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Abstract Coronavirus disease 2019 (COVID-19) 
can lead to severe acute respiratory syndrome, and 
while most individuals recover within weeks, approxi-
mately 30–40% experience persistent symptoms col-
lectively known as Long COVID, post-COVID-19 
syndrome, or post-acute sequelae of severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) 
infection (PASC). These enduring symptoms, includ-
ing fatigue, respiratory difficulties, body pain, 

short-term memory loss, concentration issues, and 
sleep disturbances, can persist for months. Accord-
ing to recent studies, SARS-CoV-2 infection causes 
prolonged disruptions in mitochondrial function, sig-
nificantly altering cellular energy metabolism. Our 
research employed transmission electron microscopy 
to reveal distinct mitochondrial structural abnormali-
ties in Long COVID patients, notably including signif-
icant swelling, disrupted cristae, and an overall irregu-
lar morphology, which collectively indicates severe 
mitochondrial distress. We noted increased levels of 
superoxide dismutase 1 which signals oxidative stress Tibor Pankotai and László Tiszlavicz contributed equally 
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and elevated autophagy-related 4B cysteine peptidase 
levels, indicating disruptions in mitophagy. Impor-
tantly, our analysis also identified reduced levels of 
circulating cell-free mitochondrial DNA (ccf-mtDNA) 
in these patients, serving as a novel biomarker for the 
condition. These findings underscore the crucial role 
of persistent mitochondrial dysfunction in the patho-
genesis of Long COVID. Further exploration of the 
cellular and molecular mechanisms underlying post-
viral mitochondrial dysfunction is critical, particu-
larly to understand the roles of autoimmune reactions 
and the reactivation of latent viruses in perpetuating 
these conditions. This comprehensive understanding 
could pave the way for targeted therapeutic interven-
tions designed to alleviate the chronic impacts of Long 
COVID. By utilizing circulating ccf-mtDNA and other 
novel mitochondrial biomarkers, we can enhance our 
diagnostic capabilities and improve the management 
of this complex syndrome.

Keywords Mitochondria · Post-COVID · 
Mitophagy · Oxidative damage · mtDNA

Introduction

The emergence of coronavirus disease 2019 
(COVID-19), caused by the severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2), has 
precipitated a global health crisis with enduring 
implications. As of the latest updates, COVID-19 
has affected over 775 million individuals world-
wide, resulting in more than 7 million deaths across 
various countries and territories [1]. The mortality 
rate for COVID-19 differs significantly by age, with 
older adults, especially those with underlying health 
conditions, experiencing disproportionately higher 

rates of fatalities [2–5]. The pandemic has seen 
multiple waves, driven by the emergence of virus 
variants, each varying in transmissibility and viru-
lence [6, 7]. Despite extensive vaccination efforts, 
which have seen billions of vaccine doses adminis-
tered globally, the virus continues to impact popula-
tions, healthcare systems, and economies.

While the majority of affected individuals recover 
from the acute respiratory syndrome within a few 
weeks, approximately 30–70% of those infected 
experience persistent and debilitating symptoms 
collectively termed Long COVID, post-COVID-19 
syndrome, or post-acute sequelae of SARS-CoV-2 
infection (PASC) [3, 8–26]. Chronic fatigue is con-
sistently identified as the most common and debilitat-
ing symptom reported by survivors, as demonstrated 
by various cross-sectional and cohort studies [18, 
27–31]. Individuals affected by Long COVID often 
experience a broad range of additional symptoms, 
including dyspnea, joint pain, sleep problems, mood 
disorders such as depression and anxiety [32], head-
aches, dizziness, cognitive issues commonly referred 
to as “brain fog,” and cardiac symptoms [18]. These 
symptoms can persist for months and significantly 
impair quality of life. The National Institute for 
Health and Care Excellence categorizes PASC as 
ongoing symptomatic COVID-19 for individuals 
whose symptoms persist between 4 and 12  weeks 
following the initial onset of acute symptoms or as 
post-COVID-19 syndrome for those whose symp-
toms continue beyond 12 weeks [18, 33]. In contrast, 
the World Health Organization describes PASC as 
a condition affecting individuals with a suspected 
or confirmed SARS-CoV-2 infection who experi-
ence lasting symptoms for a minimum of 2  months 
and where these symptoms cannot be attributed to 
another underlying medical condition [9, 34].

