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Abstract
Let 𝐾 be a convex body in ℝ𝑑 in which a ball rolls
freely and which slides freely in a ball. Let 𝐾(𝑛) be the
intersection of 𝑛 i.i.d. random half-spaces containing
𝐾 chosen according to a certain prescribed probabil-
ity distribution. We prove an asymptotic upper bound
on the variance of the mean width of 𝐾(𝑛) as 𝑛 →
∞. We achieve this result by first proving an asymp-
totic upper bound on the variance of the weighted
volume of random polytopes generated by 𝑛 i.i.d. ran-
dom points selected according to certain probability
distributions, then, using polarity, we transfer this to the
circumscribed model.

MSC 2020
52A22 (primary), 52A27, 60D05 (secondary)

1 INTRODUCTION AND RESULTS

In this paper, we study both randompolytopes contained in a convex body and randompolyhedral
sets that contain a convex body. In the literature, the overwhelming majority of results are about

© 2024 The Author(s). Mathematika is copyright © University College London and published by the London Mathematical Soci-
ety on behalf of University College London. This is an open access article under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the
use is non-commercial and no modifications or adaptations are made.

Mathematika 2024;70:e12266. wileyonlinelibrary.com/journal/mtk 1 of 13
https://doi.org/10.1112/mtk.12266

https://orcid.org/0000-0001-9747-1981
mailto:fodorf@math.u-szeged.hu
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://wileyonlinelibrary.com/journal/mtk
https://doi.org/10.1112/mtk.12266
http://crossmark.crossref.org/dialog/?doi=10.1112%2Fmtk.12266&domain=pdf&date_stamp=2024-07-17


2 of 13 BAKÓ-SZABÓ and FODOR

the former types of models. Our results are asymptotic upper bounds on variances and laws of
large numbers. The first-order asymptotic properties of random polytopes have been investigated
extensively since the ground-breaking works of Rényi and Sulanke [17–19] in the 1960s, and their
literature has grown enormous since then. Results on variances, higher moments, and limit theo-
rems are, however, much more scarce in the literature. For an overview of these extensive topics,
we refer to the surveys by Bárány [2], Hug [12], Reitzner [15], Schneider [21, 22], and Weil and
Wieacker [24], and the references therein. In this paper, we only mention those results that most
directly related to our investigations.
We work in 𝑑-dimensional Euclidean space ℝ𝑑 with scalar product ⟨⋅, ⋅⟩, and induced norm‖ ⋅ ‖. Let 𝐵𝑑 be the unit ball centred at the origin 𝑜, and 𝑆𝑑−1 the unit sphere, the boundary

𝜕𝐵𝑑 of 𝐵𝑑. We denote by 𝑉(𝑋) the volume (Lebesgue measure) of a measurable set 𝑋 ⊂ ℝ𝑑, and
by 𝜎(𝑌) the spherical Lebesgue measure of a measurable set 𝑌 ⊂ 𝑆𝑑−1. We set 𝜅𝑑 = 𝑉(𝐵𝑑) and
𝜔𝑑 = 𝜎(𝑆𝑑−1). A convex body 𝐾 ⊂ ℝ𝑑 is a compact convex set with non-empty interior. We use
𝜅(𝑥) to denote the generalised Gauss–Kronecker curvature at 𝑥 ∈ 𝜕𝐾; for precise definition and
properties see, for example, [20, sections 1.5, 2.5, 2.6].
If the functions 𝑓 and g are defined on a space 𝐼 and there exists a constant 𝛾 > 0 such that|𝑓| < 𝛾g on 𝐼, then we denote this fact by 𝑓 ≪ g , or 𝑓 = 𝑂(g).
In the first part of the paper, we study the following probability model. Let 𝜚 ∶ 𝐾 → ℝ be

a probability density function with respect to the Lebesgue measure which is positive on 𝜕𝐾

and continuous in a neighbourhood of 𝜕𝐾 (relative to 𝐾). Then for any measurable set 𝐴 ⊂ 𝐾,
ℙ𝜚,𝐾(𝐴) ∶= ∫𝐴 𝜚(𝑥) d𝑥. Let 𝑝1, … , 𝑝𝑛 be i.i.d. random points from 𝐾 distributed according ℙ𝜚,𝐾 .
The convex hull 𝐾(𝑛) = [𝑝1, … , 𝑝𝑛] is a random polytope in 𝐾. Expectation and variance with
respect to ℙ𝜚,𝐾 will be denoted by 𝔼𝜚,𝐾 and Var𝜚,𝐾 , respectively. If 𝐾 is clear from the context, we
may also use the simpler notations ℙ𝜚, 𝔼𝜚 and Var𝜚. If 𝜚 ≡ 1∕𝑉(𝐾), then one obtains the uniform
model (in that case, we use the even simpler notations 𝐾𝑛, 𝔼 and Var).
Let 𝜆 ∶ 𝐾 → ℝ be a non-negative integrable function which is positive on 𝜕𝐾 and continuous

in a neighbourhood of 𝜕𝐾. For a measurable set 𝐴 ⊂ 𝐾, let 𝑉𝜆(𝐴) = ∫𝐴 𝜆(𝑥) d𝑥.
Throughout the paper, the probability density 𝜚 and weight function 𝜆 are always assumed to

be as defined above without further mention.
It was proved in [6] that

lim
𝑛→∞

𝑛
2

𝑑+1 𝔼𝜚 ∫𝐾∖𝐾(𝑛) 𝜆(𝑥) d𝑥 = 𝑐𝑑 ∫𝜕𝐾 𝜚(𝑥)
−2
𝑑+1 𝜆(𝑥)𝜅(𝑥)

1
𝑑+1𝑑−1(d𝑥), (1)

lim
𝑛→∞

𝑛
−𝑑−1
𝑑+1 𝔼𝜚(𝑓0(𝐾(𝑛))) = 𝑐𝑑 ∫𝜕𝐾 𝜚(𝑥)

𝑑−1
𝑑+1 𝜅(𝑥)

