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Abstract
Background  Accurate detection of kidney damage is key to preventing renal failure, and identifying biomarkers is 
essential for this purpose. We aimed to assess the accuracy of miRNAs as diagnostic tools for chronic kidney disease 
(CKD).

Methods  We thoroughly searched five databases (MEDLINE, Web of Science, Embase, Scopus, and CENTRAL) and 
performed a meta-analysis using R software. We assessed the overall diagnostic potential using the pooled area under 
the curve (pAUC), sensitivity (SEN), and specificity (SPE) values and the risk of bias by using the QUADAS-2 tool. The 
study protocol was registered on PROSPERO (CRD42021282785).

Results  We analyzed data from 8351 CKD patients, 2989 healthy individuals, and 4331 people with chronic diseases. 
Among the single miRNAs, the pooled SEN was 0.82, and the SPE was 0.81 for diabetic nephropathy (DN) vs. diabetes 
mellitus (DM). The SEN and SPE were 0.91 and 0.89 for DN and healthy controls, respectively. miR-192 was the most 
frequently reported miRNA in DN patients, with a pAUC of 0.91 and SEN and SPE of 0.89 and 0.89, respectively, 
compared to those in healthy controls. The panel of miRNAs outperformed the single miRNAs (pAUC of 0.86 vs. 0.79, 
p < 0.05). The SEN and SPE of the panel miRNAs were 0.89 and 0.73, respectively, for DN vs. DM. In the lupus nephritis 
(LN) vs. systemic lupus erythematosus (SLE) cohorts, the SEN and SPE were 0.84 and 0.81, respectively. Urinary miRNAs 
tended to be more effective than blood miRNAs (p = 0.06).

Conclusion  MiRNAs show promise as effective diagnostic markers for CKD. The detection of miRNAs in urine and the 
use of a panel of miRNAs allows more accurate diagnosis.

Key Learning Points
1. The diagnostic performance of miRNAs in chronic kidney diseases needs to be investigated, as previous 
systematic reviews and meta-analyses are scarce, and individual cohort studies have confirmed their importance in 
kidney pathophysiology.
2. Using multiple miRNAs as biomarkers can lead to more precise CKD diagnosis, as they outperform single miRNAs 
compared to healthy and people with chronic disease groups. The overall diagnostic accuracy of urinary miRNAs 
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Introduction
By 2040, chronic kidney disease (CKD) is expected to 
be the fifth most common cause of death worldwide [1], 
raising awareness of the need for sensitive diagnostic bio-
markers and novel therapeutic strategies. To assess the 
degree of renal damage, monitor disease progression, 
and evaluate the response to treatment, kidney function 
should be assessed by the estimated glomerular filtration 
rate (eGFR) from the serum creatinine level or by mea-
suring the degree of proteinuria as a standard diagnostic 
procedure. However, controversy still exists regarding 
the staging, diagnosis, and prediction of complications in 
CKD [2].

MicroRNAs (miRNAs), the largest family of short 
noncoding RNAs, have recently emerged as potential 
diagnostic markers and therapeutic agents [3, 4]. Ini-
tial studies were conducted in 2004 and 2005 to iden-
tify miRNAs specific to or enriched in the kidney [5, 
6]. The significance of miRNAs in kidney function was 
revealed in 2007 [7], leading to the implementation of 
the Human MicroRNA Disease Database [8] and a sub-
sequent increase in research evidence. However, the 
diagnostic performance of miRNAs in CKD needs to be 
investigated, as preclinical studies have confirmed their 
importance in kidney pathophysiology [9]. In addition, 
miRNAs exhibit superior stability in degraded RNA sam-
ples, which makes them more suitable biomarkers [10].

Furthermore, miRNAs may outperform conventional 
markers; for instance, a pilot study demonstrated that 
sets of miRNAs show alterations days before an increase 
in the serum creatinine concentration [11]. Serum 
and urine miRNAs are used for diagnostic purposes in 
patients with CKD [11–13], and some miRNAs may be 
specific to the disease or to the sample during kidney 
damage. The sensitivity (SEN), specificity (SPE), posi-
tive predictive value (PPV), and negative predictive value 
(NPV) are the most common values used to estimate 
diagnostic accuracy. However, for more accurate analysis, 
it is essential to consider the receiver operating charac-
teristic (ROC) curve and the area under the curve (AUC) 
for overall diagnostic accuracy.