Long COVID presents a complex clinical picture 
that implicates multiple organ systems. Emerging 
evidence suggests mitochondrial dysfunction as a 
central component of this syndrome [35–49]. Mito-
chondria, essential for energy production and cellular 
metabolism, are particularly vulnerable to SARS-
CoV-2 infection [36]. The virus may hijack and repro-
gram mitochondrial function or inflict direct damage 
through various mechanisms during and potentially 
after infection [36]. Such disruptions lead to altered 
energy metabolism, which is believed to contribute 
to the fatigue, cognitive impairments, and muscular 
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weaknesses commonly observed in Long COVID 
patients [35, 36].

The primary goal of this study was to investi-
gate novel biomarkers of mitochondrial dysfunction 
in Long COVID patients and their correlation with 
persistent symptoms, particularly chronic fatigue. 
To achieve this, we conducted a series of compara-
tive analyses between post-COVID-19 patients and 
controls. Utilizing transmission electron microscopy, 
we inspected nasal mucosal and bronchial biopsy 
samples to identify and characterize mitochondrial 
structural abnormalities and their association with 
Long COVID symptoms. We quantified the levels 
of proteins crucial to mitochondrial dynamics—spe-
cifically autophagy-related 4B cysteine peptidase 
(ATG4B), mitofusin 2 (MFN2), and dynamin-related 
protein 1 (DRP1). Elevated levels of these proteins 
might indicate ongoing mitochondrial dysfunction or 
compensatory responses within affected cells. Addi-
tionally, measuring superoxide dismutase 1 (SOD1) 
protein levels provided insights into the oxidative 
stress status of these patients. By assessing the circu-
lating cell-free mitochondrial DNA (ccf-mtDNA) in 
blood plasma, we evaluated the integrity and func-
tionality of mitochondrial recycling processes in post-
COVID-19 patients. Through these objectives, the 
study sought to validate the hypothesis that persistent 
mitochondrial dysfunction significantly contributes to 
the chronic symptoms of Long COVID.

Materials and methods

Cohort characteristics

For the measurement of circulating cell-free mito-
chondrial DNA (ccf-mtDNA), the study enrolled 32 
post-COVID-19 (PC) patients and 31 healthy volun-
teers, with median ages of 46 and 44  years, respec-
tively. The most prevalent symptoms among PC 
patients included disorders of smell and taste—specif-
ically anosmia, hyposmia, dysosmia, ageusia, hypo-
geusia, and dysgeusia. Additionally, these patients 
frequently reported impaired memory, fatigue, par-
esthesia, cardiac arrhythmias, tachycardia, dyspnea, 
thoracic and joint disorders, urticaria, and other der-
matological issues (Table 1, left part). The selection 
of the PC patients was carried out as described by 
Pavli et al. [50].

For transmission electron microscopy (TEM) 
analysis, nasal mucosal and bronchial biopsy sam-
ples were collected from five PC patients (median 
age 28  years) and five controls who exhibited no 
post-COVID-19 symptoms but were diagnosed with 
secondary ciliary dyskinesia (median age 10  years). 
The primary symptoms of PC patients were smell 
disorders—anosmia, hyposmia, and dysosmia. Other 
reported symptoms included taste disorders—ageu-
sia, hypogeusia, and dysgeusia—fatigue, and various 
respiratory conditions (Table 1, right part).

Sample preparation and post-embedding for 
immunohistochemistry

All cases of human nasal mucosa and bronchial 
biopsy were previously diagnosed and collected from 
the archives of the University of Szeged. All speci-
mens were initially preserved in a 3% glutaraldehyde 

Table 1  Cohort characteristics for transmission electron 
microscopy (TEM) and circulating cell-free mitochondrial 
DNA (ccf-mtDNA) studies

Cohort characteristics

ccf-mtDNA TEM

PC C PC C

Age Median age (years) 46 44 28 10
Sex distribution Female (number of 

participants)
24 21 3 1

Male (number of 
participants)

