on K and L:

(11) �
2∑

k=0

n4−k

∫
S1

∫ t∗(u)

0

(
1 − A(u, t)

A(K)

)n−4+k

A(u, t)3−kI∗(u, t) dtdu

(12)

with

I∗(u) =
∫

L∗(u)

∫
L∗(u)

|u1 × u2|
κL(u1)κL(u2)

du1du2,
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where L∗(u) ⊂ S1 is a half circle with midpoint u ∈ S1. Using the conditions
on the curvature,

I∗(u, t) � �∗(u, t) − sin �∗(u, t) � t3/2,

where �∗(u, t) is the length of the arc L∗(u, t) ⊂ S1. The last inequality follows
from the Taylor expansion of sinx around 0, the limit limt→0+ �∗(u, t)/�(u, t) =
κL(u) and (7). Thus,

(12) �
2∑

k=0

n4−k

∫
S1

∫ t∗(u)

0

(
1 − A(u, t)

A(K)

)n−4+k

A(u, t)3−kt
3
2 dtdu.

We split the domain of integration in t into two parts in a standard way.
Let h(n) = (c2 log n/n)2/3 with some sufficiently large constant c2 > 0. By
(7), for a suitable γ1, A(u, t) ≥ γ1t

3/2 holds for all u ∈ S1. Furthermore,
A(u, t) ≤ A(K), and t can also be bounded from above by a constant, hence

2∑
k=0

n4−k

∫
S1

∫ t∗(u)

h(n)

(
1 − A(u, t)

A(K)

)n−4+k

A(u, t)3−kt
3
2 dtdu

�
2∑

k=0

n4−k

∫
S1

∫ t∗(u)

h(n)

(
1 − γ1t

3
2

A(K)

)n−4+k

dtdu

�
2∑

k=0

n4−k

(
1 − γ1(c2 log n)

nA(K)

)n−4+k

� n− 2
3 ,

where the last inequality requires γ1c2/A(K) to be large enough.
Now only the part of (12) where 0 ≤ t ≤ h(n) remains to be estimated. We

will use the following statement from [3, Formula (11)]: For any β ≥ 0, ω > 0
and α > 0, it holds that

∫ g(n)

0

tβ (1 − ωtα)n dt ∼ 1

αω
β+1

α

· Γ
(

β + 1
α

)
· n− β+1

α , (13)

as n → ∞, assuming
(

(β + α + 1) log n

αωn

) 1
α

< g(n) < ω− 1
α ,

for sufficiently large n.
For 0 ≤ k ≤ 2, using (7) yields

n4−k

∫
S1

∫ h(n)

0

(
1 − A(u, t)

A(K)

)n−4+k

A(u, t)3−kt
3
2 dtdu

� n4−k

∫ h(n)

0

(
1 − γ1t

3
2

A(K)

)n−4+k

t
12−3k

2 dt � n− 2
3 ,
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where the last inequality is the consequence of (13) with α = 3/2, β =
(12 − 3k)/2, ω = γ1/A(K), and the inequality on h(n) holds if c2 > (17 −
3k)A(K)/3γ1. Since k was arbitrary, this finishes the proof of (3).

The proof of (4) is very similar, for the necessary adjustments see, for
example, [9, p. 1151].

4. Proof of Theorem 2

We only prove (5), the upper bound on the variance of the number of vertices.
The statement concerning the area (6) is very similar.

We use the following facts from [8, Lemma 4.1, p. 509]. If L has C2
+ bound-

ary, then

lim
t→0+

�∗(u, t) = π, and lim
t→0+

A(u, t) · t−1 = w(u), (14)

where w(u) is the width of the disc L in the direction perpendicular to the
vector u ∈ S1.

The Efron–Stein inequality for the number of vertices of Ln yields that

Var(f0(Ln)) � nE(Fn(xn+1))2.

