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Abstract. In this paper we prove a quantitative central limit theorem for the

area of uniform random disc-polygons in smooth convex discs whose boundary
is C2

+. We use Stein’s method and the asymptotic lower bound for the variance

of the area proved by Fodor, Grünfelder and Vı́gh [FGV22].

1. Introduction and results

The study of the asymptotic behaviour of random polytopes is a venerable topic
in stochastic geometry going back to the ground-braking papers of Rényi and Su-
lanke [RS63, RS64]. Several models have been considered, of which the most in-
vestigated is probably the one where the random polytope Kn arises as the convex
hull of n i.i.d. random points from a convex body selected according to the uniform
distribution. For a comprehensive survey of results on this and other models we
refer to the papers by Bárány [Bár08], Reitzner [Rei10] and Schneider [Sch18] and
for the references therein.

Central limit theorems have been proved recently in various models for diverse
quantities associated with random polytopes. We only mention a few such results
that are most closely related to our topic. Reitzner [Rei05] proved an asymptotic
lower bound for the variance of the missed volume V (K \Kn) (also for the number
of i-dimensional faces fi(Kn) of Kn) when K has C2

+ smooth boundary. With the
help of this lower bound he showed that V (K \ Kn) (and also f0(Kn)) satisfy a
central limit theorem. His method used an extra randomization through Poisson
polytopes. With similar methods, Bárány and Reitzner [BR10] proved central limit
theorems for the same quantities in the case whenK is a polytope. Using stabilizing
functionals, Lachièze-Rey, Schulte and Yukich [LRSY19] established CLTs for all
intrinsic volumes of K \ Kn for K with C2

+ boundary. Thäle, Turchi and Wespi
[TTW18] proved independently central limit theorems for all intrinsic volumes using
floating bodies and Stein’s method. More information and further references to
recent developments regarding limit theorems in other models can be found, for
example, in Besau, Rosen and Thäle [BRT21], and Thäle [Thä18].

There have been several papers dedicated recently to approximations of convex
bodies by various generalizations of random polytopes. One such model uses in-
tersections of congruent closed balls to generate a hull, and the resulting notion of
convexity is often called spindle or ball convexity. In this paper, we will use this
notion of convexity in the planar R2 setting. Precise definitions are the following.
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Let r > 0 be fixed. For x, y ∈ R2 with |x − y| ≤ 2r, let [x, y]r denote the
intersection of all radius r closed circular discs that contain both x and y. The
set [x, y]r is called the r-spindle of x and y. A compact set K ⊂ R2 is called
spindle convex with radius r (or r-spindle convex) if for any x, y ∈ K it holds that
[x, y]r ⊂ K. This also means that the shorter arc of any circle of radius at least r
incident with x and y is contained in K. We call the intersection of finitely many
radius r closed circular discs a disc-polygon (of radius r), or an r-disc-polygon
for short, which itself is spindle convex with radius r. Let S ⊂ R2 be a set that is
contained in a circle of radius r. The intersection of all closed radius r circular discs
that contain S is called the (closed) r-spindle convex hull of S, which we denote by
[S]r. In particular, if S ⊂ K, where K is r-spindle convex, then [S]r ⊂ K.

A particularly important class of spindle convex sets are those (linearly) convex
discs whose boundary bdK is of class C2

+, that is, continuously differentiable with
positive curvature. Let K ⊂ R2 be a convex disc (compact, convex set with non-
empty interior) whose boundary bdK is of class C2

+. Let rM = max 1/κ(x) for
x ∈ bdK, where κ(x) is the curvature of bdK at x. It is known that K is r-spindle
convex for any r ≥ rM , cf. [Sch14].

For more information on geometric properties of spindle convex sets we refer
to Bezdek et al [BLNP07], and Martini, Montejano, Oliveros [MMO19] and the
references therein.

In this paper we study the following probability model. Let K be a convex disc
with C2

+ boundary and r > rM . Let n ≥ 2, and consider n i.i.d. random points
X1, . . . , Xn from K selected according to the uniform probability distribution. Let
Kr

n = [X1, . . . , Xn]r, which is a (uniform) random r-disc-polygon. Since K is r-
spindle convex, Kr

n ⊂ K. We denote by A(Kr
n) the area of Kr

n.
The asymptotic expectation of the random variables f0(K

r
n) and A(Kr

n) were
determined in [FKV14], where the following theorem was proved.

Theorem 1 ([FKV14]). Let K be a convex disc whose boundary is of class C2
+.