1
𝑑+1 𝑑−1(d𝑥),

where 𝑓0(𝐾(𝑛)) is the number of vertices of 𝐾(𝑛) and integration is with respect to the (𝑑 − 1)-
dimensional Hausdorff measure𝑑−1 on 𝜕𝐾.
The exact value of the constant 𝑐𝑑 was determined by Wieacker [25]. The special case of (1)

when 𝜚 ≡ 1∕𝑉(𝐾) and 𝜆 ≡ 1 was proved by Rényi and Sulanke [17] for 𝑑 = 2 when 𝜕𝐾 is 𝐶3+, by
Wieacker [25] for 𝐾 = 𝐵𝑑 and general 𝑑, and by Bárány [1] for general 𝑑 when 𝜕𝐾 is 𝐶3+. Schütt
[23] removed the smoothness condition on 𝐾, and Böröczky, Fodor and Hug [6] introduced the
density 𝜚 and weight function 𝜆.
In the uniform case (for 𝜚 ≡ 1∕𝜅𝑑 and 𝜆 ≡ 1), Küfer [14] proved that Var(𝑉(𝐵𝑑𝑛)) ≪

𝑛−(𝑑+3)∕(𝑑+1). Reitzner [16], using the Efron–Stein jackknife inequality [9], extended this upper
bound Var(𝑉(𝐾𝑛)) ≪ 𝑛−(𝑑+3)∕(𝑑+1) for 𝐶2+ bodies for general 𝑑 and proved the strong law of large
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numbers for the volume. Reitzner’s results were extended to all intrinsic volumes by Bárány,
Fodor and Vígh [3] in the case when 𝜕𝐾 is 𝐶2+. We note that only in the planar case (𝑑 = 2) is
an asymptotic upper bound known for Var(𝑉(𝐾𝑛)) for general convex bodies without smooth-
ness condition, see Bárány and Steiger [5]. Upper bounds were also proved for Var(𝑉(𝐾𝑛)) by
Bárány and Reitzner [4] for polytopes. For further results on second-order results and limit laws,
we refer to the surveys mentioned above.
We say that a ball of radius 𝑟 > 0 rolls freely in 𝐾 if for any 𝑥 ∈ 𝜕𝐾 there exists a 𝑣 ∈ ℝ𝑑 such

that 𝑥 ∈ 𝑟𝐵𝑑 + 𝑣 ⊂ 𝐾. The body𝐾 slides freely in a ball of radius 𝑅 > 0 if for each 𝑥 ∈ 𝑅𝑆𝑑−1 there
exists 𝑝 ∈ ℝ𝑑 with 𝑥 ∈ 𝐾 + 𝑝 ⊂ 𝑅𝐵𝑑. If 𝐾 has a rolling ball and slides freely in a ball at the same
time, then 𝜕𝐾 is 𝐶1 and strictly convex. However, 𝜕𝐾 need not be 𝐶2.
Let 𝜎(𝐾, ⋅) ∶ 𝜕𝐾 → 𝑆𝑑−1 denote the spherical image map, and let 𝜏(𝐾, ⋅) ∶ 𝑆𝑑−1 → 𝜕𝐾 be the

reverse spherical image map of 𝐾, cf. [20, section 2.2]. If 𝐾 has a rolling ball and slides freely in a
ball, both 𝜎(𝐾, ⋅) and 𝜏(𝐾, ⋅) are well defined and inverses to each other.
Our first main result is the following upper bound on the variance of 𝑉𝜆(𝐾(𝑛)).

Theorem 1.1. For a convex body 𝐾 ⊂ ℝ𝑑 that has a rolling ball and which slides freely in a ball, it
holds that

Var𝜚(𝑉𝜆(𝐾(𝑛))) ≪ 𝑛
−𝑑+3
𝑑+1 ,

where the implied constant depends only on 𝐾, 𝜚, 𝜆 and the dimension 𝑑.

Theorem 1.1 is a generalisation of Theorem 1 of Reitzner [16, p. 2138]. The need for this level
of generality in 𝜚 and 𝜆 will be explained by its applicability in the circumscribed model in
Theorem 1.4.
From Theorem 1.1, one can derive the law of large numbers for 𝑉𝜆(𝐾 ⧵ 𝐾(𝑛)).

Theorem 1.2. Under the same assumptions as in Theorem 1.1,

lim
𝑛→∞

𝑉𝜆(𝐾 ⧵ 𝐾(𝑛)) 𝑛
2

𝑑+1 = 𝑐𝑑 ∫𝜕𝐾 𝜚(𝑥)
− 2
𝑑+1 𝜆(𝑥)𝜅(𝑥)

1
𝑑+1 d𝑥 with probability 1.

The proof of Theorem 1.2 is very similar to that of Theorem 2 in Reitzner [16, pp. 2150–2151].
Reitzner [16] proved that if 𝜕𝐾 is 𝐶2+, then Var(𝑓0(𝐾𝑛)) ≪ 𝑛

𝑑−1
𝑑+1 . With a minor modification of

the proof of Theorem 1.1, we can obtain the following.

Theorem 1.3. Under the same assumptions as in Theorem 1.1,

Var𝜚 (𝑓0(𝐾(𝑛))) ≪ 𝑛
𝑑−1
𝑑+1 ,

where the implied constant depends only on 𝐾, 𝜚 and the dimension 𝑑.

