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Abstract: Background: Women are typically diagnosed with estrogen receptor-positive breast cancer
around the postmenopausal period when declining estrogen levels initiate changes in lipid profiles.
Aromatase inhibitors (AI) are used to prevent the progression of cancer; however, a further reduction
in estrogen levels may have detrimental effects on lipid levels, which was our working hypothesis.
Methods: Our meta-analysis was conducted on the lipid profiles of postmenopausal breast cancer
patients at baseline and at different treatment time points. Results: We identified 15 studies, including
1708 patients. Studies using anastrozole (ANA), exemestane (EXE), letrozole (LET), and tamoxifen
(TMX) were involved. Subgroup analyses revealed that 3- and 12-month administrations of LET
and EXE lead to negative changes in lipid profiles that tend to alter the lipid profile undesirably,
unlike ANA and TMX. Conclusions: Our results suggest that, despite statistically significant results,
EXE and LET may not be sufficient to cause severe dyslipidemia in patients without cardiovascular
comorbidities according to the AHA/ACC Guideline on the Management of Blood Cholesterol.
However, the results may raise the question of monitoring the effects of AIs in patients, especially
those with pre-existing cardiovascular risk factors such as dyslipidemia.

Keywords: breast cancer; lipids; anastrozole; exemestane; letrozole; meta-analysis

1. Introduction

Breast cancer remains a pivotal health challenge globally. Approximately 60–70% of
breast cancer is estrogen receptor-positive (ER+) and is usually diagnosed around the peri-
or postmenopausal period [1–4]. This is a topical issue due to the decline in the mean
age of menopause in low-income and middle-income countries [5]. ER+ breast cancer
often necessitates endocrine therapy as a cornerstone of treatment. Aromatase inhibitors
(AIs) have emerged as a vital component of this therapeutic approach, offering a survival
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advantage by inhibiting the enzyme aromatase, thereby reducing estrogen levels and
inhibiting the growth of breast cancer cells [6].

However, the impact of AIs on metabolic parameters, especially plasma lipid profiles,
has garnered attention due to the potential implications for cardiovascular health in this
vulnerable population. The relationship between estrogen, lipid metabolism, and cardio-
vascular health is intricate, with estrogen believed to play a protective role in cardiovascular
function. Given that AIs significantly reduce estrogen levels, understanding the consequent
effects on plasma lipids is crucial, as alterations in lipid profiles could predispose individu-
als to cardiovascular diseases, which are of particular concern in postmenopausal women
with breast cancer, who may already be at an increased risk due to age, cancer therapy, and
possible pre-existing conditions.

Estrogen is essential for hepatic ApoB100/ApoE receptor production, which elimi-
nates low-density lipoprotein cholesterol (LDL-C) from the liver and is responsible for the
conversion of cholesterol into cholic acid by increasing hepatic 7α-hydroxylase activity
and decreasing hepatic lipase activity to maintain the high-density lipoprotein cholesterol
(HDL-C) sub-fraction HDL2. These findings have been supported by the elimination of
dyslipidemia with estrogen replacement [7–14]. Among healthy postmenopausal women,
declining estrogen due to decreased folliculogenesis is coupled with elevated serum total
cholesterol (TC), LDL-C, triglycerides (TG), and decreased HDL-C [15–18]. In this popula-
tion, cardiovascular diseases (CVDs) are one of the leading causes of comorbidities and
death [19,20]. Therapeutic options to prevent ER+ tumor progression include receptor
antagonism with selective estrogen modulators and the inhibition of the conversion of
androgens into estrogen using AIs, providing estrogen reduction [21]. AIs can be divided
into two categories. Type I AIs (exemestane, EXE) are steroidal compounds designed to
maintain permanent inhibition by forming covalent bonds with aromatase, a condition only
reversed by the newly synthesized aromatase. However, Type II AIs, anastrozole (ANA)
and letrozole (LET), are non-steroidal reversible competitive inhibitors, and their constant
presence is necessary for aromatase inhibition and estrogen reduction [21].