Then for r > rM , it holds that

lim
n→∞

E
[
A(K \Kr

n)
]
n

2
3 =

3

√
2A2(K)

3
Γ

(
5

3

)∫
bdK

(
κ(x)− 1

r

) 1
3

dx.

In the above formula, Γ(·) is Euler’s gamma function, and integration is with
respect to the arc-length on bdK. Theorem 1 is a generalization, as r → ∞, of the
classical results of Rényi and Sulanke [RS63] regarding the linear convex hull of the
random points X1, . . . , Xn.

For convenience, in the foregoing we use the following symbols to denote orders
of magnitude. If (an)n∈N and (bn)n∈N are sequences with the property that there
exists a constant c ∈ (0,∞) such that for all n (or, equivalently, for all n greater
than some threshold n0) an ≤ cbn is satisfied, then we write an ≪ bn. If an ≪ bn
and bn ≪ an, then this fact is indicated by the an ≈ bn notation. We note that,
in general, an ≈ bn does not necessarily mean the asymptotic equality of (an) and
(bn), as the corresponding constants may be different.

It is usually more difficult to obtain results about higher moments of random
variables associated with random (disc-) polygons than expectations. Fodor and
Vı́gh [FV18] proved asymptotic upper bounds for the area A(Kr

n).
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Theorem 2 ([FV18]). Let K be a convex disc whose boundary is of class C2
+. Then

for r > rM , it holds that

Var [A(Kr
n)] ≪ n− 5

3 ,

where the implied constant depends only on K and r.

Using Theorem 2, one can prove the strong law of large numbers by standard
methods, see [FV18, Theorem 5 on p. 1145].

Based on an argument of Reitzner [Rei05], Fodor, Grünfelder and Vı́gh [FGV22]
proved matching asymptotic lower bounds for the area A(Kr

n) (and also for the
number of vertices).

Theorem 3 ([FGV22]). Under the same assumptions as in Theorem 2, it holds
that

Var [A(Kr
n)] ≈ n− 5

3 .

Using the asymptotic lower bound on the variance of the area in Theorem 3, we
prove a quantitative central limit theorem for A(Kr

n) as n → ∞. Our argument uses
the normal approximation bound proved by Chatterjee [Cha08] and Lachièze-Rey
and Peccati [LRP17] that originated from Stein’s method [Ste86].

The Wasserstein distance of two random variables X and Y defined on the same
probability space is

dW (X,Y ) := sup
h∈Lip1

∣∣E[h(X)]− E[h(Y )]
∣∣,

where Lip1 denotes the set of all Lipschitz continuous h : R → R functions with
Lipschitz constant at most 1. The Wasserstein distance, in fact, defines a metric on
(equivalence classes of) random variables on a probability space. Therefore, one can
use it to define the convergence of sequences of random variables. It is known that
convergence w.r.t. Wasserstein distance implies weak convergence (convergence in
distribution), see, for example [Vil09, Ch. 6]. In particular, if G is a standard
normal random variable, and (Wn)n∈N is a sequence of centred random variables
with finite second moments for which

lim
n→∞

dW

(
Wn√

Var (Wn)
, G

)
= 0,

then Wn/
√
Var (Wn)

D−→ G, where
D−→ denotes convergence in distribution.

Our argument is based on the work of Thäle, Turchi and Wespi [TTW18]. Using
estimates for floating bodies and general normal approximation bounds they gave
a short and transparent proof of a central limit theorem for intrinsic volumes of
classical random polytopes in smooth convex bodies, which we state here only for
the case of volume.

Theorem 4 ([TTW18]). Let K ⊂ Rd, d ≥ 2 be a convex body with C2
+ smooth

boundary. Then

dW

(
Vd(Kn)− E[Vd(Kn)]√

Var [Vd(Kn)]
, G

)
≪ n− 1

2+
1

d+1 (log n)3+
2

d+1 ,

where Kn is the convex hull of n ≥ d + 1 i.i.d. random points that are uniformly
distributed in K and G is a standard normal random variable.

Our main result is the following theorem for the spindle convex case in the plane.
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Theorem 5. Let K be a convex disc with C2
+ boundary. Then for any r > rM it

holds that

(1) dW

(
A(Kr

n)− E[A(Kr
n)]√

Var [A(Kr
n)]

, G

)
≪ n− 1

6 (log n)3+
2
3 .

We note that the order of magnitude in (1) is most likely not optimal.
The rest of the paper is organized as follows. In Section 2 we collect the necessary

geometric tools for the proof. Section 3 contains a (very) short summary of the
specific normal approximation methods we use. We prove Theorem 5 in Section 4.