8 10 2 4

Symptoms Anosmia/Hyposmia/
Dysosmia

16 – 5 –

Ageusia/Hypogeusia/
Dysgeusia

8 – 1 –

Impaired memory 2 – – –
Fatigue 2 – 1 –
Paresthesia 2 – – –
Cardiac arrhythmia 1 – – –
Tachycardia 1 – – –
Dyspnea 1 – – –
Thoracic disorders 1 – – –
Joint disorders 1 – – –
Urticaria 1 – – –
Other respiratory 

disorder
– – 4 –

Other dermatological 
condition

1 – – –
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solution supplemented with dextran. Upon arrival 
at the Department of Pathology, both control (n = 5) 
and PC (n = 5) samples underwent a post-fixation in 
a fresh 3% glutaraldehyde solution. The samples were 
then rinsed in phosphate-buffered saline (PBS) and 
fixed for 1 h in 2% osmium tetroxide. The specimens 
were dehydrated through a graded series of ethanol 
concentrations, followed by rinsing in uranyl acetate 
and acetone. Subsequently, they were embedded in 
Embed812 resin (Electron Microscopy Sciences; 
Hatfield, PA, USA). Ultrathin Sections (70 nm) were 
prepared using an Ultracut S ultra-microtome (Leica, 
Wetzlar, Germany) and mounted on copper grids [51].

Post-embedding sections were blocked with 1% 
bovine serum albumin for 20  min and then washed 
three times in PBS. They were incubated with pri-
mary antibodies at room temperature for either 1  h 
or 3 h, depending on the specific antibody (Table 2). 
After washing in PBS, sections were incubated with 
appropriate secondary antibodies—anti-rabbit (for 
DRP1, MFN2, ATG4B, FIS1, and LDH) or anti-
mouse (for MFN1)—for 3  h at room temperature 
(Table 3). Finally, sections were counterstained with 

0.25% uranyl acetate (Electron Microscopy Sciences, 
Hatfield, PA, USA) and 3% lead citrate (Leica, Wet-
zlar, Germany) to enhance contrast [52].

Quantification of immunohistochemistry

For each sample, five cells were imaged using a JEOL 
JEM 1400 TEM (JEOL; Tokyo, Japan) at magnifica-
tions of × 12,000 and × 20,000. Images were captured 
using TEM Center software (JEOL; Tokyo, Japan). 
To quantify the data, each image was analyzed using 
the point counting grid method with Image-Pro Plus 
software (Media Cybernetics, Rockville, Maryland, 
USA). A 20 × 20 grid was superimposed over each 
image, and intersections of grid points with mito-
chondria were counted. Additionally, the number of 
gold particles intersected by the grids within mito-
chondrial regions was tallied. This mitochondrial-
associated gold particle count was then normalized to 
the delimited mitochondrial area for each image.

Due to the non-normal distribution of the data, sta-
tistical analysis was performed using the nonparamet-
ric Mann–Whitney U test. All statistical evaluations 

Table 2  Primary antibodies used in immunohistochemistry for TEM

Antibody Target protein Host species Dilution; 
incubation 
time

Catalog number Supplier

Anti-DRP1 Dynamin-related protein 1 Rabbit 1:25; 1 h ab184247 Abcam, Cambridge, UK
Anti-MFN1 Mitofusin 1 Mouse 1:50; 1 h MA5-36,240 Invitrogen, Waltham, Massachusetts, 

USA
Anti-MFN2 Mitofusin 2 Rabbit 1:25; 3 h ab219730 Abcam, Cambridge, UK
Anti-ATG4B Autophagy-related protein 4B Rabbit 1:50; 1 h 710,915 Invitrogen, Waltham, Massachusetts, 

USA
Anti-FIS1 Mitochondrial fission 1 protein Rabbit 1:800; 1 h ab229969 Abcam, Cambridge, UK
Anti-SOD1 Superoxide dismutase 1 Mouse 1:25; 1 h MA1-105 Invitrogen, Waltham, Massachusetts, 

USA
Anti-LDH Lactate dehydrogenase Rabbit 1:25; 1 h ab52488 Abcam, Cambridge, UK

Table 3  Secondary antibodies used in immunohistochemis-
try for TEM. Dilutions are provided by the supplier and opti-
mized for use in TEM to ensure specific binding and minimal 

background. Proper handling and storage of antibodies were 
ensured as per supplier recommendations to maintain activity

Secondary antibodies Host species Size of colloidal 
gold particles

Dilution Catalog number Supplier

Anti-mouse IgG goat 10 nm 1:20 G3779 Sigma-Aldrich, St. Louis, MO, USA
Anti-rabbit IgG goat 18 nm 1:40 111–215-144 Sigma-Aldrich, St. Louis, MO, USA
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were executed using SPSS software (IBM SPSS Sta-
tistics 29; New York, USA). To visually represent the 
data distribution, violin plots were generated using 
the Flourish online tool [53].