The tolerability of AIs has been analyzed, and most of the adverse effects are consis-
tent with estrogen deficiency—compared with tamoxifen (TMX), Type I and II AIs have
demonstrated an increased risk of inflammatory rash, arthralgia, and diarrhea. Regarding
Ais, to date, three meta-analyses have found a significant positive association between
cardiovascular adverse events and Ais compared with TMX [22–24]. Despite the statisti-
cally significant results, lipid levels have not entirely been statistically investigated for EXE,
ANA, and LET in a comparative study.

This systematic review and meta-analysis statistically encompasses lipid alterations
reported in clinical trials of postmenopausal ER+ breast cancer patients prospectively
administered EXE, ANA, and LET. The purpose of our systematic review and meta-analysis
was to determine the effect of Ais on serum lipid values among patients with elevated risk
of malignancy or with existing ER+ breast cancer and to contribute to a more informed
approach to managing the treatment of hormone receptor-positive breast cancer to optimize
overall patient health outcomes.

2. Materials and Methods

Our meta-analysis was reported following the Preferred Reporting Items for System-
atic Reviews and Meta-Analyses (PRISMA) statement and registered in PROSPERO; the
registration number is CRD42019116159 [25].

2.1. Literature Search Strategy
2.1.1. Web of Science

To perform our search on Web of Science, we used the reference database 2023 Clarivate
Analytics, Web of Science Group, Web of Science (Clarivate PLC, Saint Helier, UK). We
conducted our search on 15 June 2023. Our search used medical subject headings (MeSHs)
and terms. We used the function “TOPIC, (searching across the following fields within a



J. Clin. Med. 2024, 13, 1818 3 of 20

record: Title, Abstract, Author Keywords, Keywords Plus®), the algorithm was: (aromatase
inhibitor) AND TOPIC: (lipid) AND TOPIC: (breast cancer)”. The type of database was
“All Databases” (searching across all subscribed resources). We did not use any time
restriction (all years: 1975–2023). A detailed search query for Web of Science can be seen in
Supplementary Table S1.

2.1.2. MEDLINE

We used the reference database of the National Center for Biotechnology Information
(NCBI; Bethesda, MD, USA) National Library of Medicine. We conducted our search via
PubMed on 15 June 2023, where the algorithm was “((aromatase inhibitor) AND (lipid))
AND (breast cancer)” in the Advanced Search Builder. We used no field (“All Fields”) or
time restrictions. A detailed search query for MEDLINE can be seen in Supplementary
Table S2.

2.1.3. Embase

The reference database was the 2023 Elsevier Life Sciences Excerpta Medica Database
(Embase; Amsterdam, The Netherlands) via Wiley. Here, the date of the search was also
15 June 2023. In the advanced search interface, we used the following algorithm: aromatase
AND inhibitor AND lipid AND breast AND cancer without any field (“All Fields”) or
time (“Limit to 1966–2023”) restrictions. A detailed search query for Embase can be seen in
Supplementary Table S3.

2.1.4. Cochrane Library

To conduct this search, we used the 2000–2023 database by John Wiley & Sons, Inc.
(New York, NJ, USA), the Cochrane Collaboration, on 15 June 2023. In the advanced
interface, we applied another algorithm without time restriction (“All Dates”): aromatase
inhibitor in Title Abstract Keyword AND lipid in Title Abstract Keyword AND breast
cancer in Title Abstract Keyword (Word variations have been searched). Detailed search
queries for Cochrane Library can be seen in Supplementary Table S4.