We aimed to assess the accuracy of single and panel 
miRNAs for diagnosing kidney disease using various 
sample types by using receiver operating characteristic 
(ROC) analysis and area under the curve (AUC) analy-
sis. We also investigated the diagnostic performance of 

miRNAs by comparing patients with overt kidney dis-
ease groups with healthy individuals and chronic disease 
groups (such as DM patients and SLE patients without 
nephropathy or patients with different kidney diseases).

Methods
The study protocol was registered in the PROSPERO 
International Prospective Register of Systematic Reviews 
(CRD42021282785). No ethical approval was needed, as 
all the data were previously published in peer-reviewed 
journals, and no patients were involved in the study’s 
design, conduct, or interpretation. We report our study 
based on the recommendation of the Preferred Report-
ing Items for Systematic Reviews and Meta-Analyses 
(PRISMA) 2020 guidelines [14] (Supplementary Table 
S1), while we followed the Cochrane Handbook (version 
6.2) [15].

Eligibility criteria
To define our clinical question and eligibility criteria, we 
applied the PIRD framework as follows: the population 
(P) consisted of individuals with (case group) and with-
out CKD (healthy and chronic disease groups); the index 
test (I) was miRNA detection performed by qRT‒PCR; 
the reference test (R) was clinical diagnosis confirmed 
by biopsy or laboratory parameters; and the diagnosis 
(D) was chronic kidney disease. Studies were considered 
eligible if they met the following criteria: (1). The diag-
nostic accuracy of miRNA for CKD was provided; (2) all 
patients with CKD were diagnosed by the gold standards 
in diagnostics (biopsy or laboratory); (3) AUC, ROC 
curve, SEN and SPE were provided; (4) observational and 
interventional studies were included.

Studies were excluded from the systematic meta-anal-
ysis review if (1) the inclusion criteria were not met, (2) 
data on outcomes of interest were impossible to extract 
from the published results and upon request from the 
corresponding author, (3) the exposed group included 
acute kidney injury, CKD with coronary artery calcifica-
tion, congenital kidney diseases, polycystic kidney dis-
ease, or Alport syndrome, (4) the study design included 
reviews, meta-analyses, case series and reports or letters, 
or (5) overlapping studies.

tended to be greater than that of blood samples, suggesting that they are noninvasive and readily available 
diagnostic markers in CKD patients.
3. Incorporating miRNAs as diagnostic markers for CKD in combination with traditional markers might improve 
the accuracy and efficiency of diagnosis. To optimize miRNA diagnostic performance, it is essential to consider the 
various biological sample types, comparison groups (control), and different kidney diseases.

Keywords  microRNA, Diagnostic accuracy, Chronic kidney disease, Biomarker
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Search strategy and selection process
The Cochrane Central Register of Controlled Trials 
(CENTRAL), Web of Science, Embase, Scopus, and 
MEDLINE (via NCBI PubMed) databases were screened 
using an electronic search strategy (see Supplemen-
tary Methods). The first search was conducted up to 
November 25, 2021, and updated by the second search 
on November 26, 2022. There were no language restric-
tions or filters imposed. The references used were man-
aged in EndNote 20 (Clarivate Analytics, Philadelphia, 
PA, USA). After removing duplicates automatically and 
manually, two independent investigators performed arti-
cle selection based on predefined eligibility criteria in a 
two-step manner—first considering the title and abstract 
and, subsequently, the full-text content. Cohen’s kappa 
index was calculated at each selection step. A third inves-
tigator resolved disagreements. The reference lists of the 
included studies were also assessed for additional eligible 
reports.

Data collection
Two independent investigators performed the data col-
lection. Disagreements were resolved by consensus. The 
following data were extracted: study characteristics (first 
author, publication year, country, study population), eli-
gibility criteria, definition of case and control groups, 
definition of kidney disease, stages of CKD (as defined 
in each study either by the histology score or labora-
tory parameters or eGFR), sample number and type. 
The following variables were extracted for the purposes 
of miRNA diagnostic accuracy: miRNA name, miRNA 
detection, normalization method, fold change, AUC 
value, cutoff point for the ROC curve, overall diagnostic 
accuracy, SEN, SPE, and correlation coefficient between 
miRNA expression and laboratory parameters, if avail-
able. Standardized Microsoft Excel sheets (Microsoft 
Office 365, Redmond, WA, USA) were used for data col-
lection. In the case of missing data, the study authors 
were contacted for retrieval. WebPlotDigitizer [16] was 
used to extract the area under the curve (AUC), negative 
value (SE), and specificity (SPE) values if only the ROC 
curves were available instead of the abovementioned 
statistics.