With the same notation as in the proof of Theorem 1 in Sect. 3, and using
essentially the same argument as on pages 1152–1153 of [9], we get that

nE(Fn(xn+1))2 �
2∑

k=0

n5−k

∫
L

. . .

∫
L

(
1 − A(D1)

A(L)

)n−4+k
A(D1)
A(L)

×1(A(D1) ≥ A(D2)) dx1 . . . dx4−k, (15)

Lemma 2. For sufficiently small A(D1), if A(D1) ≥ A(D2), then the set of
possible locations of the points x3, . . . x4−k has area at most γ2A(D1), for some
constant γ2 > 0 depending only on L.

Proof. Let rm = minx∈∂L(1/κ(x)). Then a circular disc of radius rm rolls freely
in L, i.e., for each x ∈ ∂L, there exists a p ∈ R

2 such that x ∈ rmB2 + p ⊂ L.
For t ≤ rm, let the inner parallel body of depth t of L be the set

L̃t := {x ∈ L : x + tB2 ⊂ L},

which is also convex and a Minkowski summand of L. Let the area of A(D1)
be sufficiently small that (by (14)) there is a tM < rm/2 such that all caps of
area at most A(D1) are completely contained in the set L\L̃tM

. By (1.3) of [4],
similar to Steiner’s formula, one obtains that there exists a positive constant
cL, depending only on L, such that A(L \ L̃tM

) = cLtM + O(t2M ). Using the
fact that tM is bounded above by a constant multiple of the height of the cap
D1, we obtain the claim of the lemma. �
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Thus, using Lemma 2 and integrating with respect to x3, . . . x4−k, we get

(15) �
2∑

k=0

n5−k

∫
L

∫
L

(
1 − A(D1)

A(L)

)n−4+k

A(D1)3−k dx1dx2.

We may assume that there exists a constant c3 > 0 such that A(D1)/A(L) <
c3 log n/n. If, on the contrary, A(D1)/A(L) ≥ c3 log n/n, then

(
1 − A(D1)

A(L)

)n−4+k

· A(D1)
3−k ≤ exp

(
−c3(n − 4 + k) logn

n

)
· A(L)3−k � n−c3 .

So for a sufficiently large c3, the contribution of the part A(D1)/A(L) ≥
c3 log n/n is O(n−1). Thus,

nE(Fn(xn+1)) �
2∑

k=0

n5−k

∫
L

∫
L

(
1 − A(D1)

A(L)

)n−4+k

A(D1)3−k

×1
(

A(D1) ≤ c3 log n

n

)
dx1dx2 + O(n−1). (16)

We use the parametrization as above, which in this case has the Jacobian

|JΦ| =
|u1 × u2|

κL(u1)κL(u2)
t.

By (14), there exists a constant c∗ such that for all t > c∗ log n/n, A(u, t)/A(L) >
c3 log n/n. Thus, after the integral transformation, we get

(16) �
2∑

k=0

n5−k

∫
S1

∫ c∗ log n
n

0

I∗(u, t)
(

1 − A(u, t)
A(L)

)n−4+k

A(u, t)3−kt dtdu

+ O(n−1). (17)

Now we use that the quantity I∗(u, t) is bounded, and by (14), A(u, t) ≈ t,
so there exists a constant ω > 0 for which

(17) �
2∑

k=0

n5−k

∫ c∗ log n
n

0

(1 − ωt)n−4+k
t4−k dt + O(n−1), (18)

to which we can again apply (13) with α = 1, β = 4 − k. Thus

(18) �
2∑

k=0

n5−kn−(5−k) + O(n−1) � 1.