All databases were accessible through the Hungarian Electronic Information Service
National Programme and the University Library of Pécs. All research hits were exported in
“txt”, “html”, “csv”, “xml”, “docx”, “pdf”, “xlsx”, and “bib” to record our results and in
file formats the “ciw”, “nbib”, and “ris” to import and perform the study selection process
by using EndNote version X7.0.2 (Thomson Reuters, Toronto, Canada). In our three-step
process, we first automatically detected and eliminated duplicates. Then, we manually
screened the remaining records to find additional duplicates. Matching titles, authors,
publishing dates, and/or DOI numbers were used as exclusion criteria. Finally, to confirm
the accuracy of identification, the remaining publications were automatically screened
again to ensure no further duplicates were found.

2.2. Selection Criteria and Data Extraction

In this phase, we individually reviewed the abstracts and titles of records to identify
full-text articles. At this point, we assessed the eligibility in five consecutive steps: screening
publications by the inclusion and exclusion criteria, study selection by therapy duration,
inspection of data usability, and selection based on the dimensions of lipid values. Eligibility
criteria were based on patients, interventions, comparisons, outcomes, and study design
(PICOS), and for inclusion, full-text publications had to meet our PICO criteria [26].

Patients were postmenopausal women with existing breast cancer (primary, early,
or advanced), and patients with an increased risk of breast cancer (history of benign
breast cancer, prior malignant breast cancer, prior ductal carcinoma in situ (DCIS), or
prior lobular carcinoma in situ (LCIS) or a history of lobular neoplasia or atypical ductal
hyperplasia). The intervention was the administration of aromatase inhibitors in separate
study populations for ANA, LET, and/or EXE. Comparisons were the same patients before
and after the administration of aromatase inhibitors. The outcomes were serum TC, LDL-C,
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HDL-C, and TG levels at baseline; different treatment time points of intervention; and the
mean difference (%) between the baseline and treatment time points within each treatment.

2.3. Risk of Bias Assessment and Data Presentation

The procedure was performed for all included studies following the PRISMA state-
ment and the Cochrane Handbook for Systematic Reviews of Interventions [25,27]. Risk of
bias assessment involved adequacy of randomization, concealment of allocation, blinding
of patients, healthcare providers, data collectors, outcome assessors, extent of loss to follow-
up, and stopping the trial early for benefit. During the selection procedure, interrater
reliability statistics were performed [28]. BB and NF selected articles for inclusion. BB and
GG assessed the risk of bias. ZG resolved any disputes as a third person. We extracted
the first author’s name, trial name, year of publication, type of treatment arm, number of
patients, age in years, and BMI. Type of malignancy, therapy duration, and serum lipid
values were also obtained. Extracted data are presented in Table 1. Only English publica-
tions were included. The datasets generated during the current study are available from
the corresponding authors upon request.

2.4. Statistical Analysis

Pre- to post-treatment differences in serum lipid values between baseline and treatment
time points were evaluated. The differences in means with 95% confidence intervals (CIs)
were calculated for all included studies. The random effect model by DerSimonian and
Laird was used, and Cochrane’s Q and I2 statistics were applied to test heterogeneity, where
p < 0.1; in all other cases, p < 0.05 was considered statistically significant [29].

Although we knew that a correlation existed between the datasets (before and after
values), independent t-tests were used due to a lack of information about the correlation
coefficients. With this procedure, we did not increase the possibility of type I errors because
t-values were underestimated and calculated from correlated datasets. The following
equations were used.

Equation (1) demonstrates the first step, the calculation of the s2 value:

s2 =
(n 1 − 1) ∗ sd1

2 + (n2 − 1) ∗ sd2
2

n1 + n2 − 2
(1)

Equation (2) represents the second step, the calculation of the t-value:

mean1 − mean2√
s2

n2
+ s2

n2

(2)

In Equations (1) and (2), n1 and n2 are the number of patients in each group. SDs are
represented by sd1 and sd2. Variance is s2. In Equation (2), mean1 and mean2 demonstrate
the average values of each sample set [29].
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Table 1. Detailed characteristics of included studies. ANA, anastrozole; DCIS, ductal carcinoma in situ; ER+, estrogen receptor-positive; EXE, exemestane; HDL-C,
high-density lipoprotein cholesterol; HR+, hormone receptor-positive; LDL-C, low-density lipoprotein cholesterol; LET, letrozole; NR, not reported; SD, standard
deviation; TC, total cholesterol; TG, triglycerides; TMX, tamoxifen.