2. Geometric tools

We will use the so-called floating body in our arguments, which was introduced
independently in [BL88] by Bárány and Larman, and in [SW90] by Schütt and
Werner. Let K ⊂ R2 be a convex disc, t > 0 (we always assume that t is sufficiently
small), and H a closed half-plane. Let v : K → R be defined as

v(x) = min
{
A(K ∩H) : x ∈ H, H closed half-plane

}
.

The level set

K(v ≤ t) = {x ∈ K : v(x) ≤ t}
is called the wet part of K with parameter t. The closure of the complement of
K(v ≤ t) w.r.t. K is

K(t) = K(v ≥ t) = {x ∈ K : v(x) ≥ t},
which is the floating body of K with parameter t.

Bárány and Larman [BL88] proved that the random polytopeKn behaves asymp-
totically roughly as K(1/n), and the missing part K \Kn as the wet part K \K(1/n).
Bárány and Dalla [BD97] showed the following lemma for the uniform distribution,
and Vu [Vu05] extended it to more general distributions using different methods.
We only need the d = 2 special case but the original statement is for general d.

Lemma 1 ([BD97,Vu05]). Let Kn be a random polygon in the convex disc K ⊂ R2

that is the convex hull of n i.i.d. uniform random points. Then for any β ∈ (0,∞)
there exists c = c(β) ∈ (0,∞) for which

P(K(c logn/n) ̸⊆ Kn) ≤ n−β , if n is sufficiently large.

For a point z ∈ bdK and a (suitably small) t > 0 parameter, the visibility region
of z with parameter t is the set of points in K \K(t) that are clearly visible from
z, that is,

Vis(z, t) = {x ∈ K \K(t) : [x, z] ∩K(t) = ∅},
where [x, z] denotes the segment with endpoints x and z.

Let S ⊆ R2 be a non-empty set. Then

diam (S) = sup
x,y∈S

∥x− y∥

is the diameter of S.
Let K ⊂ R2 be a convex disc whose boundary is of class C2

+. Then there exists
a constant c = c(K) such that for sufficiently small t > 0 it holds that

sup
z∈bdK

A
(
Vis(z, t)

)
≤ ct.
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For a sketch of the proof see [TTW18].
It follows from the C2

+ property that for each boundary point x ∈ bdK there
exists a unique outer unit normal ux ∈ S1. Moreover, for all u ∈ S1 there exists a
unique boundary point xu ∈ bdK such that the outer unit normal at xu is u. If

κm = min
x∈bdK

κ(x) and κM = max
x∈bdK

κ(x),

then a circle of radius rm = 1/κM rolls freely inK, (see [Sch14, Section 3.2, p. 156]),
that is, for all x ∈ bdK there exists a vector p ∈ R2 such that x ∈ rmB2 + p ⊂ K.
Moreover, K slides freely in a circle of radius rM = 1/κm, meaning that for all
x′ ∈ bdK there exists p′ ∈ R2 with x′ ∈ rMbdB2 + p′ and K ⊂ rMB2 + p′. The
circular disc rMB2 + p′ is called a supporting disc of K at x′. Due to the C2

+

property of bdK, the supporting disc is unique at each x ∈ bdK. This also implies
that K is r-spindle convex for all r ≥ rM .

By scaling, we may always assume that A(K) = 1.

Let B
2
denote the origin centred unit radius open ball. A subset of the form

K \
(
rB

2
+ p
)
where p ∈ R2 is called a (radius r) disc-cap of K. Next, we recall

some notation from [FKV14].
Let x, y ∈ K, x ̸= y be two points. The two radius r circles incident with x

and y determine two disc-caps of K, which we denote by D−(x, y) and D+(x, y),
where A

(
D−(x, y)

)
≤ A

(
D+(x, y)

)
. We will use the shorter symbol A−(x, y) =

A
(
D−(x, y)

)
and A+(x, y) = A

(
D+(x, y)

)
, and for simplicity we omit r from the

notation of the caps.
Fodor, Kevei and Vı́gh showed [FKV14, Lemma 4.3, p. 906] that if bdK is C2

+

and κ(x) > 1 for all x ∈ bdK, then there exists δ > 0 (depending only on K) such
that for any x, y ∈ intK it holds that A+(x, y) > δ.

Assume that K is a convex disc with C2
+ boundary such that κm > 1/r. It is

known (see [FKV14, Lemma 4.1, p. 905]) that if D = K \
(
rB

2
+p
)
is a non-empty

disc-cap, then there exists a unique point x0 ∈ bdK ∩ bdD (the vertex) and a
non-negative real number h (the height) for which rB2+p = rB2+x0− (r+h)ux0 .