This gives the upper bound (5) on the number of vertices.
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5. Circumscribed L-polygons

In this section, we consider a circumscribed model of random L-polygons. Let
K and L be two convex discs with C2

+ smooth boundaries. Assume that K is
L-convex and L contains the origin in its interior. Let the set

K∗ := L ÷ K =
⋂

y∈K

(L − y),

be called the L-convex dual of K, where L ÷ K denotes the Minkowski-
difference of L and K, cf. [20, Chapter 3]. By definition, K∗ is L-convex since
it is the intersection of translates of L. Equivalently, the set K∗ can also be
written as

K∗ =
{
x ∈ R

2 |K ⊂ L − x
}

. (19)

The L-convex dual may also be defined by (19). We note that, for instance,
in [13], the spindle convex dual is (−K)∗. Here, we use the notion of duality the
same – somewhat more natural – way as in [12], where K∗ is the Minkowski-
difference of L and K.

We recall parts of Lemma 4.1 from [13]:

Lemma 3. For any L-convex disc K and u ∈ S1, the following hold:
(i) hK(u) + hK∗(u) = hL(u),
(ii) rK(u) + rK∗(u) = rL(u),
(iii) A(K∗) = A(K) − 2A(K,L) + A(L),
where A(K,L) is the mixed area of K and L.

We consider the following probability model. Let K and L be two con-
vex discs with C2

+ smooth boundaries, and assume that K is L-convex. Let
x1, . . . , xn be n i.i.d. random points in K∗ chosen according to the uniform
probability distribution, and observe

K∗
(n) := [x1, . . . , xn]∗ =

⋂
x∈{x1,...,xn}

(L − x).

By definition, K∗
(n) contains K and K∗

(n) = ([x1, . . . , xn]L)∗. Thus, f0(K∗
(n)) =

f0(([x1, . . . , xn]L)∗) = f0([x1, . . . , xn]L).

Theorem 4. Let K and L be two convex discs with C2
+ smooth boundary and

suppose that (1) holds. Then, with the notation above,

lim
n→∞E(f0(K∗

(n))) · n− 1
3 = 3

√
2

3(A(K) − 2A(K,L) + A(K)
Γ

(
5
3

)

×
∫

S1

(
1

κL(u)

) 1
3 (κK(u) − κL(u))

2
3

κK(u)
du.
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We note that for L = rB2 with r > maxx∈∂K κ−1
K (x), Theorem 4 gives

back the result of [9, Theorem 6].

Proof. Since K∗ is L-convex and has C2
+ boundary by Lemma 3 and f0(K∗

(n)) =

f0([x1, . . . , xn]L), we can apply (2). Lemma 3 yields κK∗(u) = κK(u)
κK (u)
κL(u) −1

for any

u ∈ S1. Thus,

∫
S1

(κK∗(u) − κL(u))
1
3

κK∗(u)
du =

∫
S1

(
κK(u)

κK (u)
κL(u) −1

− κL(u)
) 1

3

κK(u)
κK (u)
κL(u) −1

du

=
∫

S1

(κK(u) − κL(u))
2
3

κK(u) · κL(u)
1
3

du.

�
We note that in the spindle convex case similar statements were proved

about the excess area and the difference of the perimeters in [9, Theorem 6].
By Theorem 1 and the definition of K∗

(n), using Lemma 3, we get the
following asymptotic upper bound on the variance of the number of vertices
of K∗

(n).

Theorem 5. With the same assumptions as in Theorem 4,

Var(f0(K∗
(n))) � n

1
3 .
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[19] Rényi, A., Sulanke, R.: Zufällige konvexe Polygone in einem Ringgebiet. Z. Wahrschein-
lichkeitstheorie und Verw. Gebiete 9, 146–157 (1968)

[20] Schneider, R.: Convex bodies: the Brunn-Minkowski theory, 2nd edn. Cambridge Uni-
versity Press, Cambridge (2014)

[21] Schneider, R.: Handbook of discrete and computational geometry, 3rd edn., pp. 299–329.
CRC, Boca Raton, FL (2018)

[22] WEIL, Wolfgang, WIEACKER, John A..: Stochastic Geometry. In: Handbook
of Convex Geometry, pp. 1391–1438. Elsevier (1993). https://doi.org/10.1016/
B978-0-444-89597-4.50023-8

Ferenc Fodor
Department of Geometry
Bolyai Institute, University of Szeged
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