Source
(Trial Name)

Year of
Publication Location

Experimental
Arm Therapy
(Daily Dose)

Number of
Patients
Included

Age in Years
(by the Experimental

Arm)
BMI Type of Disease

Overall Therapy
Duration
(Months)

Outcome
(mg/dL)

Lønning PE et al. [30] 2005 Norway EXE (25 mg) EXE: 64
mean [range]

EXE: 60
[46–73]

no. of patients:
underweight: 3;

normal: 28;
overweight: 28;

obese: 13

ER+ breast cancer
or DCIS 24 TC, LDL-C,

HDL-C, TG

Francini G
et al. [31] 2006 Italy EXE (25 mg)

TMX (20 mg)
EXE: 28
TMX: 27

mean [SD] 61.89
[4.45]

mean [SD]
29.17 [2.12]

ER+ resected
breast cancer 12 TC, LDL-C,

HDL-C, TG

Montagnani A et al. [32] 2008 Italy EXE (25 mg)
TMX (20 mg)

EXE: 33
TMX: 35 mean [SD] 61.6 [7.2] mean [SD]

28.1 [1.3]
ER+ resected
breast cancer 24 TC, LDL-C,

HDL-C, TG

Markopoulos C et al.
(TEAM Greek substudy) [33] 2008 Greece EXE (25 mg)

TMX (20 mg)
EXE: 77
TMX: 65 NR NR

ER+ resected
primary breast

adenocarcinoma
12 TC, LDL-C,

HDL-C, TG

Markopoulos C et al.
(ATENA lipid substudy) [34] 2009 Greece EXE (25 mg) 211 mean [range] 62.6

[40–81] NR operable
breast cancer 24 TC, LDL-C,

HDL-C, TG

Sawada S et al. [35] 2009 Japan ANA (1 mg)
TMX (20 mg)

ANA: 22
TMX: 22

mean [SD]
59.3 [5.9]

mean [SD]
23.4 [5.4]

ER+ resected
breast cancer 3 TC, LDL-C,

HDL-C, TG

Zidan J et al. [36] 2010 Israel LET (2.5 mg) 52 mean [range] 56
[45–89] NR ER+ metastatic

breast cancer 12 TC, LDL-C,
HDL-C, TG

Anan K et al. [37] 2011 Japan ANA (1 mg) 33 mean [range]
60.0 [50–86]

mean [range]
24.0 [18.1–31.0]

ER+ resected
breast cancer 24 TC, LDL-C,

HDL-C, TG

Bell LN et al. [38] 2012 USA EXE (25 mg)
LET (2.5 mg)

EXE 117
LET: 129

mean [range]
EXE

59 [44–85],
LET:

57 [38–80]

mean [SD] EXE:
29.6 [6.3]

LET:
29.0

ER+ DCIS
(stage 0) or stage

I–III invasive
breast cancer

3 TC. LDL-C,
HDL-C, TG

Iwata H et al. [39] 2013 Japan EXE (25 mg)
ANA (1 mg)

EXE:149
ANA:149

mean [SD]
EXE: 63.4 [9.3]

ANA: 64.0 [9.0]

mean [SD]
EXE:

23.0 [3.6]
ANA:

23.6 [4.5]

ER+
breast cancer 12

TC, LDL-C,
HDL-C, TG

Santa-Maria CA et al.
(ELPh sub-analysis) [40] 2015 USA EXE (25 mg)

LET (2.5 mg)
EXE: 132
LET: 147

median [range]
59 [35,89]

median [range]
29 [17.7, 55.9]

HR+ DCIS or
stage I–III breast

cancer
3 TC, LDL-C,

HDL-C, TG
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Table 1. Cont.