Let D be a disc-cap in K with vertex x0. For a line e orthogonal to ux0 let e+ be
its closed half-plane that contains x0. Then there exists a maximal (with respect
to inclusion) linear cap C−(D) = K ∩ e+ that is contained in D, and a minimal
cap C+(D) = e′+ ∩K containing D. It was proved in [FV18] (see Claim 1, on page
1146), that there exists a constant ĉ ∈ (0, 1) depending only on K and r such that
if the height of D is sufficiently small, then

ĉ
(
C+(D)− x0

)
⊂ C−(D)− x0.(2)

This implies that a disc-cap can be ”sandwiched” between two linear caps such
that the height of the bigger cap is at most ĉ times the height of the smaller cap.
It also follows that the area of a disc-cap of height h is of order of magnitude h3/2

if h is sufficiently small. The exact behaviour of the area of disc-caps as h → 0 is
described in the following limit. If D(x0, h) is a disc-cap with vertex x0 and height
h, then

lim
h→0+

A
(
D(x0, h)

)
h− 3

2 =
4

3

√
2

κ(x0)− 1/r
,

see [FKV14, Lemma 4.2, p. 905]. The C2
+ property of bdK yields that there exist

constants γ > 0 and Γ > 0, depending only on K, such that for any x0 ∈ bdK and
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sufficiently small h,

γh
3
2 ≤ A(D(x0, h)) ≤ Γh

3
2 .

In turn, (2) implies that there exist constants γ̃ > 0 and Γ̃ > 0, depending only on
K and r such that for any x0 ∈ bdK and sufficiently small h,

γ̃h
3
2 ≤ A(D(x0, h)) ≤ Γ̃h

3
2 .

We now introduce the r-spindle floating body and r-spindle wet part of a (r-
spindle) convex disc K. Let vr : K → R be

vr(x) = min
{
A(K ∩D) : x ∈ rS1 + p, p ∈ R2

}
,

where D = K \
(
rB

2
+ p
)
is a non-empty disc-cap in K. The level set of vr

Kr
(t) := K(vr ≥ t) = {x ∈ K : vr(x) ≥ t}

is called the r-spindle floating body of K with parameter t. Correspondingly, the
r-spindle wet part with parameter t is

K(vr ≤ t) = {x ∈ K : vr(x) ≤ t}.

We note that the r-spindle floating body (for any t) is also r-spindle convex as it
is the intersection of radius r closed circular discs.

The following lemma shows that the r-spindle floating body of K can also be
sandwiched between two ”classical” floating bodies.

Lemma 2. Let K be a convex disc with C2
+ boundary. For any r > rM there exists

a constant c̃ ≥ 1 depending on K and r, such that for sufficiently small t > 0, the
following inclusions hold

K(c̃t) ⊂ Kr
(t) ⊂ K(t).

Proof. If x ∈ bdKr
(t), then there exists a minimal disc-cap D− = K \

(
rB

2
+ p
)
,

for which x ∈ rS1 + p. We will say that D− lies on x, or equivalently, that D−
is a disc-cap through x. The same is true for (linear) caps, where x lies on a line
(instead of rS1 + p). The area of the cap that we get by the ”lower part” of D−’s
support line through the point x is greater than or equal to the area of the minimal
cap that lies on x. Hence, through a point x ∈ K, the area of the minimal cap is
always smaller than the area of the minimal disc-cap. Thus, K(t) always contains
Kr

(t).

Next, we need to show that there exists a constant c̃ for which the area of the
minimal cap (w.r.t. c̃t) through x is greater than A(D−). To see this, we will need
the following: for an arbitrary x ∈ K, the area of the minimal disc-cap that lies on x
is at most some universal constant c ≥ 1 times the area of the minimal cap through
x. Let the minimal cap through x be denoted by C− with the vertex y ∈ bdK.
Now, consider the disc-cap whose vertex is also y, it lies on x and supports C− and
denote it by D(y). The area of D(y) is at least the area of the minimal disc-cap
through x. However, D(y) is contained in an enlarged version of C−. Thus, the
area of D(y) is smaller than the area of the enlarged minimal cap, which is at most
c ·A(C−) for some constant c. From this fact, it follows that there exists a universal
constant c̃ ≥ 1 (taking into account the previous constant c as well), such that the
floating body of K with parameter c̃t is contained in the r-spindle floating of K
with parameter t. □
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Using the fact that for any X ⊂ K, the set [X]r (strictly) contains conv (X), it
follows that Kn ⊂ Kr

n. By Lemma 2, the following inclusions hold for the following
events for sufficiently large n

{Kr
(c logn/n) ̸⊆ Kr

n} ⊆ {K(c2 logn/n) ̸⊆ Kr
n} ⊆ {K(c2 logn/n) ̸⊆ Kn},

where K(c1 logn/n) ⊂ Kr
(c logn/n) ⊂ K(c2 logn/n). By Lemma 1 ([Vu05, Lemma 4.2,

p. 1298]) and the above, we obtain the following statement.