Plasma isolation

Blood samples were collected from PC patients 
and healthy individuals using 10-ml cell-free DNA 
BCT tubes (Streck). The tubes were gently inverted 
ten times to mix and then centrifuged for 10 min at 
2000 rpm at 4 °C. The upper plasma layer was care-
fully transferred to a sterile tube and centrifuged 
again for 10 min at 4500 rpm at 4 °C to eliminate any 
residual cellular components. Two milliliters of the 
clarified plasma was then used for each subsequent 
isolation procedure.

Ccf-DNA isolation and mtDNA content measurement

The QIAamp MinElute ccf-DNA Mini Kit (Qiagen) 
was employed for the isolation of circulating cell-
free DNA (ccf-DNA) following the manufacturer’s 
protocol. The concentration of isolated ccf-DNA was 
determined using a Qubit 4 fluorometer (Invitrogen). 
For each quantitative PCR (qPCR) reaction, 0.5 ng of 
ccf-DNA was used. Relative quantification of mito-
chondrial DNA (mtDNA) content was performed 
using qPCR (Rotor-Gene Q, Qiagen) with specific 
primers, employing cyclophilin B as an internal con-
trol to ensure accurate and consistent results.

Statistical analysis of ccf-mtDNA content 
measurements

To visualize the discriminating potential of the meas-
ured ccf-mtDNA, a heat map was generated using the 
ClustVis online tool [54]. Statistical differences in 
ccf-mtDNA content between PC patients and healthy 
volunteers were assessed using independent samples 
t-tests performed with SPSS software (IBM SPSS 
Statistics 29; New York, USA). Additionally, violin 
plots were created using the Flourish online tool to 
provide a detailed view of the data distribution [53].

To evaluate the diagnostic potential of the ccf-
mtDNA measurements, receiver operating charac-
teristic (ROC) curves and the corresponding area 
under the curve (AUC) values were calculated using 
SPSS software. These analyses help determine the 

effectiveness of ccf-mtDNA levels in distinguishing 
between PC patients and healthy controls.

Ethics statement

This study received ethical approval from the Insti-
tutional Review Board of the Albert Szent-Györgyi 
Clinical Centre at the University of Szeged (approval 
number 100/2022-SZTE RKEB). All procedures per-
formed in studies involving human participants were 
in accordance with the ethical standards of the insti-
tutional and national research committee and with the 
1964 Helsinki Declaration and its later amendments.

Results

Structural and functional mitochondrial impairment 
in post-COVID-19 syndrome

Using TEM, we examined mitochondrial ultrastruc-
ture in nasal mucosal and bronchial needle biopsies 
from five PC and five control patients. TEM analy-
sis revealed distorted mitochondrial integrity in PC 
patients, characterized by dilated and washed-out 
cristae and enlarged mitochondria compared to con-
trols. Additionally, protein levels related to mito-
chondrial dynamics were quantified. Mitofusin 1 
(MFN1) and MFN2 are mitochondrial outer mem-
brane GTPases responsible for mitochondrial outer 
membrane fusion [55]. Mitochondrial fission 1 pro-
tein (FIS1) is involved in mitochondrial fission via 
DRP1 binding, a fission protein activated by cellular 
stress and implicated in calcium uptake [56]. While 
MFN1 and FIS1 levels were comparable to controls, 
MFN2 and DRP1 levels were elevated, indicating a 
disrupted balance between mitochondrial fusion and 
fission (Fig. 1B, C). Despite no observed changes in 
lactate dehydrogenase (LDH) levels (Fig.  1C), the 
morphological changes in mitochondria hinted at 
underlying mitochondrial damage. Elevated levels of 
superoxide dismutase 1 (SOD1) in PC patients were 
consistent with increased reactive oxygen species 
(ROS) (Fig. 1B). To further investigate mitochondrial 
recycling, we assessed ATG4B levels, finding them to 
be higher in PC patients, supporting the hypothesis of 
enhanced mitophagy as a response to mitochondrial 
dysfunction (Fig.  1A). We also quantified the mor-
phological changes occurring on the mitochondria 
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of the PC patients which revealed severe morpho-
logical and mitochondrial number changes in the cells 
(Fig. 1D).