Source
(Trial Name)

Year of
Publication Location

Experimental
Arm Therapy
(Daily Dose)

Number of
Patients
Included

Age in Years
(by the Experimental

Arm)
BMI Type of Disease

Overall Therapy
Duration
(Months)

Outcome
(mg/dL)

López AM et al. [41] 2015 USA LET (2.5 mg) 28 mean [SD]
LET: 61 [8]

mean [SD]
29.2 [6.6]

>1.66%
probability of

developing
invasive breast
cancer within

5 years or prior
excised LCIS

3 TC, LDL-C,
HDL-C, TG

Gatti-Mays ME
et al. [42] 2016 USA EXE (25 mg) 42

mean: 59.1
range and SD are not

reported

mean:
29.3

range and SD are
not reported

elevated Gail
Model risk, prior
lobular neoplasia,

atypical ductal
hyperplasia, or
resected DCIS

24 TC, LDL-C,
HDL-C, TG

Al-Biati HA et al. [43] 2016 Iraq LET (2.5 mg)
TMX (20 mg)

LET: 15
TMX: 15

mean [SD]
54.3 [3.47]

mean [SD]
28.1 ± 1.8

intracystic
papillary breast

carcinoma
3 TC, HDL-C, TG

Tian W et al. [44] 2017 China
LET (2.5 mg)
ANA (1 mg)
EXE (25 mg)

LET: 38
ANA: 51
EXE: 27

mean [range] EXE:
59.8

[52–77]
LET: 59.5
[48–79]

mean [SD]
EXE: 24.78 (3.81)
LET: 23.33 (3.11)

HR+ early-stage
breast cancer 24 TC, LDL-C,

HDL-C, TG
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3. Results
3.1. Literature Search Results

A systematic search of the Web of Science, MEDLINE, Embase, and Cochrane Library
databases identified 415, 294, 771, and 76 hits, respectively. We used these 1582 records
during the selection process, as shown in the PRISMA diagram in Figure 1.
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Figure 1. PRISMA flow diagram. PRISMA (Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) flow chart of study inclusion and exclusion, www.prisma-statement.org [25].

Duplicates were excluded, and the remaining 1066 records were screened. Based
on our PICO format, 36 studies were included for eligibility testing, and 21 studies were
excluded according to our multistep selection process for the following reasons: lacking
baseline and endpoint lipid values (n = 11) and study design (lacking denotation on which
AI was used, lacking stratification for AI, or dosage was not constant; n = 8); studies with
concomitant interventions that could impact serum lipid levels were also eliminated if the
interventional group was not stratified in a distinct subgroup (n = 2). Finally, 15 eligible
prospective studies were identified with 1708 patients enrolled within EXE, ANA, or LET
experimental therapy arms. Data were collected for further subgroup analysis if an eligible
study included combination therapy with selective estrogen modulator tamoxifen (TMX)
in a distinct arm.

Interrater reliability statistics were performed for study inclusion when individual
decisions needed to be compared [28]. Our calculation yielded a Cohen’s coefficient (κ)
of 0.87 and 94.12% agreement. Similarly, the risk of bias evaluation also provided high
Cohen’s coefficient (κ = 0.81) and agreement values (90.91%).

www.prisma-statement.org
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3.2. Characteristics of Eligible Studies