Lemma 3. Let K be a convex disc with C2
+ boundary. For any r > rM and

β ∈ (0,∞) there exists c = c(β, r) ∈ (0,∞) such that

P(Kr
(c logn/n) ̸⊆ Kr

n) ≤ n−β , if n is large enough.

We now introduce the r-spindle visibility regions. Let z ∈ bdK and t > 0. The
r-spindle visibility region of z with parameter t is the set of points in K \Kr

(t) that

are visible along a radius r circular arc from z avoiding Kr
(t) as an obstacle, that is,

Vis r(z, t) =
{
x ∈ K \Kr

(t) : ∃[
⌢
x, z]r such that [

⌢
x, z]r ∩ intKr

(t) = ∅
}
,

where [
⌢
x, z]r denotes a shorter circular arc of radius r with endpoints x and z. We

note that for any x ̸= z there are two such arcs.

Lemma 4. Let K be a convex disc with C2
+ boundary. Then there exists a constant

C, depending only on K, such that for any r > rM and sufficiently small t > 0 it
holds that

sup
z∈bdK

A
(
Vis r(z, t)

)
≤ Ct.

Proof. Note that Vis r(z, t) is the union of all area t disc-caps that contain z ∈ bdK.
Let D be such a disc-cap whose height is c1t

2/3. Let C+(D) be a Euclidean cap
containing D with height c2t

2/3, whose existence is guaranteed by (2).
Reitzner proved (see [Rei03, pp. 2149-2150]) that if h > 0 is sufficiently small

and C1(x1, h1) ∩ C2(x2, h2) ̸= 0, where C1(x1, h1), C2(x2, h2) are two Euclidean
caps whose heights satisfy h ≥ h1 ≥ h2, then there exists a constant c̃ (depending
only on K) for which C2(x2, h2) ⊂ c̃

(
C1(x1, h1)− x1

)
+ x1. Using this for all caps

C+(D), we obtain that there exists a disc-cap D(z, c1t
2/3) which is contained in

C+

(
D(z, c1t

2/3)
)
, and there exists a constant C (depending only on K and the

radius r > rM ) such that if we blow up C+

(
D(z, c1t

2/3)
)
by a factor of C, then the

resulting disc-cap contains Vis r(z, t) and its area is of order t. □

3. Stein’s method, normal approximation bounds

We summarize (very briefly) the most necessary notation and statements we
need for our normal approximation bound. For more information on the method
we refer to the paper by Chatterjee [Cha08] and Lachièze-Rey, Peccati [LRP17].
Let E be a complete, separable metric space (Polish space). In our application in
the proof of Theorem 5 E will be the interior of the convex disc K in R2 with C2

+

boundary. Let X = (X1, . . . , Xn) be n i.i.d. random variables that are elements
of E, and let X ′, X ′′ be independent copies of X. We denote the i-th coordinate
(i ∈ {1, . . . , n}) of X ′ and X ′′ by X ′

i and X ′′
i , respectively.

We say that a random vector Z = (Z1, . . . , Zn) is a recombination of {X,X ′, X ′′}
if Zi ∈ {Xi, X

′
i, X

′′
i } for all i ∈ {1, . . . , n}.
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Let f : ∪n
k=1E

k → R be a measurable and symmetric function acting on point
configurations of at most n ∈ N points in E. For x = (x1, x2, . . . , xn) ∈ En and
i ∈ {1, . . . , n} we denote by

x¬i = (x1, x2, . . . , xi−1, xi+1, . . . , xn) ∈ En−1

the vector that we get from x by removing its i-th coordinate. Similarly, for two
indices i, j ∈ {1, . . . , n} with i < j we write x¬i,¬j ∈ En−2 for the vector that arises
from x by removing coordinates i and j. Next, we define the first- and second-order
difference operator applied to f(x) = f(x1, . . . , xn) by

Dif(x) = f(x)− f(x¬i),

and

Di,jf(x) = Di

(
Djf(x)

)
= f(x)− f(x¬i)− f(x¬j) + f(x¬i,¬j) = Dj,if(x),

respectively. In other words, Dif(x) measures the effect on the functional f when
xi is removed from x, and similar interpretation is valid for Di,jf(x).