Diminished circulating cell-free mtDNA content in 
PC patients

We developed a standardized qPCR method to meas-
ure specific mitochondrial DNA (mtDNA) content in 
the plasma of PC and healthy volunteers. The study 
included 32 PC and 31 control participants. We quan-
tified MTATP6-, MTCYTB-, MTND1-, MTND4-, 
and MTND5-specific plasma ccf-mtDNA content. 
The selection of these genes ensured comprehensive 
coverage of the mitochondrial genome, providing a 
robust evaluation of mitochondrial DNA integrity and 
quantity. Our findings revealed a significant reduc-
tion in ccf-mtDNA content in PC patients compared 
to healthy controls, indicating potential mitochondrial 
recycling dysfunction (Fig.  2A, B). To enhance the 
robustness of our results, we computed the median 
values from the individual ccf-mtDNA measurements 
and consolidated them into a single comprehensive 
dataset (denoted as “all medians”). This aggregate 
analysis reaffirmed a substantial reduction in mtDNA 
levels among PC patients relative to healthy controls. 
The significance of these observations was further 
substantiated by statistical analyses, which revealed 
a consistent pattern of diminished ccf-mtDNA levels 
across the PC cohort (Fig. 2A). The receiver operat-
ing characteristic (ROC) curves for each mitochon-
drial gene region confirmed the diagnostic utility of 
ccf-mtDNA, with area under the curve (AUC) values 
ranging from 0.715 to 0.758, suggesting moderate 
to high accuracy in distinguishing between the two 
cohorts (Fig. 2B).

Discussion

This study aimed to elucidate the role of mitochon-
drial dysfunction in Long COVID by examining 
mitochondrial structure, dynamics, and DNA con-
tent in PC patients compared to healthy controls. Our 
findings reveal significant mitochondrial abnormali-
ties in PC patients, including compromised mitochon-
drial integrity, an imbalance in proteins that regu-
late mitochondrial fusion and fission, and reduced 
ccf-mtDNA content. Notably, the altered levels of 

assessed mitochondrial biomarkers in PC patients 
suggest mitochondrial malfunction and disrupted 
mitochondrial dynamics, potentially underpinning the 
persistence of post-COVID symptoms (Fig. 3).