Data synthesis and analysis
In terms of clinical applicability, the data were pooled, 
taking into account the following moderators: (1) com-
parison of CKD patients with healthy individuals and 
people with chronic diseases, (2) individual kidney dis-
eases, (3) biological sample types, (4) single miRNAs or 
panel miRNAs, and (5) ethnicity. We analyzed the most 
frequent miRNAs in the included studies separately. 
The statistical analysis was performed using R software 
(version 4.1.2.) [17]. A p value less than 0.05 indicated 

statistical significance. We collected AUC values and 
computed their standard deviation using the confi-
dence interval or the method of Hanley and colleagues 
[18] when the confidence interval was not available. For 
rigorous pAUC values, we considered the correlations 
between sample errors and random effects correspond-
ing to the miRNAs present in the same study by a multi-
variate mixed-effect model supplemented with the robust 
approach [19]. Univariate and multivariate analyses of 
AUC values were performed to determine the effect of 
moderator variables. In addition, we applied well-known 
methods [20–22] to obtain pooled SEN and SPE. To 
address these correlations, we randomly selected SEN 
and SPE; we chose only one miRNA from each study 
and then calculated the pooled SEN and SPE. According 
to the ROC plot visualization, the size of the prediction 
region provided insight into heterogeneity.

In the case of the meta-analysis of specific miRNAs, we 
performed classical inverse variance AUC meta-analysis 
due to the lack of the abovementioned correlations. In 
these cases, the heterogeneity was calculated by I2. We 
created AUC funnel plots showing all available data to 
assess publication bias. Similarly, as above, we performed 
Egger’s test after randomly selecting one result from each 
study. Studies reporting only CKD without a specific 
diagnosis were excluded from the meta-analysis to avoid 
selection bias. For a detailed description of the statistical 
analysis, see the Supplementary Methods section.

Risk of bias and quality assessment
Three independent investigators (D.G., U.N.D.T., and 
G.G.) assessed the risk of bias in each study. The details 
are provided in the Supplementary Material. The Qual-
ity Assessment of Diagnostic Accuracy Studies (QUA-
DAS-2) [23] guidelines were used to evaluate study 
quality and assess the following variables: patient selec-
tion, index test, reference standard, and flow and timing 
(see Supplementary Material). Each variable was evalu-
ated for risk of bias, and the first three domains were 
evaluated for applicability. The answer to each question 
was “yes,” “no,” or “unclear.” A “yes” response indicated 
a low likelihood of bias, whereas a “no” or “unclear” 
response indicated the opposite.

Results
Search and selection
Eighty-seven studies met the eligibility criteria, and all 
were included in the meta-analysis [24–106]. All included 
records were reported as peer-reviewed full-text publica-
tions. The study selection process is described in detail in 
Supplementary Fig. 1.
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Study characteristics
Eighty-seven articles (from 2013 to 2022) reported 
238 single and 34 panel miRNA results, including 8351 
patients with kidney diseases, 2989 healthy individuals 
and 4331 patients with SLE and diabetes mellitus (DM), 
e.g., as a control population (see Supplementary Table 
S2). Forty-seven studies were conducted with patients 
with CKD vs. healthy controls, and 40 were conducted 
with patients with CKD vs. people with chronic diseases 
(patients with SLE or T2DM without kidney disease or 
patients with different kidney diseases; see Supplemen-
tary Table S2). Several studies reported more than one 
kidney disease. All the studies used quantitative real-
time reverse transcription PCR (qRT‒PCR) to detect 
miRNAs. Regarding biological sample types, 28 studies 
detected miRNAs in urine, 56 in blood (15 in blood, 4 
in PBMCs, 18 in plasma, 20 in serum, and two in serum 
exosomes), and 3 in kidney samples. Eighty-seven studies 
reported the pAUC values for single and panel miRNAs 
(Supplementary Table S3). The summary ROC curve was 

reported in 77 studies for single miRNAs and 20 stud-
ies for panel miRNAs. In total, 71 studies were included 
in the meta-analysis. The characteristics of the included 
studies are presented in Supplementary Table S4.