To rephrase the normal approximation bound from [LRP17] we define the fol-
lowing quantities:

B1(f) = sup
(Y,Y ′,Z,Z′)

E
[
1{D1,2f(Y ) ̸=0}1{D1,3f(Y ′) ̸=0}

(
D2f(Z)

)2(
D3f(Z

′)
)2]

,

B2(f) = sup
(Y,Z,Z′)

E
[
1{D1,2f(Y ) ̸=0}

(
D1f(Z)

)2(
D2f(Z

′)
)2]

,

B3(f) = E
[
|D1f(X)|3

]
,

B4(f) = E
[
|D1f(X)|4

]
,

where the suprema in the definitions of B1(f) and B2(f) are taken over all tuples
of recombinations (Y, Y ′, Z, Z ′) and (Y,Z, Z ′), respectively, of {X,X ′, X ′′}.

We are now prepared to rephrase the following normal approximation bound,
which combines Theorem 5.1 and Proposition 5.3 from [LRP17] (see [LRP17, Re-
mark 5.4, pp. 2007-2008] in a form similar to how it appeared in [TTW18, Lemma 2.3,
p. 3066] but with slight modifications.

Fix n ∈ N and let X1, . . . , Xn be independent random elements taking values
in a Polish space E and are uniformly distributed. Let f : ∪n

k=1E
k → R be a

symmetric and measurable function. Define W (n) = f(X1, . . . , Xn) and assume

that E
[
W (n)

]
= 0 and E

[(
W (n)

)2]
= 1.

Theorem 6 ([LRP17]). Under the assumptions stated above, if G denotes a stan-
dard Gaussian random variable, then

dW
(
W (n), G

)
≪ n

√
nB1(f) + n

√
B2(f) + nB3(f) +

√
nB4(f).

4. The proof of Theorem 5

Our proof is based on the argument of Thäle, Turchi and Wespi [TTW18]. Let
X = (X1, . . . , Xn) be i.i.d. uniform random points from the convex disc K ⊂ R2

with C2
+ boundary and let X ′, X ′′ be independent random copies of the random

vector X.
Let

f(X1, . . . , Xn) =
A(Kr

n)− E[A(Kr
n)]√

Var [A(Kr
n)]

,
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where Kr
n = [X]r, and let W (n) = f(X1, . . . , Xn). Note that if xi, xj form an edge

of Kr
n, then Di,jf(x) ̸= 0, so the vertices xi and xj interact. However, the converse

is not true as it may happen that Di,jf(x) ̸= 0 but the vertices xi and xj do not
span an edge of Kr

n. Our argument covers this case as well.
We will use the following asymptotic lower bound for the variance of A(Kr

n) from
[FGV22]. The matching upper bound is from [FV18]:

(3) n−5/3 ≪ Var [A(Kr
n)] ≪ n−5/3.

According to Lemma 3, for any β ∈ (0,∞) there exists c = c(β) ∈ (0,∞) for which
the random disc-polygon [X2, . . . , Xn]r contains with high probability the r-spindle
floating body Kr

(c logn/n). If we denote this event by A1, then for sufficiently large

n, the following holds

(4) P(Ac
1) ≤ (n− 1)−β ≤ c1n

−β ,

where c1 ∈ (0,∞) is a constant independent of n.
We are going to estimate from above the difference operators DiA(Kr

n) and
Di1,i2A(Kr

n), where i, i1, i2 ∈ {1, . . . , n}.
For the sake of simplicity, we assume that A(K) = 1. This may always be

achieved by simultaneously scaling K and r. The general statement follows simply
by re-scaling.

LetKr
n−1 = [X2, . . . , Xn]r. If the eventA1 happens andX1 ∈ Kr

n−1, thenA
(
Kr

n\
Kr

n−1

)
= 0. Therefore it is enough to consider the case when X1 ∈ K \Kr

n−1. The
conditional probability of this event with condition A1 is (see [Bár08, Theorem 6.3,
p. 344] and Lemma 3)

A(K \Kr
n−1) ≪ A(K \Kn−1) ≪ A(K \K(c logn/n)) ≪

(
log n

n

) 2
3

.

Let z ∈ bdK be a boundary point such that its c log n/n parameter spindle
visibility region contains the set of points that are in K \Kr

(c logn/n) and which are

arc-wise visible from X1. We use the following notation for the spindle visibility
region of z:

Vis r(z, n) =
{
x ∈ K \Kr

(c logn/n) : ∃[
⌢
x, z]r such that [

⌢
x, z]r ∩ intKr

(c logn/n) = ∅
}
.