The proof of Theorem 1.3 is essentially the same as that of Theorem 1.1 with only minor adjust-
ments, so we refer to the relevant part of Reitzner’s paper for the details. We note that Reitzner
[16] also proved the strong law of large numbers for the number of vertices in the case when 𝑑 ⩾ 4.
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4 of 13 BAKÓ-SZABÓ and FODOR

Next we turn to the circumscribedmodel, whichwas recently studied, for example, in Böröczky
and Schneider [8], Böröczky, Fodor and Hug [6] and Fodor, Hug and Ziebarth [10]. We also men-
tion themore recent paper byHug and Schneider [13]which dealswith the closely related question
of circumscribed Poisson polyhedra.
Let𝑊(𝐾) denote the mean width of 𝐾, which is the average distance between parallel support-

ing hyperplanes of 𝐾 over all directions, for precise definition and properties, see, for example,
[20, section 1.7].
Let 𝐾1 = 𝐾 + 𝐵𝑑 be the radius 1 parallel domain of 𝐾. By 𝐴(𝑑, 𝑑 − 1) we denote the space of

hyperplanes inℝ𝑑 with its usual topology, and by𝐾 the subspace of𝐴(𝑑, 𝑑 − 1)with the property
that for any 𝐻 ∈ 𝐾 , 𝐻 ∩ 𝐾1 ≠ ∅ and 𝐻 ∩ int𝐾 = ∅. For 𝐻 ∈ 𝐾 , let 𝐻− denote the closed half-
space bounded by 𝐻 that contains 𝐾. Let the motion invariant Borel measure 𝜇𝑑 on 𝐴(𝑑, 𝑑 − 1)
be normalised in such a way that 𝜇𝑑({𝐻 ∈ 𝐴(𝑑, 𝑑 − 1) ∶ 𝐻 ∩𝑀 ≠ ∅}) = 𝑊(𝑀) for every convex
body𝑀 ⊂ ℝ𝑑. Let 2𝜇𝐾 be the restriction of 𝜇𝑑 to𝐾 . Thus, 𝜇𝐾 is a probability measure on𝐾 . Let
𝐻1,… ,𝐻𝑛 be i.i.d. random hyperplanes inℝ𝑑, distributed according to 𝜇𝐾 . Then,𝐾(𝑛) =

⋂𝑛
𝑖=1 𝐻

−
𝑖

is a (possibly unbounded) random polyhedron containing𝐾. As already noted in [6], the choice of
𝐾1 does not affect the asymptotic behaviour of𝑊(𝐾(𝑛) ∩ 𝐾1), only some normalisation constants.
Since 𝐾(𝑛) is unbounded with positive probability, we consider 𝐾(𝑛) ∩ 𝐾1 instead (which is no
longer a polyhedron).
It was proved in [6] that

lim
𝑛→∞

𝑛
2

𝑑+1 𝔼𝜇𝐾 (𝑊(𝐾(𝑛) ∩ 𝐾1) −𝑊(𝐾)) = 2𝑐𝑑𝜔
−𝑑−1
𝑑+1

𝑑 ∫𝜕𝐾 𝜅(𝑥)
𝑑
𝑑+1 𝑑−1(d𝑥).

Our main statement regarding this circumscribed model is the following theorem.

Theorem 1.4. For a convex body 𝐾 ⊂ ℝ𝑑 that has a rolling ball and which slides freely in a ball, it
holds that

Var𝜇𝐾

(
𝑊

(
𝐾(𝑛) ∩ 𝐾1

))
≪ 𝑛

−𝑑+3
𝑑+1 ,

where the implied constant depends only on 𝐾 and 𝑑.

We note that we prove a more general statement in Theorem 3.1. From Theorem 1.4, we can
also obtain the strong law of large numbers by standard methods.

Theorem 1.5. Under the same hypotheses as in Theorem 1.4,

lim
𝑛→∞

𝑛
2

𝑑+1

(
𝑊

(
𝐾(𝑛) ∩ 𝐾1

)
−𝑊(𝐾)

)
= 2 𝑐𝑑 𝜔𝑑

−𝑑−1
𝑑+1 ∫𝜕𝐾 𝜅(𝑥)

𝑑
𝑑+1 𝑑−1(d𝑥)

with probability 1.

Using Theorem 1.3, we also prove an upper bound for the number of facets 𝑓𝑑−1(𝐾(𝑛)) of 𝐾(𝑛),
see Theorem 3.3.
Finally, we note that analogous statements were proved in Fodor, Hug and Ziebarth [10] for

the weighted mean width for inscribed polytopes and the volume difference of circumscribed
polytopes involving probability densities and weight functions.
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ON THE VARIANCE OF THE MEANWIDTH OF CIRCUMSCRIBED POLYTOPES 5 of 13

2 PROOF OF THEOREM 1.1

Our proof follows the argument of Reitzner [16, section 4] with the addition that it also takes into
account the properties of 𝜚 and 𝜆. For this reason, we only describe the most important steps of
the proof.
The main idea is to use the Efron–Stein jackknife inequality [9] to bound the variance from

above by the secondmoment of the increment of the weighted volume of𝐾(𝑛) when adding a new
random point. Then, one obtains a geometric integral that involves cap volumes, which can be
estimated based on the geometric assumptions on 𝐾. This is where the existence of the rolling
ball and sliding ball are important.
For 𝑢 ∈ 𝑆𝑑−1 and 𝑡 ⩾ 0, let 𝐻(𝑡, 𝑢) be the hyperplane 𝐻(𝑡, 𝑢) = {𝑥 ∈ ℝ𝑑 ∶ ⟨𝑥, 𝑢⟩ = 𝑡}. Let

𝐻+(𝑡, 𝑢) and 𝐻−(𝑡, 𝑢) be the closed half-spaces bounded by 𝐻(𝑡, 𝑢) such that 𝐻−(𝑡, 𝑢) contains
the origin.
The intersection of 𝐾 with a closed half-space is a cap. In particular, let 𝐶(𝑡, 𝑢) = 𝐾 ∩ 𝐻+(𝑡, 𝑢)

and let𝑉(𝑡, 𝑢) = 𝑉(𝐶(𝑡, 𝑢)). The (unique) boundary point 𝜏(𝐾, 𝑢) is the vertex, and ℎ = ℎ(𝐾, 𝑢) −