Area under the curve values
The healthy control studies had an overall pAUC of 0.84 
(95% CI = 0.81–0.87), while the chronic disease studies 
had a pAUC of 0.80 (95% CI = 0.77–0.82). The difference 
between the two control groups was significant (p = 0.01) 
(Supplementary Figure S2). We performed all the other 
analyses separately for the healthy and chronic disease 
groups.

The results from univariate and multivariate analyses 
agreed, except for the findings related to the sample type 
moderator. In the healthy and chronic disease groups, 
only the effect of the panel miRNA variable was signifi-
cant, with pAUC values of 0.88 and 0.91, respectively 
(Supplementary Figure S3).

Fig. 1  The pooled AUC values of panel miRNAs in CKD patients compared with (A) healthy controls and (B) people with chronic diseases. Legend: Pooled 
AUC values (≥ 3 study) for panel miRNAs in patients with different kidney diseases; (A) healthy and (B) chronic disease groups stratified by sample type. 
Sample sizes are indicated as case/control groups. Sample types are illustrated by 1 (blood) and 3 (urine) abbreviations: AUC, area under the curve; 95% 
CI, 95% confidence interval; H, healthy individuals; D, people with chronic diseases; DN, diabetic nephropathy
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Moreover, there was no significant difference between 
urine and blood sample types in studies that included 
people with chronic diseases. However, according to 
our multivariate analysis, urine tended to have a slightly 
greater AUC than blood (p = 0.06) (Table  1). Unfortu-
nately, kidney biopsy sample data were unavailable for 
multivariate analysis, but the overall pAUC was 0.82 for 
kidney diseases compared to people with chronic dis-
eases (Supplementary Figure S4).

Among the DN patients and healthy controls, only 
the area under the curve (AUC) values for a panel of 
miR-15b, miR-34a, and miR-636 were reported (0.91, 
95% CI = 0.86–0.96) (Fig.  1), and the pAUC for a single 
miRNA was 0.86 (95% CI = 0.82–0.89) (Supplementary 
Figure S5).

The pAUC of DN vs. DM was 0.86 (95% CI = 0.82–0.91) 
for the panel miRNAs (Fig.  1) and 0.80 (95% CI = 0.76–
0.83) for the single miRNAs (Supplementary Figure S5). 
Among the individual studies, the miR-21 and miR-30-b-
5p panels had higher AUCs in DN patients than in DM 
patients (0.93; 95% CI = 0.86-1.0) (Fig. 1).

The LN patients in the SLE control group had a greater 
AUC than did those in the other kidney disease group, 
e.g., the panel containing miR-29c, miR-150, and miR-21 
had an AUC of 1.00 (95% CI = 0.97-1.00) (Fig. 1).

The pAUC of the panel of miRNAs in IgAN patients vs. 
healthy controls was 0.79 (95% CI = 0.72–0.86) (Fig. 1).

Overall, the moderator variables were highly interde-
pendent and affected the interpretation of the results. To 
eliminate some of the dependencies between the moder-
ators, we omitted ethnicity from the multivariate analysis 

(Tables 1 and 2) but conducted univariate analyses (Sup-
plementary Figure S6).

The pAUC values of the most frequently reported 
single miRNAs, miR-192, miR-21, and miR-146a, were 
analyzed. In contrast, compared with those of healthy 
individuals and T2DM patients without nephropathy, 
the pAUC of miR-192 was 0.91 (95% CI = 0.67-1.0), and 
the pAUC was 0.78 (95% CI = 0.76–0.81) for the diagno-
sis of DN (Fig.  2). miR-146a had a greater pAUC (0.92; 
95% CI = 0.70-1.0) in LN patients than in healthy controls 
(0.60; 95% CI = 0.43–0.77) in LN patients vs. SLE patients 
(Supplementary Figure S7).

Sensitivity and specificity in studies with healthy controls
For single miRNAs, the pooled SEN and SPE for DNs 
compared to those for healthy controls were 0.91 (95% 
CI = 0.86s-0.95) and 0.89 (95% CI = 0.77–0.95), respec-
tively (Fig.  3A). In patients with LN, the pooled SEN 
was 0.81 (95% CI = 0.68–0.90), and the SPE was 0.80 
(95% CI = 0.72–0.87) (Fig.  3B). The pooled analysis of 
other kidney diseases is shown in Fig. 3C-E. Among the 
included studies, miR-192 was most frequently reported 
in DN patients compared to healthy controls, with a 
pooled SEN of 0.89 (95% CI = 0.82–0.94) and SPE of 0.89 
(95% CI = 0.72–0.96) (Fig. 4).