The final eligible publications were published from July 2005 to October 2017 [30–44].
Fasting serum lipid levels were mainly assessed in Clinical Laboratory Improvement
Amendment (CLIA)-approved laboratories. The detailed characteristics of the included
studies are presented in Table 1. Two reviewers, BB and GG, independently analyzed the
selected studies, and ZG, as a third reviewer, resolved any disagreements. Randomization
was reported in 11 out of 15 studies. Two studies mentioned randomization using computer-
generated sequences, where the individuals performing the randomization and carrying
out the study measurements were blinded. Three studies were double-blinded. Five were
open-labeled, and five had unclear blinding. One study ended prematurely because of an
early publication. Selective reporting was not detected in any of the publications. Patient
drop-outs exceeded 30% in three studies. One publication reported initial endocrine and
sequential therapy after TMX in its retrospective study, but the exact treatment and timing
were not specified. In one trial, 72% of the patients received adjuvant and conventional
treatments before letrozole. Publication bias was examined by visual inspection of funnel
plots, where the standard error was plotted against the difference in means. The detailed
results of risk of bias assessment are shown in Supplementary Table S5 and are based on
the Cochrane Handbook for Systematic Reviews of Interventions [27].

3.3. Meta-Analysis of Aromatase Inhibitors ANA, EXE, and LET on Serum TC, LDL-C, HDL-C,
and TG in 3- and 12-Month Administration Intervals

Forest plots were used to represent one type of lipid and time interval for all AIs (and
for TMX, if available). Thus, eight forest plots and 32 subgroups were generated.

Three forest plots considering TC and TG are displayed in Figures 2–4. The remaining
five forest plots for LDL-C and HDL-C can be seen in Supplementary Figures S3, S6, S9,
S12 and S15. Funnel plots were only provided for subgroups if the number of included
studies was higher than two. These 15 plots are published as Supplementary Figures S1,
S2, S4, S5, S7, S8, S10, S11, S13, S14 and S16–S20.

To determine and compare lipid risk categories considering fasting serum lipid TC,
LDL-C, HDL-C, and TG levels at the baseline; and the 3- and 12-month treatment time
points, we used the 2018 AHA/ACC Guideline on the Management of Blood Cholesterol,
determining risk categories as “low”, “ideal”, “desirable”, “above desirable”, “borderline
high”, “high”, and “very high” [45]. Detailed results of each analysis can be seen in Table 2.

3.3.1. TC after 3-Month Administration of AIs and TMX

According to the random effect model, the pooled differences in the means between
the baseline and endpoint treatment times in the ANA, EXE, and LET subgroups were
1.95 mg/dL (95% CI: −3.31–7.22 mg/dL, p = 0.46), −6.69 mg/dL (95% CI: −9.90–3.47 mg/dL,
p < 0.001), and 5.16 mg/dL (95% CI: 3.47–6.85 mg/dL, p < 0.001), respectively [35,36,38,40–44].
Two publications were included in the TMX subgroup, where the pooled difference in the
means was −23.17 mg/dL (95% CI: −39.57–−6.76 mg/dL, p = 0.006) [35,43]. The related
forest plot is shown in Figure 2. The heterogeneity was unimportant for all AIs, as indicated by
I2 values of 0% for ANA, EXE, and LET and 29.11% for TMX. The detailed results are displayed
in Table 2, and the related funnel plots are shown in Supplementary Figures S1 and S2.