𝑡 is the height of𝐶(𝑡, 𝑢). We also use the notation𝐶(ℎ, 𝑢) (𝑉(ℎ, 𝑢) = 𝑉(𝐶(ℎ, 𝑢))) whenwe describe
the cap 𝐶(𝑡, 𝑢) using its height.
Assume that the radius of the rolling ball is 𝑟 and 𝐾 slides freely in a ball of radius 𝑅. Then for

all ℎ ⩽ 𝑟 and 𝑢 ∈ 𝑆𝑑−1, it holds that

𝛾1ℎ
𝑑+1
2 =

2𝜅𝑑−1𝑟
𝑑−1
2 ℎ

𝑑+1
2

𝑑 + 1
⩽ 𝑉(𝐶(ℎ, 𝑢)) ⩽ 𝛾2ℎ

𝑑+1
2 (2)

for some positive constant 𝛾2 that depends on 𝑅.
For 𝜀 > 0, let 𝐾(𝜀) = 𝐾 ∩ (𝜕𝐾 + 𝜀𝐵𝑑). Assume that 𝜀 is sufficiently small that both 𝜆 and 𝜚 are

positive and continuous on 𝐾(𝜀), and let 𝜚𝑚(𝜀) be the minimum and 𝜚𝑀(𝜀) and 𝜆𝑀(𝜀) be the
maximum of 𝜚(𝑥) and 𝜆(𝜀), respectively, for 𝑥 ∈ 𝐾(𝜀). Then for any measurable set 𝐴 ⊂ 𝐾(𝜀),

𝜚𝑚(𝜀)𝑉(𝐴) ⩽ ℙ𝜚(𝐴) ⩽ 𝜚𝑀(𝜀)𝑉(𝐴), and 𝑉𝜆(𝐴) ⩽ 𝜆𝑀(𝜀)𝑉(𝐴). (3)

In order to prove the upper bound in Theorem 1.1, we use the Efron–Stein jackknife inequality
[9], which, when applied to 𝑉𝜆(𝐾(𝑛)), yields

Var𝜚𝑉𝜆(𝐾(𝑛)) ⩽ (𝑛 + 1)𝔼𝜚𝑉
2
𝜆
(𝐾(𝑛+1) ⧵ 𝐾(𝑛)). (4)

Let 𝑐1 = 18𝑅∕𝑟, and let 𝜀0 > 0 be sufficiently small that the following conditions are all
satisfied:

(i) 𝑐1𝜀0 < 𝑟∕2.
(ii) Both 𝜆 and 𝜚 are positive and continuous on 𝐾(𝑐1𝜀0).

(iii) 𝜚0𝛾1𝜀
𝑑+1
2

0
< 1, where 𝜚0 = 𝜚𝑚(𝑐1𝜀0).

Let 𝛿(⋅, ⋅) denote the Hausdorff distance of compact sets in ℝ𝑑. Let 𝐷 denote the event
𝛿(𝐾(𝑛), 𝐾) < 𝜀0 and let 𝐷𝑐 be its complement. Using the bounds in (3), a similar argument as in
[16, pp. 2146–2147] shows

ℙ𝜚(𝐷
𝑐) ⩽ 𝑂

(
𝑛𝑑(1 − 𝑐0)

𝑛
)
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6 of 13 BAKÓ-SZABÓ and FODOR

for some suitable constant 𝑐0 depending on 𝜀0. Therefore,

Var𝜚𝑉𝜆
(
𝐾(𝑛)

)
⩽ (𝑛 + 1)∫𝐾 …∫𝐾 𝟙(𝐷)𝑉

2
𝜆

(
𝐾(𝑛+1) ⧵ 𝐾(𝑛)

)
d𝑝1 …d𝑝𝑛+1

+ 𝑂
(
𝑛𝑑+1(1 − 𝑐0)

𝑛
)
. (5)

Let 𝑥1, … , 𝑥𝑛, 𝑥𝑛+1 be arbitrary points in 𝐾. For an integer 0 ⩽ 𝑘 ⩽ 𝑑, let 𝐹1 = [𝑥1, … , 𝑥𝑑] and
𝐹2 = [𝑥𝑑−𝑘+1, … , 𝑥2𝑑−𝑘]. Denote by 𝐻1 and 𝐻2 the affine hulls of 𝐹1 and 𝐹2, respectively. Then,
the 𝐹𝑖 , 𝑖 = 1, 2 are almost always (𝑑 − 1)-dimensional simplices and 𝐻𝑖 , 𝑖 = 1, 2 are hyperplanes.
If 𝐻𝑖 is a supporting hyperplane of the polytope [𝑥1, … , 𝑥𝑛], then we denote the half-space of
𝐻𝑖 containing [𝑥1, … , 𝑥𝑛] by 𝐻−

𝑖
, and the other half-space by 𝐻+

𝑖
. Let 𝐹+

𝑖
= 𝐾 ∩ 𝐻+

𝑖
be the cap

corresponding to 𝐹𝑖 , and 𝑉+𝑖 = 𝑉(𝐹+
𝑖
) for 𝑖 = 1, 2.

Here we refer to the argument of Reitzner in [16, Section 4] as it is essentially the same as
ours with the only difference that we also use the properties of 𝜚 and 𝜆. Thus, one obtains for the
integral in (5) that it is less than

𝑛2𝑑−𝑘+1
𝑑∑
𝑘=0

∫𝐾 …∫𝐾 𝟙(𝐷)(1 − ℙ𝜚(𝐹
+
1
))𝑛−2𝑑+𝑘ℙ𝜚(𝐹

+
1
)𝑉+

1

× 𝟙
(
𝐹+
1
∩ 𝐹+

2
≠ ∅

)
𝟙(𝐴)𝑉+

2

2𝑑−𝑘∏
𝑖=1

𝜚(𝑥𝑖) d𝑥1 …d𝑥2𝑑−𝑘, (6)

where 𝐴 denotes the event that the diameter of 𝐹+
2
is less than the diameter of 𝐹+

1
.