Let z ∈ bdK and L ⊂ K a spindle convex disc, and let ∆(z, L) =
[
L ∪ {z}

]
r
\ L.

In case A1 happens, then

∆
(
z, [X2, . . . , Xn]r

)
= ∆(z,Kr

n−1) ⊂ Vis r(z, n).

Using this fact and Lemma 4, we may estimate the first order differences as follows
(5)

|D1A(Kr
n)| ≤ sup

z∈bdK
A
(
Vis r(z, n)

)
1{X1∈K\Kr

(c log n/n)
} ≪ log n

n
1{X1∈K\Kr

(c log n/n)
}.

If the Ac
1 event happens, then we may use the trivial estimate |D1A(Kr

n)| ≤ A(K)
because the contribution of X1 is at most the area of K. Thus,

E
[
|D1A(Kr

n)|
p ]

= E
[
1A1

|D1A(Kr
n)|

p ]
+ E

[
1Ac

1
|D1A(Kr

n)|
p ]

≪ E
[
1A1

(
log n

n

)p

1{X1∈K\Kr
(c log n/n)

}

]
+ E

[
1Ac

1
Ap(K)

]
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≪
(
log n

n

)p

A(K \Kr
(c logn/n)) ≪

(
log n

n

)p+ 2
3

for all p ∈ {1, 2, 3, 4}. In the third inequality we used (4) which guarantees that
the second term in the second line can be made arbitrarily small if n is sufficiently
large. Now we can estimate the quantities B3(f) and B4(f). Using the lower bound
(3) for the variance of A(Kr

n) we get

E
[
|D1f(X)|p

]
= Var

[
A(Kr

n)
]− p

2E
[
|D1A(Kr

n)|
p ]

≪ n
p
2

5
3

(
log n

n

)p+ 2
3

= n− p
6−

2
3 (log n)p+

2
3 .

In particular,

nB3(f) ≪ n− 1
6 (log n)3+

2
3 ,

and √
nB4(f) ≪ n− 1

6 (log n)2+
1
3 .

Now we turn to the second order difference operators Di1,i2A(Kr
n). Let z ∈

K \Kr
(c logn/n) be a point that is not necessarily a boundary point. Let the spindle

visibility region of z be

Vis r(z, n) =
{
x ∈ K \Kr

(c logn/n) : ∃[
⌢
x, z]r such that [

⌢
x, z]r ∩ intKr

(c logn/n) = ∅
}
.

Notice that if Vis r(X1, n) and Vis r(X2, n) are disjoint, then D1,2A(Kr
n) = 0. Let

Y, Y ′, Z and Z ′ be recombinations of the random vector X = (X1, . . . , Xn), and let
A2 denote the event

Kr
(c logn/n) ⊆

⋂
W∈{Y,Y ′,Z,Z′}

[W4, . . . ,Wn]r.

Then the probability of the complement of A2 is also small

(6) P(Ac
2) ≤ c2n

−β ,

where c2 ∈ (0,∞) is a constant independent from n.
If the event A2 happens, then it follows from (5) that(

DiA(Kr
n)
)2 ≪

(
log n

n

)2

,

furthermore, using the lower bound (3) we get that(
Dif(V )

)2 ≪
(
log n

n

)2

n
5
3 = n− 1

3 (log n)2

for i ∈ {1, 2, 3} and V ∈ {X,X ′}. We note that if A2 happens, then

{D1,2f(Y ) ̸= 0} ⊆ {Y1 ∈ K \Kr
(c logn/n)} ∩ {Y2 ∈ K \Kr

(c logn/n)}
∩ {Vis r(Y1, n) ∩Vis r(Y2, n) ̸= ∅}

⊆ {Y1 ∈ K \Kr
(c logn/n)} ∩

{
Y2 ∈

⋃
x∈Vis r(Y1,n)

Vis r(x, n)

}
.

If A2 happens then [X4, . . . , Xn]r already contains Kr
(c logn/n). Thus, D1,2f(Y )

is nonzero if Y1, Y2 ∈ K \Kr
(c logn/n) and the spindle visibility regions of Y1 and Y2

are not disjoint, which means that they ”see each other with circular arcs”. Then
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Y1, Y2 either contribute with an edge to Kr
n, or removing Y1 the point Y2 becomes

a vertex of Kr
n (or vice versa).