3.3.2. TC after 12-Month Administration of AIs and TMX

One publication for this lipid type and time interval was found for the ANA subgroup,
where the mean difference was 2.17 mg/dL (95% CI: −12.15–16.492 mg/dL, p = 0.76) [44].
The pooled differences in the means for the EXE and LET subgroups were 5.23 mg/dL
(95% CI: −0.47–10.95 mg/dL, p = 0.07) and −0.193 mg/dL (95% CI: −9.50–9.11 mg/dL,
p = 0.96), respectively [31–34,37,42,44]. A 12-month TMX administration was found in
three publications, where the pooled difference in the means was −12.36 mg/dL
(95% CI: −34.71–9.98 mg/dL, p = 0.27) [31–33]. The heterogeneity was moderate for all AIs,
as indicated by I2 values of 48.12% and 47.43% for EXE and LET, respectively. Considerable
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heterogeneity was found in the TMX subgroup (I2 = 89.81%, p < 0.001). The detailed data are
shown in Table 2, the forest plot for this subgroup analysis is displayed in Supplementary
Figure S3, and the funnel plots are shown in Supplementary Figures S4 and S5.
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Figure 2. Forest plot of TC after 3-month administration of AIs and TMX. Pooled mean differ-
ences were calculated between each study’s baseline and endpoint treatment times. Studies here
are stratified by AIs (ANA, EXE, and LET) and TMX measured by mg/dL (p < 0.05). The size of
each box represents the weight contribution of the studies. The vertical lines represent the sum-
mary points for the random effect model; diamonds represent overall differences in the means
of TC for each stratum. AI, aromatase inhibitor; ANA, anastrozole [35,44]; CI, confidence in-
terval; EXE, exemestane [38,40,42,44]; LET, letrozole [36,38,40,41,43,44]; TC, total cholesterol; TMX,
tamoxifen [35,43].
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Figure 3. Forest plot of TG after 3-month administration of AIs and TMX. Pooled mean differences
were calculated between each study’s baseline and endpoint treatment times. Studies here are
stratified by AIs (ANA, EXE, and LET) and TMX measured by mg/dL (p < 0.05). The size of each
box represents the weight contribution of the studies. The vertical lines represent the summary
points for the random effect model; diamonds represent overall differences in the means of TG
for each stratum. AI, aromatase inhibitor; ANA, anastrozole [35,44]; CI, confidence interval; EXE,
exemestane [38,40,42,44]; LET, letrozole [36,38,40,41,43,44]; TG, triglyceride; TMX, tamoxifen [35,43].

3.3.3. LDL-C after 3-Month Administration of AIs and TMX

Pooled differences in the means were calculated for AIs. The values for the ANA, EXE,
and LET subgroups were −2.36 mg/dL (95% CI: −9.13–4.40 mg/dL, p = 0.49),
2.20 mg/dL (95% CI: −0.77–5.18 mg/dL, p = 0.14), and 4.43 mg/dL (95% CI: 2.08–6.79 mg/dL,
p < 0.001), respectively [35,36,38,40,42,44]. One study was included as a TMX subgroup, and
the difference in the means was −31.00 mg/dL (95% CI: −46.90–−15.09 mg/dL,
p < 0.001) [34,40]. The related forest plot is shown in Supplementary Figure S6. Hetero-
geneity was unimportant in the ANA, EXE, and TMX subgroups, as indicated by I2 values of
0%. However, heterogeneity was moderate for the LET subgroup (I2 = 61.14%). Detailed data
are presented in Table 2. Funnel plots are shown in Supplementary Figures S7 and S8.
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Figure 4. Forest plot of TG after 12-month administration of AIs and TMX. Pooled mean differences
were calculated between each study’s baseline and endpoint treatment times. Studies here are
stratified by AIs (ANA, EXE, and LET) and TMX measured by mg/dL (p < 0.05). The size of each
box represents the weight contribution of the studies. The vertical lines represent the summary
points for the random effect model; diamonds represent overall differences in the means of TG
for each stratum. AI, aromatase inhibitor; ANA, anastrozole [44]; CI, confidence interval; EXE,
exemestane [31–34,42,44]; LET, letrozole [36,44]; TG, triglycerides; TMX, tamoxifen [31–33].