Now, for a fixed 0 ⩽ 𝑘 ⩽ 𝑑 − 1 and 𝑥1, … , 𝑥𝑑, we evaluate the following integral:

∫𝐾 …∫𝐾 𝟙(𝐷)𝟙
(
𝐹+
1
∩ 𝐹+

2
≠ ∅

)
𝟙(𝐴)𝑉+

2

2𝑑−𝑘∏
𝑖=𝑑+1

𝜚(𝑥𝑖) d𝑥𝑑+1 …d𝑥2𝑑−𝑘. (7)

In order to do this, we need the following statement. Let 𝑦𝑖 be the vertex and ℎ𝑖 the height of
the cap 𝐹+

𝑖
, 𝑖 = 1, 2. We show that if ℎ1 < 𝜀0, then

𝐹+
2
= 𝐶(𝑦2, ℎ2) ⊂ 𝐶(𝑦1, 𝑐1ℎ1). (8)

We note that a careful analysis of the argument in Reitzner [16] shows that, under the assump-
tions on 𝐾, this statement holds in each case when 𝜕𝐾 is twice differentiable in the generalised
sense at both 𝑦1 and 𝑦2, from which it follows that it is true for almost all pairs 𝑦1, 𝑦2 with the
prescribed conditions on 𝐹+

1
and 𝐹+

2
. However, here we give a short and direct proof that verifies

(8) for all possible combinations of 𝑦1 and 𝑦2.
Let 𝐻 be the supporting hyperplane of 𝐾 at 𝑦1. Let 𝐵 be the radius 𝑅 ball (in which 𝐾 slides

freely) that supports 𝐾 at 𝑦1, that is, 𝑦1 ∈ 𝜕𝐵, 𝐾 ⊂ 𝐵, and let 𝐵′ be the radius 𝑟 rolling ball
containing 𝑦1.
Then the intersection 𝐻1 ∩ 𝐵 is a (𝑑 − 1)-dimensional ball of radius

√
2𝑅ℎ1 − ℎ

2
1
<
√
2𝑅ℎ1.

From 𝐹+
1
⊂ 𝐻+

1
∩ 𝐵, it follows that diam (𝐹+

1
) < 2

√
2𝑅ℎ1. Since diam (𝐹+

2
) < diam (𝐹+

1
) and 𝐹+

1
∩

𝐹+
2
≠ ∅, the orthogonal projection of 𝐹+

2
to 𝐻 is contained in the (𝑑 − 1)-dimensional ball 𝐵′′ of
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ON THE VARIANCE OF THE MEANWIDTH OF CIRCUMSCRIBED POLYTOPES 7 of 13

radius 3
√
2𝑅ℎ1 centred at 𝑜. Letℎ′ be chosen such that

√
𝑟ℎ′ = 3

√
2𝑅ℎ1, that is,ℎ′ = 18(𝑅∕𝑟)ℎ1 =

𝑐1ℎ1 < 𝑟∕2 by the choice of 𝜀0. The hyperplane 𝐻′ parallel to 𝐻 at height 𝑐1ℎ1 intersects the
rolling ball𝐵′ in a (𝑑 − 1)-dimensional ball of radius at least

√
𝑟𝑐1ℎ1 = 3

√
2𝑅ℎ1, so the orthogonal

projection of𝐻′ ∩ 𝐵′ to𝐻 contains 𝐵′′, therefore, 𝐹+
2
⊂ 𝐶(𝑦1, 𝑐1ℎ1).

Using (8), (2) and (3), we obtain that for fixed 𝑥1, … , 𝑥𝑑,

(7) ≪ ∫𝐾 …∫𝐾 𝟙
(
𝑥𝑑+1, … , 𝑥2𝑑−𝑘 ∈ 𝐶(𝑦1, 𝑐1ℎ1)

)

× 𝑉(𝐶(𝑦1, 𝑐1ℎ1))

2𝑑−𝑘∏
𝑖=𝑑+1

𝜚(𝑥𝑖) d𝑥𝑑+1 …d𝑥2𝑑−𝑘

⩽ (𝜚𝑀(𝑐1𝜀0))
𝑑−𝑘(𝑉(𝐶(𝑦1, 𝑐1ℎ1)))

𝑑−𝑘+1 ≪ (𝑉+
1
)𝑑−𝑘+1,

which yields

(6) ≪ 𝑛2𝑑−𝑘+1
𝑑∑
𝑘=0

∫𝐾⋯∫𝐾 𝟙(𝐷)(1 − ℙ𝜚(𝐹
+
1
))
𝑛−2𝑑+𝑘

(𝑉+
1
)𝑑−𝑘+3

×

𝑑∏
𝑖=1

𝜚(𝑥𝑖)d𝑥1 …d𝑥𝑑. (9)

We will show that the order of magnitude of (9) is less than 𝑛−
𝑑+3
𝑑+1 .

We use the following special case of the affine Blaschke–Petkantschin formula (see, for exam-
ple, [22, Theorem 7.2.7]). Let Δ𝑑−1 = Δ𝑑−1(𝑥1, … , 𝑥𝑑) be the (𝑑 − 1)-dimensional volume of the
simplex spanned by 𝑥1, … , 𝑥𝑑.

Theorem 2.1. Let 𝑓 ∶ (ℝ𝑑)𝑑 → ℝ be a non-negative measurable function. Then

∫(ℝ𝑑)𝑑 𝑓 d𝑥1 …d𝑥𝑑 =
𝜔𝑑
𝜔1
(𝑑 − 1)!∫𝐴(𝑑,𝑑−1) ∫𝐻𝑑

𝑓Δ𝑑−1 d𝑥1 …d𝑥𝑑d𝜇𝑑(𝐻). (10)

The measure d𝜇𝑑 = d𝑢d𝑡 assuming that d𝑢 is the surface area element of the unique rota-
tion invariant probability measure on 𝑆𝑑−1 and d𝑡 is the volume element of the one-dimensional
Lebesgue measure. Let 0 ⩽ 𝑘 ⩽ 𝑑 be fixed. Using (10), the condition 𝟙(𝐷) and the boundedness of
𝜚 on 𝐾(𝜀0), we obtain

∫𝐾 …∫𝐾(1 − ℙ𝜚(𝐹
+
1
))𝑛−2𝑑+𝑘(𝑉+

1
)𝑑−𝑘+3

𝑑∏
𝑖=1

𝜚(𝑥𝑖) d𝑥1 …d𝑥𝑑

≪ ∫𝑆𝑑−1 ∫
ℎ(𝐾,𝑢)