Similar conditions are satisfied for D1,3f(Y
′). Therefore,

E
[
1{D1,2f(Y ) ̸=0}1A2

]
≤ P

(
Y1 ∈ K \Kr

(c logn/n)

)
×

× P
(
Y2 ∈

⋃
x∈Vis r(Y1,n)

Vis r(x, n)
∣∣∣Y1 ∈ K \Kr

(c logn/n)

)
≤ P

(
Y1 ∈ K \Kr

(c logn/n)

)
sup

z∈K\Kr
(c log n/n)

P
(
Y2 ∈

⋃
x∈Vis r(z,n)

Vis r(x, n)
)

= A
(
K \Kr

(c logn/n)

)
sup

z∈K\Kr
(c log n/n)

A
( ⋃

x∈Vis r(z,n)

Vis r(x, n)
)
.

Since by (2) for z ∈ K \Kr
(c logn/n) it holds that

diam
( ⋃

x∈Vis r(z,n)

Vis r(x, n)
)
≪
(
log n

n

) 1
3

,

thus [Rei03] and Lemma 4 yield that

∆(n) := sup
z∈K\Kr

(c log n/n)

A
( ⋃

x∈Vis r(z,n)

Vis r(x, n)
)
≪ log n

n
.

Furthermore, for A2, we may estimate the indicator functions by one and the dif-
ference operators by A(K). Since P(Ac

2) is small (see (6)), thus

B2(f) ≪ n− 2
3 (log n)4A(K \Kr

(c logn/n))∆(n) ≪ n− 7
3 (log n)5+

2
3 .

The quantity B1(f) can be estimated similarly. First assume that Y1 = Y ′
1 . Under

the assumption that A2 happens, we get that

{D1,2f(Y ) ̸= 0} ∩ {D1,3f(Y
′) ̸= 0} ⊆

⊆
{
{Y1, Y2, Y

′
3} ⊆ K \Kr

(c logn/n)}
}
∩ {Vis r(Y1, n) ∩Vis r(Y2, n) ̸= ∅}

∩ {Vis r(Y1, n) ∩Vis r(Y
′
3 , n) ̸= ∅} ⊆

⊆ {Y1 ∈ K \Kr
(c logn/n)} ∩

{
{Y2, Y

′
3} ⊆

⋃
x∈Vis r(Y1,n)

Vis r(x, n)

}
.

By the above argument

E
[
1{D1,2f(Y )̸=0}1{D1,3f(Y ′) ̸=0}1A2

]
≤ P

(
Y1 ∈ K \Kr

(c logn/n)

)
×

× sup
z∈K\Kr

(c log n/n)

P
(
{Y2, Y

′
3} ⊆

⋃
x∈Vis r(z,n)

Vis r(x, n)
)

≤ A(K \Kr
(c logn/n))

(
∆(n)

)2
.

If Y1 ̸= Y ′
1 , then we get a smaller order of magnitude since in that case we have an

extra factor A
(
K \Kr

(c logn/n)

)
by the independence. Thus,

B1(f) = sup
(Y,Y ′,Z,Z′)

E
[
1{D1,2f(Y ) ̸=0}1{D1,3f(Y ′ )̸=0}

(
D2f(Z)

)2(
D3f(Z

′)
)2]

≪ E
[
1A2

1{D1,2f(Y )̸=0}1{D1,3f(Y ′) ̸=0}n
− 2

3 (log n)4
]
+ E

[
1Ac

2
A2(K)

]
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≪ n− 2
3 (log n)4A(K \Kr

(c logn/n))
(
∆(n)

)2 ≪ n− 10
3 (log n)6+

2
3 .

Now, we can estimate the other two terms in Theorem 6.

n
√
nB1(f) ≪ n

√
n− 7

3 (log n)6+
2
3 = n− 1

6 (log n)3+
1
3 .

n
√
B2(f) ≪ n

√
n− 7

3 (log n)5+
2
3 = n− 1

6 (log n)2+
5
6 .

Finally, substituting our estimates in Theorem 6 we get that

dW (W (n), G) ≪ n
√
nB1(f) + n

√
B2(f) + nB3(f) +

√
nB4(f)

≪ n− 1
6

(
(log n)3+

1
3 + (log n)2+

5
6 + (log n)3+

2
3 + (log n)2+

1
3

)
≪ n− 1

6 (log n)3+
2
3 ,

where G is a random variable with standard normal distribution. Since the Wasser-
stein distance of the random variable W (n) and G tend to zero as n → ∞, thus

W (n) =
A(Kr

n)− E[A(Kr
n)]√

Var [A(Kr
n)]

D−→ G ∼ N (0, 1),

which finishes the proof of Theorem 5.
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