Mitochondria are versatile cellular organelles that 
play a central role in numerous biochemical path-
ways, including ATP production and fatty acid syn-
thesis, calcium signaling, cell cycle regulation, apop-
tosis, and innate immune response [57]. The observed 
mitochondrial structural changes in PC patients, 
such as dilated cristae and enlarged mitochondria, 
indicate severe mitochondrial distress. These altera-
tions can impact mitochondrial efficiency, leading 
to insufficient ATP production and an increase in 
ROS. The link between such structural abnormali-
ties and the elevated levels of SOD1 underscores a 
heightened oxidative stress response in PC patients, 
a condition that can exacerbate cellular damage and 
prolong recovery from viral infections. The imbal-
ance in mitochondrial dynamics highlighted by 
increased levels of MFN2 and DRP1 could be indica-
tive of the cell’s attempt to maintain mitochondrial 
function by enhancing fusion and fission processes. 
However, these compensatory mechanisms may 
not suffice to restore normal mitochondrial func-
tion and could instead lead to further dysregulation 
of cellular energy metabolism. This dysregulation 
is critical in understanding the widespread energy 
deficiency experienced by PC patients, manifesting 
as chronic fatigue and muscular weakness. Accord-
ingly, research has revealed impairments in mitochon-
drial respiration, bioenergetics, and gene expression 
within peripheral blood mononuclear cells of Long 
COVID patients [58–62]. These deficits suggest that 
diminished mitochondrial energy production may 
contribute to prevalent symptoms like fatigue and 
muscle weakness. Additionally, magnetic resonance 
spectroscopy has detected mitochondrial dysfunction 
in the muscle tissue and brains of those affected, sup-
porting clinical observations of exercise intolerance 
and post-exertional malaise [63–67]. Additional sup-
port for the role of mitochondria in Long COVID is 
provided by biomarker studies. These studies have 
identified specific markers that indicate mitochon-
drial dysfunction, further linking it to the condi-
tion’s persistent symptoms. Elevated levels of circu-
lating biomarkers indicative of oxidative stress and 
mitochondrial damage, such as F2-isoprostanes and 
malondialdehyde, PARylation along with decreased 
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Fig. 1  Analysis of mito-
chondrial morphology and 
expression of specific pro-
teins related to mitochon-
drial function in patients 
with post-COVID-19 (PC) 
syndrome and control 
participants by TEM. 
Mitochondrial morphol-
ogy and immunodetection 
of proteins associated with 
mitochondrial function in 
patients (first column) and 
control (C) participants 
(second column). Protein 
markers analyzed include A 
ATG4B; B SOD1, DRP1, 
and MFN2; and C LDH, 
MFN1, and FIS1. In the 
third column, violin plots 
quantitatively present the 
immunodetection results 
corresponding to the protein 
markers listed in the same 
row. Statistical significance 
between PC and C samples 
is denoted by asterisks: 
*p < 0.05, ***p < 0.001. 
“ns” indicates no significant 
differences (p > 0.05). D 
Quantitatively presents the 
analysis of mitochondrial 
morphology and copy 
number differences in PC 
patients
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levels of antioxidants such as coenzyme Q10, have 
been documented in Long COVID patients [46, 48, 
68–73]. These biomarkers underscore the role of oxi-
dative stress in exacerbating mitochondrial dysfunc-
tion associated with Long COVID. The significant 
reduction in circulating ccf-mtDNA levels among PC 
patients suggests an impaired mitochondrial recycling 
process. This finding is crucial as it points to a poten-
tial systemic impact of mitochondrial dysfunction, 
which could extend beyond the initially infected cells 
to affect various tissues and organ systems. The diag-
nostic potential of ccf-mtDNA underscores its util-
ity in identifying patients with Long COVID, where 
mitochondrial damage and dysfunction are pivotal to 
the condition’s pathogenesis.

The mechanisms by which SARS-CoV-2 induces 
mitochondrial damage are likely multifaceted. Direct 
interactions between viral proteins and mitochon-
drial components disrupt the normal function and 
dynamics of mitochondria [74, 75] and cause struc-
tural damage [44, 76–79]. It has become evident that 
viruses employ various mechanisms to target host 
cell mitochondria to support viral particles’ growth 
and survival, further weakening the host’s cellular 
immune response and enhancing cell death. Viral 
infection often results in the release of damage-asso-
ciated molecular patterns (DAMPs) that activate the 
antiviral immune response [80]. mtDNAs belong to 
mitochondrial DAMPs which are released by dam-
aged cells [81] contributing to a heightened state of 
systemic inflammation [81]. Additionally, it has been 
reported that SARS-CoV-2 infection increases ROS 
production, causing oxidative damage to mtDNA and 
proteins, further exacerbating mitochondrial dysfunc-
tion [48]. Indirectly, the inflammatory response and 
immune dysregulation triggered by the infection can 
exacerbate mitochondrial damage. These mechanisms 
together suggest that SARS-CoV-2 not only targets 
mitochondrial health directly but also creates a sys-
temic environment that perpetuates mitochondrial 
and cellular dysfunction.

Mitochondria undergo coordinated fusion and fis-
sion cycles, leading to transient morphological adap-
tations essential for various molecular processes such 
as cell cycle control, immune function, mitochondrial 
quality control, and apoptosis [82]. Our results sug-
gest that mitochondrial dysfunction in PC patients is 
associated with disruptions in pathways that regulate 
mitochondrial fusion–fission and mitophagy. These 

disorders can exacerbate metabolic imbalance, con-
tributing to post-COVID-19 symptoms [83]. Nota-
bly, the mitochondrial dysfunction observed in Long 
COVID shares similarities with other post-viral syn-
dromes such as myalgic encephalomyelitis/chronic 
fatigue syndrome (ME/CFS) [60, 84–87]. Drawing 
parallels between these conditions may illuminate 
common mechanisms and shared therapeutic targets, 
providing a broader context for understanding post-
viral conditions.