ℎ(𝐾,𝑢)−𝜀0

(1 − ℙ𝜚(𝐶(𝑡, 𝑢)))
𝑛−2𝑑+𝑘𝑉(𝑡, 𝑢)𝑑−𝑘+3

×

(
∫𝐻(𝑡,𝑢)∩𝐾 …∫𝐻(𝑡,𝑢)∩𝐾 Δ𝑑−1 d𝑥1 …d𝑥𝑑

)
d𝑡d𝑢. (11)

 20417942, 2024, 4, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/m
tk.12266 by U

niversity O
f Szeged, W

iley O
nline L

ibrary on [06/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



8 of 13 BAKÓ-SZABÓ and FODOR

For a fixed 𝑢 ∈ 𝑆𝑑−1, let 𝐵 be the supporting ball (of radius 𝑅) of 𝐾 at 𝜏(𝐾, 𝑢).
Then 𝐻 ∩ 𝐵 is a (𝑑 − 1)-dimensional ball with 𝐻 ∩ 𝐾 ⊂ 𝐻 ∩ 𝐵. Its radius is 𝑟(𝑡) =√
2𝑅(ℎ(𝐾, 𝑢) − 𝑡) − (ℎ(𝐾, 𝑢) − 𝑡)2 ≪ ℎ1∕2, where ℎ = ℎ(𝐾, 𝑢) − 𝑡.
Since the innermost 𝑑-fold integral in (11) is monotone with respect to the integration domain,

we obtain

(11) ≪ ∫𝑆𝑑−1 ∫
ℎ(𝐾,𝑢)

ℎ(𝐾,𝑢)−𝜀0

(1 − ℙ𝜚(𝐶(𝑡, 𝑢)))
𝑛−2𝑑+𝑘𝑉(𝑡, 𝑢)𝑑−𝑘+3

×

(
∫𝑟(𝑡)𝐵𝑑−1 …∫𝑟(𝑡)𝐵𝑑−1 Δ𝑑−1 d𝑥1 …d𝑥𝑑

)
d𝑡d𝑢. (12)

Let us substitute ℎ = ℎ(𝐾, 𝑢) − 𝑡 in (12). By the choice of 𝜀0, if ℎ(𝐾, 𝑢) − 𝜀0 ⩽ 𝑡 ⩽ ℎ(𝐾, 𝑢),
then ℙ𝜚(𝐶(𝑡, 𝑢)) = ℙ𝜚(𝐶(ℎ, 𝑢)) > 𝜚0𝛾1ℎ

(𝑑+1)∕2, and 𝜚0𝛾1𝜀
(𝑑+1)∕2

0
< 1. Using that the degree of

homogeneity of the innermost 𝑑-fold integral in (12) is 𝑑2 − 1, we obtain

(12) ≪ ∫𝑆𝑑−1 ∫
𝜀0

0

(
1 − 𝜚0𝛾1ℎ

𝑑+1
2

)𝑛−2𝑑+𝑘
ℎ
𝑑+1
2
(𝑑−𝑘+3)ℎ

𝑑2−1
2 dℎd𝑢

≪ ∫
𝜀0

0

(
1 − 𝜚0𝛾1ℎ

𝑑+1
2

)𝑛−2𝑑+𝑘
ℎ
𝑑+1
2
(𝑑−𝑘+3)ℎ

𝑑2−1
2 dℎ. (13)

We evaluate (13) using the following asymptotic formula (see, for example, [7, formula (11)]). For
any 𝛽 ⩾ 0, 𝜔 > 0 and 𝛼 > 0, it holds that

∫
g(𝑛)

0

ℎ𝛽(1 − 𝜔ℎ𝛼)𝑛 dℎ ∼
1

𝛼𝜔
𝛽+1

𝛼

Γ

(
𝛽 + 1

𝛼

)
𝑛−

𝛽+1

𝛼

as 𝑛 → ∞, assuming
(
(𝛽+𝛼+1) ln 𝑛

𝛼𝜔𝑛

) 1
𝛼
⩽ g(𝑛) ⩽ 𝜔−

1
𝛼 for sufficiently large 𝑛. The symbol ∼ denotes

the asymptotic equality of sequences.
By the choice of 𝜀0, it holds that 𝜀0 < (𝜚0𝛾1)

−2∕(𝑑+1). Let g(𝑛) = 𝜀0, and 𝛼 = (𝑑 + 1)∕2, 𝛽 = (𝑑 +

1)(𝑑 − 𝑘 + 3)∕2 + (𝑑2 − 1)∕2 and 𝜔 = 𝜚0𝛾1. Simple calculation yields (𝛽 + 1)∕𝛼 = (𝑑 + 3)∕(𝑑 +

1) + 2𝑑 − 𝑘 + 1.
Since 0 ⩽ 𝑘 ⩽ 𝑑 was arbitrary, this finishes the proof of the theorem.

3 THE VARIANCE OF THEMEANWIDTH OF CIRCUMSCRIBED
POLYHEDRAL SETS

We recall some of the notations and arguments from [6]. Assume that the convex body 𝐾 ⊂ ℝ𝑑

contains the origin in its interior. Let 𝐾∗ = {𝑧 ∈ ℝ𝑑 ∶ ⟨𝑥, 𝑧⟩ ⩽ 1 ∀𝑥 ∈ 𝐾} be the polar body of 𝐾.
It was proved by Hug [11] (see Propositions 1.40 and 1.45) that if 𝐾 has a rolling ball and it slides
freely in a ball, then 𝐾∗ also has a rolling ball and slides freely in a ball.
The circumscribed model is based on random hyperplanes with the following distribution (see

[6, (5.1) on p. 515]):

𝜇𝑞 = 2∫𝑆𝑑−1 ∫
∞

0

𝟙(𝐻(𝑡, 𝑢) ∈ ⋅)𝑞(𝑡, 𝑢) d𝑡d𝑢,
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ON THE VARIANCE OF THE MEANWIDTH OF CIRCUMSCRIBED POLYTOPES 9 of 13

where 𝑞 ∶ [0,∞) × 𝑆𝑑−1 → [0,∞) is a measurable function with the following properties: It is

(1) concentrated on 𝐷𝐾 = {(𝑡, 𝑢) ∈ [0,∞) × 𝑆𝑑−1 ∶ ℎ(𝐾, 𝑢) ⩽ 𝑡 ⩽ ℎ(𝐾1, 𝑢)},
(2) positive and continuous in the neighbourhood of {(𝑡, 𝑢) ∈ [0,∞) × 𝑆𝑑−1 ∶ 𝑡 = ℎ(𝐾, 𝑢)} rela-

tive to 𝐷𝐾 ,
(3) 𝜇𝑞 is a probability measure, that is, 𝜇𝑞(𝐾) = 1.