Sensitivity and specificity in studies including people with 
chronic diseases
The pooled SEN and SPE values for single miRNAs in 
DN patients compared to those in T2DM patients were 
0.82 (95% CI = 0.76–0.87) and 0.81 (95% CI = 0.74–0.86), 
respectively (Fig.  3A). When the LN patients were 

Table 1  Multivariate analysis of AUC values (panel miRNA – sample - disease interaction model with healthy control groups)
Coefficient Estimate SE t-stat d.f. (Satt) p-val (Satt) Sig.
Reference 0.84 0.02 34.95 16.67 < 0.001 ***
Sample: Urine 0.05 0.03 2.05 18.05 0.06 .
Disease: Focal segmental glomerulosclerosis -0.07 0.05 -1.41 6.27 0.21
Disease: Lupus nephritis -0.03 0.03 -0.83 19.92 0.42
Disease: membranous nephropathy -0.06 0.06 -1.12 4.39 0.32
Disease: IgA nephropathy -0.08 0.05 -1.85 9.3 0.10 .
Panel miRNA 0.08 0.02 4.61 8.88 0.001 **
Legend: contains the multivariate analysis of the panel – sample type - disease interaction in the model with healthy control groups. The reference variables were 
diabetic nephropathy (DN) – sample type: blood - single miRNAs. Significance: p < 0.001***, p < 0.01**, p > 0.05*.

Table 2  Multivariate analysis of AUC values (panel miRNA – sample - disease interaction model with diseased control groups)
Coefficient Estimate SE t-stat d.f

(Satt)
p-val
(Satt)

Sig.

Reference 0.78 0.02 40.45 23.27 < 0.001 ***
Sample: Urine 0.01 0.03 0.32 22.54 0.75
Disease: Lupus nephritis 0.03 0.03 1.23 8.42 0.25
Disease: IgA nephropathy -0.004 0.08 -0.05 2.43 0.97
Panel miRNA 0.08 0.01 6.13 6.46 < 0.001 ***
Legend: Table 1 contains the multivariate analysis of when panel – sample type - disease interaction in the model with diseased control groups. The reference 
variables are Diabetic nephropathy (DN) – sample type: blood - single miRNAs. Significance; p < 0.001 ***, p < 0.01**, p > 0.05*
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compared to the SLE patients, the pooled SEN was 
0.84 (95% CI = 0.74–0.91), and the SPE was 0.81 (95% 
CI = 0.72–0.88) (Fig.  3B). Figure  3C-E shows the pooled 
analysis of other kidney diseases. Among the panel miR-
NAs, the pooled SEN and SPE were 0.89 (95% CI = 0.78–
0.94) and 0.73 (95% CI = 0.66–0.79), respectively, for DN 
compared with patients with T2DM (Fig. 5).

Sensitivity analysis for meta-analysis
The different analyses served as sensitivity analyses for 
each other. Moreover, we repeated the procedures with 
different correlation imputations to account for correla-
tions. In the case of random selection, we repeated the 
process several times with roughly the same results.

Publication bias
If there were more than ten articles, a publication bias 
analysis was conducted and made available for DN, LN, 
IgAN, FSGS, and MN studies (Supplementary Figures 
S8-16). As a result, only LN studies with SLE control 
groups had no publication bias (Egger’s test, p = 0.09) 
(Supplementary Figure S10).

Risk of bias assessment
Supplementary Figure S17 and Table S5 of the QUA-
DAS-2 assessment show that all CKD patients included 
in the studies were diagnosed according to clinically 
proven diagnostic criteria. All the studies had case‒con-
trol or cohort designs, which may have introduced high 
or unclear risks to the selection field.

Discussion
To our knowledge, this is the first comprehensive system-
atic review and meta-analysis investigating the diagnos-
tic accuracy of miRNAs in different biological samples 
and control groups for several types of kidney diseases. 
In our study, we found that the panel of miRNAs more 
effectively detected kidney diseases than did the single 
miRNAs. Furthermore, regarding the overall diagnostic 
performance of the miRNAs, the pAUC was better when 
comparing kidney disease patients to healthy controls 
than when comparing chronic disease groups. In addi-
tion, urinary miRNAs generally showed greater diagnos-
tic accuracy than blood samples, with an overall pAUC of 
0.86 and an overall pAUC of 0.82, respectively.