The development of autoimmunity following 
COVID-19 [88–96], wherein the immune system 
mistakenly targets mitochondrial proteins [97] and 
other cellular components, could further exacerbate 
mitochondrial dysfunction [98]. This autoimmune 
response may contribute to the chronic persistence 
of symptoms such as fatigue, muscle weakness, and 
neurological impairments by continually undermin-
ing mitochondrial function and preventing recovery.

Moreover, the stress of the infection and subse-
quent immune system alterations may reactivate 
latent herpesviruses such as cytomegalovirus (CMV), 
Epstein-Barr virus (EBV), and human herpesvirus 6 
(HHV-6) [99–114], all known to influence mitochon-
drial function. The reactivation of these viruses dur-
ing or after COVID-19 can exacerbate mitochondrial 
damage, thereby contributing to the severity and per-
sistence of Long COVID symptoms [99, 115], further 
complicating the clinical picture and potentially hin-
dering recovery.

Mitochondrial dysfunction impacts various organs 
differently, which helps explain the wide range of 
symptoms associated with Long COVID. In the 
brain, it may contribute to neurological symptoms 
like “brain fog” and fatigue. In the heart, it can lead 
to energy deficits that manifest as cardiac symptoms 
such as arrhythmias. Additionally, the importance of 
mitochondria in vascular endothelial function can-
not be overlooked [116–120], especially consider-
ing that SARS-CoV-2 exhibits endothelial trophism 
[17]. There is a growing body of literature suggest-
ing that endothelial dysfunction plays a central role in 
the pathogenesis of both acute COVID-19 and Long 
COVID. The endothelium relies heavily on mitochon-
drial integrity for the regulation of vascular tone and 
maintenance of the blood–brain barrier [116–120]. 
Mitochondrial dysfunction in endothelial cells can 
lead to impaired production of nitric oxide, a critical 
vasodilator, thereby contributing to vascular stiffness, 
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Fig. 2  Quantitative analy-
sis of ccf-mtDNA content 
in patients with post-
COVID-19 (PC) syndrome 
and control participants. 
A Heatmap displaying the 
levels of ccf-mtDNA for 
five mitochondrial genes 
(MTATP6, MTCYTB, 
MTND1, MTND4, MTND5) 
in post-COVID-19 (PC, 
blue) and control (C, red) 
individuals. B Violin 
plots (first and third rows) 
showing the distribution 
of ccf-mtDNA levels for 
each mitochondrial gene, 
alongside receiver operat-
ing characteristic (ROC) 
curves (second and fourth 
rows) which evaluate the 
diagnostic potential of ccf-
mtDNA measurements in 
distinguishing between the 
PC and C groups



 GeroScience

Vol:. (1234567890)

hypertension, and impaired blood flow to the brain, 
muscles, and heart. Moreover, endothelial mitochon-
drial damage might enhance the permeability of the 
blood–brain barrier, facilitating the influx of inflam-
matory mediators into the central nervous system. 
The resulting heightened inflammatory state in the 
brain can exacerbate neurological symptoms and may 
also contribute to the multisystem involvement seen 
in Long COVID. Thus, in Long COVID, mitochon-
drial dysfunction in the vasculature likely contributes 
to a range of manifestations, from vasodilator dys-
function to blood–brain barrier disruption. Addition-
ally, immune responses triggered by factors released 
from damaged mitochondria may contribute to per-
sisting inflammation and thereby to the development 

of post-COVID-19 conditions [121–123]. These 
effects collectively compound the complex symp-
tomatology of Long COVID, linking systemic mito-
chondrial impairment with organ-specific clinical 
outcomes. The systemic nature of mitochondrial dys-
function thus serves as a unifying pathophysiologi-
cal mechanism underlying the diverse and persistent 
symptoms observed in patients with Long COVID.