Probabilities, expectations and variances with respect to 𝜇𝑞 are denoted by ℙ𝜇𝑞 , 𝔼𝜇𝑞 and
Var𝜇𝑞 , respectively.
Let𝐻1,… ,𝐻𝑛 be i.i.d. randomhyperplanes inℝ𝑑 with distribution𝜇𝑞. For each𝐻𝑖 , let𝐻−

𝑖
be the

closed half-space that contains the origin. Let𝐾(𝑛) = ∩𝑛
𝑖=1
𝐻−
𝑖
, a randompolyhedron containing𝐾.

We note that 𝐾(𝑛) may be unbounded with positive probability, so we consider 𝐾(𝑛) ∩ 𝐾1 instead,
or the conditional event that 𝐾(𝑛) ⊂ 𝐾1, which has the same asymptotics as 𝑛 → ∞, see Böröczky
and Schneider [8].
The polar body of 𝐾(𝑛) is the convex hull of the points 𝑥𝑖 = 𝑡−1

𝑖
𝑢𝑖 , where 𝑡𝑖 is the distance

between 𝑜 and𝐻𝑖 , and 𝑢𝑖 ∈ 𝑆𝑑−1 is the (outer) unit normal vector of𝐻𝑖 , namely

(𝐾(𝑛))∗ =
[
𝑡−11 𝑢1, … , 𝑡

−1
𝑛 𝑢𝑛

]
.

Let 𝜌(𝐾, 𝑥) = sup{𝜆 ⩾ 0 ∶ 𝜆𝑥 ∈ 𝐾}, 𝑥 ∈ ℝ𝑑 ⧵ {𝑜} be the radial function of𝐾. We also introduce the
following extension of 𝑞:

𝑞(𝑥) = 𝑞

(
1‖𝑥‖ , 𝑥‖𝑥‖

)
, 𝑥 ∈ 𝐾∗ ⧵ {𝑜}.

It was proved in [6] (see p. 516) that the probability density function of the points 𝑡−1
1
𝑢1, … , 𝑡

−1
𝑛 𝑢𝑛

in the polar model is

𝜚(𝑥) =

{
𝜔−1
𝑑
𝑞(𝑥)‖𝑥‖−(𝑑+1), 𝑥 ∈ 𝐾∗ ⧵ 𝐾∗

1
,

0, 𝑥 ∈ 𝐾∗
1
.

Note that 𝜚(𝑥) is a probability density function on 𝐾∗ that is positive and continuous in a neigh-
bourhood of 𝜕𝐾∗ with respect to 𝐾∗, so it satisfies the conditions of Theorem 1.1. Following the
notation conventions in [6], we denote (𝐾∗)(𝑛) by the simpler symbol𝐾∗(𝑛). We prove the following
theorem.

Theorem 3.1. Let𝐾 ⊂ ℝ𝑑 be a convex body with 𝑜 ∈ int 𝐾 which has a rolling ball and which slides
freely in a ball. If 𝑞 ∶ [0,∞) × 𝑆𝑑−1 → [0,∞) satisfies properties (1)–(3), then

Var𝜇𝐾

(
𝑊(𝐾(𝑛) ∩ 𝐾1)

)
≪ 𝑛

−𝑑+3
𝑑+1 ,

where the implied constant depends only on 𝐾, 𝑞 and 𝑑.

Proof. It was proved in [8] that ℙ𝜇𝑞 (𝐾
(𝑛) ⊄ 𝐾1) ≪ 𝛼𝑛 for a suitable 𝛼 ∈ (0, 1) depending on 𝐾

and 𝜇𝑞. Furthermore, it was proved in [6, Proposition 5.1] that 𝐾(𝑛) and (𝐾∗
(𝑛)
)∗ are equal in
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10 of 13 BAKÓ-SZABÓ and FODOR

distribution. Thus, we obtain from the Efron–Stein inequality that

Var𝜇𝑞

(
𝑊

(
𝐾(𝑛) ∩ 𝐾1

))
≪ 𝑛𝔼𝜇𝑞

(
𝑊

(
𝐾(𝑛) ∩ 𝐾1

)
−𝑊

(
𝐾(𝑛+1) ∩ 𝐾1

))2
≪ 𝑛

(
𝔼𝜇𝑞

(
𝟙
(
𝐾(𝑛) ⊂ 𝐾1

)(
𝑊

(
𝐾(𝑛)

)
−𝑊

(
𝐾(𝑛+1)

))2)
+ 𝑂(𝛼𝑛)

)

= 𝑛

(
𝔼𝜚,𝐾∗

(
𝟙
((
𝐾∗
(𝑛)

)∗
⊂ 𝐾1

)(
𝑊

((
𝐾∗
(𝑛)

)∗)
−𝑊

((
𝐾∗
(𝑛+1)

)∗))2)
+ 𝑂(𝛼𝑛)

)
.

It was proved in [6] that

𝟙(𝐾(𝑛) ⊂ 𝐾1)(𝑊(𝐾(𝑛) ∩ 𝐾1) −𝑊(𝐾)) = 𝟙
((
𝐾∗
(𝑛)

)∗
⊂ 𝐾1

)
∫𝐾∗⧵𝐾∗

(𝑛)

𝜆(𝑥) d𝑥

= 𝟙
((
𝐾∗
(𝑛)

)∗
⊂ 𝐾1

)(
𝑉𝜆(𝐾

∗) − 𝑉𝜆

(
𝐾∗
(𝑛)

))
, (14)

where

𝜆(𝑥) =

{
𝜔−1
𝑑
‖𝑥‖−(𝑑+1), 𝑥 ∈ 𝐾∗ ⧵ 𝐾∗

1
,

0, 𝑥 ∈ 𝐾∗
1
.