Fig. 2  The pooled AUC values of miR-192 in the diabetic nephropathy group compared with those in the (A) healthy controls and (B) chronic disease 
groups (diabetes mellitus). Legend: The pooled AUC values of miR-192 in diabetic nephropathy (DN) patients compared to those in (A) healthy individuals 
and (B) diabetes mellitus patients. Sample sizes are indicated as case/control groups. Sample types are illustrated by 1 (blood) and 3 (urine) abbreviations: 
AUC, area under the curve; 95% CI, 95% confidence interval; H, healthy indivdiual; D, chronic disease group; DN, diabetic nephropathy
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Fig. 3  The pooled sensitivity and specificity of single miRNAs in CKDs. Legend: Representative ROC curves of the sensitivity and specificity of single miR-
NAs are shown for kidney diseases; (A) Diabetic nephropathy (DN), (B) Focal segmental glomerulosclerosis (FSGS), (C) IgA nephropathy (IgAN), (D) Lupus 
nephritis (LN) and (E) other kidney diseases. The pooled sensitivity and specificity are pooled if there are more than four studies and visualized by squares: 
red – healthy individuals and blue–chronic disease groups. Other kidney diseases include hypertensive nephropathy (HTN), membranous nephropathy 
(MN), and mesangial proliferative glomerulonephritis (MsPGN)
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Previous studies have confirmed that the diagnos-
tic accuracy of a panel of miRNAs is superior to that of 
single miRNAs [107]. We also considered specific kid-
ney diseases and conducted separate analyses for the 
healthy and chronic disease groups while considering the 
correlation between results from the same population. 
In addition, we performed a pooled analysis of the area 
under the curve (AUC) from each study to determine the 
overall diagnostic accuracy, eliminating the possibility of 
threshold effects.

We found that certain panels of miRNAs had higher 
overall AUCs when comparing DN patients, LN patients, 
or FSGS patients to healthy controls. These panels 
included miR-15b, miR-34a, and miR-636 for DN; miR-
21, miR-150, and miR-423 for LN; and miR-125b, miR-
186, and miR-193a-3p for FSGS. Additionally, in disease 
control studies, panels of miRNAs, such as miR-21 and 
miR-30-b-5p, had better overall AUCs for differentiating 
between DN patients and T2DM patients. Similarly, pan-
els of miR-29c, miR-150, and miR-21 effectively distin-
guished LN from SLE patients. Another study by J. Li and 

Fig. 4  The pooled sensitivity and specificity of the panel of miRNAs for CKDs. Legend: ROC curves of sensitivity and specificity for panel miRNAs are 
shown for kidney disease. The pooled sensitivity and specificity (≥ 4 studies) are shown for diabetic nephropathy compared to type 2 diabetes mel-
litus (DN-Pool2). Abbreviations: DN-Pool1, diabetic nephropathy compared to healthy controls; LN-Pool1, lupus nephritis compared to healthy controls; 
LN-Pool2, lcontrol, IgAN compared to systematic lupus erythematosus; IgAN-Pool2; IgA nephropathy compared to healthy controls; IgAN-Pool1, IgA 
nephropathy compared to chronic disease groups; NS-Pool1, nephrotic syndrome compared to healthy controls; MsPGN-Pool1, membranoproliferative 
glomerulopathy compared to healthy controls; FSGS-Pool2, focal segmental glomerulosclerosis compared to chronic disease group
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colleagues identified specific miRNA panels that were 
superior for CKD, such as miR-27b-3p and miR-1228-3p 
for DN; miR-21, miR-150, and miR-29c for LN; and miR-
106a-5p and miR-30a-5p for mesangial proliferative glo-
merulonephritis (MsPGN) [107].