The insights gained from this study pave the way 
for exploring mitochondrial-targeted therapies as 
potential treatments for Long COVID [36]. Interven-
tions that enhance mitochondrial function, includ-
ing the use of mitochondrial-targeted antioxidants, 
lifestyle modifications like improved diet and exer-
cise, and potentially pharmaceutical interventions, 

Fig. 3  Mechanisms and consequences of mitochondrial dam-
age and dysfunction in the pathogenesis of Long COVID. This 
schematic illustrates the cascade of events leading from initial 
SARS-CoV-2 infection to persistent mitochondrial dysfunction 
and its systemic effects. The diagram highlights key steps: (1) 
initial mitochondrial damage through direct viral interaction 
and immune-mediated responses; (2) activation of mitophagy 
in an attempt to clear damaged mitochondria; (3) persistent 

mitochondrial dysfunction due to incomplete removal of dam-
aged mitochondria, evidenced by reduced ccf-mtDNA levels; 
(4) resultant systemic effects contributing to the symptomatol-
ogy of Long COVID; (5) utilization of ccf-mtDNA as a diag-
nostic and monitoring tool to assess the extent of mitochon-
drial dysfunction. Each component integrates findings from the 
current study, emphasizing the role of mitochondrial damage 
in the pathogenesis of Long COVID
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are under investigation [36]. These strategies aim to 
restore mitochondrial health [48, 49], which could 
alleviate the broad spectrum of Long COVID symp-
toms. Among them, several compounds with known 
mitochondrial protective effects, such as Q1067, 
MitoQ (NCT05373043), alpha-lipoic acid, nicoti-
namide riboside (NCT05703074), and resveratrol 
(NCT05601180), are currently under investigation in 
clinical trials [124–126]. Further research is needed 
to explore these therapeutic avenues and to validate 
the effectiveness of novel biomarkers for monitoring 
disease progression and treatment response.

In particular, identifying reliable biomarkers of 
mitochondrial dysfunction is critical [36]. In our 
study, we investigated the utility of plasma mtDNA 
content as a diagnostic tool for post-COVID-19 
conditions. In contrast to our initial hypothesis that 
increased mitophagy would elevate ccf-mtDNA lev-
els in patients with chronic symptoms, we observed 
lower ccf-mtDNA levels. This suggests that while 
mitochondrial clearance mechanisms are activated, 
they fail to completely remove damaged mitochon-
dria. Supporting this, we noted differences in mito-
chondrial morphology and size between PC patients 
and controls, indicating persistent mitochondrial 
abnormalities despite active mitophagy. Importantly, 
the correlation between reduced ccf-mtDNA levels 
and symptom severity underscores its potential as 
a valuable biomarker for diagnosing and monitor-
ing post-COVID-19 conditions, offering a promising 
means to differentiate between affected individuals 
and healthy controls and assess the extent of mito-
chondrial dysfunction. The development and valida-
tion of these and similar biomarkers could signifi-
cantly improve the diagnosis and monitoring of Long 
COVID, aiding in the assessment of treatment effi-
cacy and understanding disease progression [36].

In conclusion, our study has substantiated the piv-
otal role of mitochondrial dysfunction in the chronic 
manifestations of Long COVID [36]. As we further 
extended our understanding of these underlying 
mechanisms, it becomes clear that aging may play a 
significant modulatory role in these processes [17]. 
Aging is known to induce mitochondrial dysfunction 
across various cell types, contributing to the func-
tional decline of these organs and rendering cells 
and mitochondria less resilient. This vulnerability 
may exacerbate the severity of mitochondrial dam-
age observed in Long COVID, making the elderly 

particularly susceptible to prolonged and severe post-
viral symptoms [17]. Therefore, it is imperative that 
future studies explore how aging influences mito-
chondrial dynamics in the context of Long COVID. 
Such research could provide insights into age-specific 
therapeutic interventions and preventive measures, 
ultimately aiding in the development of targeted 
strategies that not only improve the quality of life for 
older adults but also reduce the broader, long-term 
health impacts of the COVID-19 pandemic. By inte-
grating insights from various medical disciplines and 
drawing parallels with other post-viral syndromes, we 
can enhance our management of Long COVID, pav-
ing the way for interventions that address the multi-
faceted aspects of this condition in an age-sensitive 
manner.
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