Note that 𝜆(𝑥) is integrable on 𝐾∗ and it is positive and continuous on a neighbourhood of
𝜕𝐾∗ with respect to 𝐾∗, thus, it satisfies the conditions of Theorem 1.1. Therefore, it follows
that

Var𝜇𝑞

(
𝑊

(
𝐾(𝑛) ∩ 𝐾1

))
≪ 𝑛

(
𝔼𝜚,𝐾∗

(
𝟙
((
𝐾∗
(𝑛)

)∗
⊂ 𝐾1

)(
𝑉𝜆

(
𝐾∗
(𝑛+1)

)
− 𝑉𝜆

(
𝐾∗
(𝑛)

))2)
+ 𝑂(𝛼𝑛)

)

= 𝑛

(
𝔼𝜚,𝐾∗

(
𝑉𝜆

(
𝐾∗
(𝑛+1)

)
− 𝑉𝜆

(
𝐾∗
(𝑛)

))2
+ 𝑂(𝛼𝑛)

)
≪ 𝑛

−𝑑+3
𝑑+1 .

□

The following asymptotic formula was also proved in [6]. Under the same assumptions as in
Theorem 3.1, it holds that

lim
𝑛→∞

𝑛
2

𝑑+1 𝔼𝜇𝐾

(
𝑊

(
𝐾(𝑛) ∩ 𝐾1

)
−𝑊(𝐾)

)
= 2𝑐𝑑𝜔

−𝑑−1
𝑑+1

𝑑 ∫𝜕𝐾 𝑞(ℎ(𝐾, 𝜎(𝐾, 𝑥)), 𝜎(𝐾, 𝑥))
− 2
𝑑+1 𝜅

𝑑
𝑑+1 (𝑥)𝑑−1(d𝑥).

Using the asymptotic upper bound of Theorem 1.1 and taking into account the monotone
decreasing property of𝑊(𝐾(𝑛) ∩ 𝐾1), essentially the same argument as in [7] yields the following
statement.
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Theorem 3.2. Under the same hypotheses as in Theorem 3.1, it holds that

lim
𝑛→∞

(
𝑊

(
𝐾(𝑛) ∩ 𝐾1

)
−𝑊(𝐾)

)
𝑛

2
𝑑+1

= 2𝑐𝑑𝜔
−𝑑−1
𝑑+1

𝑑 ∫𝜕𝐾 𝑞(ℎ(𝐾, 𝜎(𝐾, 𝑥)), 𝜎(𝐾, 𝑥))
− 2
𝑑+1 𝜅

𝑑
𝑑+1 (𝑥)𝑑−1(d𝑥)

with probability 1.

Finally, we turn to the number of facets 𝑓𝑑−1(𝐾(𝑛)) of 𝐾(𝑛). It was proved in [6] that, under the
same hypotheses as in Theorem 3.1,

lim
𝑛→∞

𝑛
−𝑑−1
𝑑+1 𝔼𝜇𝑞

(
𝑓𝑑−1

(
𝐾(𝑛)

))
= 𝑐𝑑𝜔

−𝑑−1
𝑑+1

𝑑 ∫𝜕𝐾 𝑞(ℎ(𝐾, 𝜎(𝐾, 𝑥)), 𝜎(𝐾, 𝑥))
𝑑−1
𝑑+1 𝜅

𝑑
𝑑+1 (𝑥)𝑑−1(d𝑥).

Since for any polyhedral set 𝑃 ⊂ ℝ𝑑 with 𝑜 ∈ int 𝑃, 𝑓0(𝑃) = 𝑓𝑑−1(𝑃
∗), and 𝐾(𝑛) and (𝐾∗

(𝑛)
)∗ are

equal in distribution (cf. [6, Proposition 5.1]), we obtain by the Efron–Stein inequality that

Var𝜇𝑞 (𝑓𝑑−1(𝐾
(𝑛))) ≪ 𝑛𝔼𝜇𝑞

(
𝑓𝑑−1

(
𝐾(𝑛+1)

)
− 𝑓𝑑−1

(
𝐾(𝑛)

))2
≪ 𝑛

(
𝔼𝜇𝑞

(
𝟙
(
𝐾(𝑛) ⊂ 𝐾1

)(
𝑓𝑑−1

(
𝐾(𝑛+1)

)
− 𝑓𝑑−1

(
𝐾(𝑛)

))2)
+ 𝑂

(
𝑛2 ⋅ 𝛼𝑛

))

= 𝑛𝔼𝜚,𝐾∗

(
𝟙
((
𝐾∗
(𝑛)

)∗
⊂ 𝐾1

)(
𝑓𝑑−1

((
𝐾∗
(𝑛+1)

)∗)
− 𝑓𝑑−1

((
𝐾∗
(𝑛)

)∗))2)
+ 𝑂

(
𝑛3 ⋅ 𝛼𝑛

)
= 𝑛𝔼𝜚,𝐾∗

(
𝟙
((
𝐾∗
(𝑛)

)∗
⊂ 𝐾1

)(
𝑓0

(
𝐾∗
(𝑛+1)

)
− 𝑓0

(
𝐾∗
(𝑛)

))2)
+ 𝑂

(
𝑛3 ⋅ 𝛼𝑛

)
= 𝑛𝔼𝜚,𝐾∗

(
𝑓0

(
𝐾∗
(𝑛+1)

)
− 𝑓0

(
𝐾∗
(𝑛)

))2
+ 𝑂

(
𝑛3 ⋅ 𝛼𝑛

)
≪ 𝑛

𝑑−1
𝑑+1

by Theorem 1.3. Thus, we have proved the following statement.

Theorem 3.3. Under the same hypotheses as in Theorem 3.1, it holds that

Var𝜇𝑞

(
𝑓𝑑−1

(
𝐾(𝑛)

))
≪ 𝑛

𝑑−1
𝑑+1 ,

where the implied constant depends only on 𝐾, 𝑞 and 𝑑.
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