In comparison, our findings may differ slightly from 
those of J. Li and colleagues [107]; therefore, it is essen-
tial to note that our analysis included separate controls 
for healthy and diseased individuals with different kidney 
diseases (details in Supplementary Table S2). Multiple 
studies on cancer have shown that a miRNA panel is a 
more effective diagnostic marker than a single miRNA 
[108]. For instance, V. Bhaskaran and colleagues reported 

that several miRNAs exhibit a clustered expression pat-
tern in glioblastoma, even if they are not encoded within 
the same genetic locus [109]. Moreover, these studies 
focused on targeting several miRNAs simultaneously; 
as a result, coexpressed miRNAs repress epigenetic 
oncogenic signaling pathways and have more profound 
therapeutic effects than single-miRNA therapy [109]. 
In nephrology, it might also be helpful to consider the 
expression of miRNA clusters and test a miRNA panel 
for diagnostic purposes.

In our included studies, several miRNAs exhibited high 
sensitivity and specificity (over 90%). These included 
miR-451 for the diagnosis of DN vs. DM [25] and 

Fig. 5  The pooled sensitivity and specificity of miR-192 in diabetic nephropathy. Legend: The pooled sensitivity and specificity of miR-192 in diabetic 
nephropathy (DN) patients are shown. A square illustrates the summary pooled point available. Circles indicate individual sensitivity and specificity. Ab-
breviations: DN-Pool1, diabetic nephropathy compared to healthy control; DN-Pool2, diabetic nephropathy compared to type 2 diabetes
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miR-126 [106], miR-21 [43], miR-636 [38], and miR-192 
[81, 92] for the diagnosis of DN vs. healthy controls. miR-
142a-5p effectively differentiated nephrotic syndrome 
(NS) patients from healthy individuals [32]. In addition, 
J. Li and colleagues discovered that miR-133, miR-30a, 
and miR-126 were promising markers for the diagnosis of 
CKD with high accuracy levels of sensitivity or specificity 
above 90% [107].

These miRNAs are validated in preclinical studies, and 
their molecular function is reviewed by Mahtal and col-
leagues [110]. For example, miR-192 mediates TGF-beta/
Smad3-driven renal fibrosis in a mouse model of UUO 
and a rat remnant kidney model [111]. miR-451 might 
decrease inflammation in DN by inhibiting the synthesis 
of the NF-κB effector proteasome subunit-β type-8 [112]. 
Silencing miR-21 protects animal models from DKD 
[113] as its overexpression is associated with mesangial 
cell hypertrophy by regulating Cdc25a and Cdk6, podo-
cyte damage, and ECM accumulation by targeting Pten 
[113]. miR-126 supports kidney recovery after acute 
injury by promoting vascular integrity and association 
with stromal cell-derived factor 1/CXCR4-dependent 
vasculogenic progenitor cell mobilization [114].

While the results compared to those of healthy controls 
looked promising, we recommend comparing kidney dis-
ease patients with chronic disease groups. This approach 
could provide significant clinical benefits in distinguish-
ing, for instance, between patients with DN and those 
with T2DM without nephropathy. Research on miRNAs 
is still in its early stages, which can lead to inconsisten-
cies in the expression of specific miRNAs measured in 
laboratories within the same sample type and disease 
[115]. Therefore, comparing chronic disease and healthy 
control groups in different biological samples helps to 
identify potential diagnostic miRNA biomarkers.

In line with only one existing meta-analysis [107], uri-
nary miRNAs tended to perform better than blood miR-
NAs in our meta-analysis, although the difference did 
not reach statistical significance (multivariate p = 0.06). 
The quantity of miRNAs in cell-free urine is less than in 
plasma or urinary exosomes because of the high RNase 
activity present in the kidney, bladder, and urinary tract 
[116]. Urine miRNAs could originate from cells in the 
urinary tract or could be filtered from plasma, indicating 
kidney-related or systemic diseases. Given these points, 
plasma miRNAs may be more reliable for diagnosing 
CKD, and comprehensive cohort studies using various 
biological samples can yield more definitive findings. 
Nevertheless, urine tests might be the most applicable 
test in almost all clinical settings. Several urinary miR-
NAs had higher AUCs (0.98–0.99); in the included stud-
ies (miR-204, miR-636, and miR-146a), these miRNAs 
might be potential diagnostic biomarkers in CKD. Uri-
nary miRNAs generally perform better in CKDs because 

they correlate best with kidney tissue [117] and patholog-
ical consequences and are surprisingly stable [118]. Urine 
samples had a greater overall AUC for all kidney diseases 
except DN than did healthy controls. For DN patients, 
blood samples performed better than urine samples did, 
with a pAUC of 0.87 compared to 0.84. However, further 
investigations are needed to understand the underlying 
mechanisms involved.

To our knowledge, only a few studies compare the 
diagnostic accuracy of miRNAs with conventional mark-
ers in prospective cohort studies for CKD, but none for 
the overall disease course, starting from the early to late 
stages. They mostly reported an association between 
miRNA expression and conventional markers of CKD in 
addition to survival prediction, cardiovascular outcomes, 
and kidney disease progression [94, 119–121]. For exam-
ple, the large cohort of 601 CKD patients showed that 
reduction of miR-126 and miR-223 are associated with a 
lower eGFR but cannot independently predict survival, 
cardiovascular, and kidney function decline [119].

However, combining miRNAs with clinical param-
eters has been suggested to be a more effective diagnos-
tic biomarker than miRNAs alone [122]. For example, 
Miller and colleagues reported that a model combining 
urinary particle concentrations, blood lactate levels, uri-
nary extracellular vesicles positive for PODXL, and miR-
125a-5p could predict kidney injury [13].

Due to the limited number of available studies, it was 
not feasible to perform a meta-analysis on NS, MsPGN, 
or hypertensive nephropathy (HTN); only systematic 
reviews and visualizations were included. However, we 
suggest that future studies investigate the diagnostic 
accuracy of NS-, MsPGN-, and HTN-specific miRNAs. 
For instance, studies in a systematic review showed that 
miR-142a-5p has a better diagnostic performance than 
the panel miRNAs miR-30a-5p and miR-181a-5p in 
childhood idiopathic nephrotic syndrome [32].

Unfortunately, most of those studies did not report 
disease stages, so we could not analyze disease stage. 
Diagnostic studies must distinguish between early and 
late CKD stages for accurate analysis of biomarkers, par-
ticularly miRNAs. Although further research is needed to 
develop the most effective approach, preliminary findings 
show that using a miRNA panel in CKD patients can sig-
nificantly enhance diagnostic accuracy.

Strengths and limitations of the study
Our analysis has several advantages that are worth high-
lighting. First, we attempted to determine the diagnostic 
accuracy of miRNAs in different types of chronic kidney 
diseases with various sample types. Second, by perform-
ing a subgroup analysis, we examined the potential of 
miRNAs in differentiating between healthy and chronic 
disease groups. From a statistical perspective, we can 
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list the following advantages of our meta-analysis of 
diagnostic accuracy. Given the complexity of miRNAs, 
the different threshold values used for background and 
fold change expression, we considered the area under 
the curve (AUC) from each study for overall diagnostic 
accuracy and obtained pAUC values. The threshold value 
does not influence these values and provides more reli-
able results than pooled SEN and SPE results. To avoid 
overestimating pooled results, we considered correla-
tions between variables in studies that reported multiple 
miRNAs in the same population.

Unfortunately, we were unable to assess differences 
in the accuracy of miRNA detection at different CKD 
stages due to a lack of data. Importantly, many studies 
in this field are retrospective case‒control studies that 
can potentially introduce bias in assessing the quality of 
patient selection domains. The miRNA detection and 
normalization methods varied also in the included stud-
ies in our meta-analysis. There is no universal agreement 
on the cutoff values of reference genes for miRNA stud-
ies, which may lead to inconsistent results in the relative 
quantitative analysis of miRNAs (Table S6). This limita-
tion should be taken into account by researchers when 
interpreting meta-analysis results. Furthermore, it is 
essential to conduct large prospective cohort studies to 
address these limitations and expedite the integration of 
miRNAs into clinical applications.

Implications for practice and research
Based on our results, we propose the use of a panel of 
miRNAs to distinguish DN patients from T2DM patients 
without nephropathy and LN from SLE patients without 
kidney disease. To incorporate our findings into every-
day medical practice [123], it is necessary to conduct 
prospective, well-designed cohort studies. These studies 
should assess the accuracy of both single and panel miR-
NAs for diagnosing CKDs at various stages and compare 
them to traditional biomarkers.

Conclusion
Analysis of miRNAs can distinguish between CKD 
patients, healthy individuals, and diseased patients with-
out overt CKD, such as T2DM patients and SLE patients. 
Using miRNA panels for diagnosis is more effective than 
relying on a single miRNA. Additional cohorts should be 
evaluated for the diagnostic performance of miRNAs in 
the early and late stages of CKDs.
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