3.3.4. LDL-C after 12-Month Administration of AIs and TMX

One publication for this lipid type and time interval was found for the ANA subgroup,
where the mean difference was −3.48 mg/dL (95% CI: −14.72–7.76 mg/dL, p = 0.54) [44].
The pooled differences in the means for the EXE and LET subgroups were 11.66 mg/dL (95%
CI: 1.85–21.48 mg/dL, p = 0.02) and 1.13 mg/dL (95% CI: −0.80–3.07 mg/dL,
p = 0.25), respectively [31–34,36,42,44]. A 12-month TMX administration was found in
three publications, where the pooled difference in the means was −7.44 mg/dL (95% CI:
−21.26–6.37 mg/dL, p = 0.29) [31–33]. The heterogeneity was insignificant (I2 = 0%) for
ANA and LET and substantial for EXE and TMX, indicated by I2 values of 73.13% and
75.64%, respectively. The detailed data are shown in Table 2, the forest plot for this sub-
group analysis is displayed in Supplementary Figure S9, and the funnel plots are shown in
Supplementary Figures S10 and S11.
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Table 2. Detailed results of AI and TMX subgroup analyses. AIs, aromatase inhibitors; ANA, anastrozole; EXE, exemestane; HDL-C, high-density lipoprotein
cholesterol; LDL-C, low-density lipoprotein cholesterol; LET, letrozole; TC, total cholesterol; TG, triglyceride; TMX, tamoxifen. Risk categories can be found in the
2018 AHA/ACC Guideline on managing blood cholesterol [45].

Lipid
Type

Treatment
Time

AIs
and

TMX

Difference
in Means
(mg/dL)

Lower
Limit

Upper
Limit

p-Value Number
of Studies

Number of
Patients at
Baseline

Risk Category
at Baseline

Risk Category
at Endpoint

Heterogeneity Analysis

Q-Value Pheterogeneity I2 (%)

TC

3 months

ANA 1.95 −3.31 7.226 0.46 2 73 borderline
high

borderline
high 0.001 0.96 0

EXE −6.69 −9.90 −3.477 <0.001 4 318 borderline
high

above
desirable 1.41 0.70 0

LET 5.16 3.473 6.85 <0.001 6 409 borderline
high

borderline
high 4.63 0.46 0

TMX −23.17 −39.57 −6.76 0.006 2 37 borderline
high

borderline
high 1.41 0.23 29.11

12 months

ANA 2.17 −12.15 16.49 0.76 1 51 borderline
high

borderline
high 0 1 0

EXE 5.23 −0.47 10.95 0.07 6 418 borderline
high

borderline
high 9.63 0.08 48.12

LET −0.19 −9.50 9.11 0.96 2 90 borderline
high

borderline
high 1.90 0.16 47.43

TMX −12.36 −34.71 9.98 0.27 3 127 borderline
high

borderline
high 19.64 <0.001 89.81

LDL-C 3 months

ANA −2.36 −9.13 4.40 0.49 2 73 above
desirable

above
desirable 0.43 0.51 0

EXE 2.20 −0.77 5.18 0.14 4 318 above
desirable

above
desirable 1.04 0.78 0

LET 4.43 2.08 6.79 <0.001 5 394 above
desirable

above
desirable 10.29 0.03 61.14

TMX −31.00 −46.90 −15.09 <0.001 1 22 borderline
high

above
desirable <0.001 1 0
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Table 2. Cont.

Lipid
Type

Treatment
Time

AIs
and

TMX

Difference
in Means
(mg/dL)

Lower
Limit

Upper
Limit

p-Value Number
of Studies

Number of
Patients at
Baseline

Risk Category
at Baseline

Risk Category
at Endpoint

Heterogeneity Analysis

Q-Value Pheterogeneity I2 (%)

12 months

ANA −3.48 −14.72 7.76 0.54 1 51 above
desirable

above
desirable 0 1 0

EXE 11.66 1.85 21.48 0.02 6 418 above
desirable

borderline
high 18.61 0.002 73.13

LET 1.13 −0.80 3.07 0.25 2 90 above
desirable

above
desirable 0.66 0.41 0

TMX −7.44 −21.26 6.37 0.29 3 127 borderline
high

borderline
high 8.21 0.01 75.64

HDL-C

3 months

ANA 5.39 2.71 8.07 <0.001 2 73 desirable high 0.62 0.43 0
EXE −7.05 −9.72 −4.38 <0.001 4 318 desirable desirable 2.11 0.54 0
LET 0.53 −2.29 3.36 0.71 6 409 desirable desirable 90.19 0 94.45
TMX 2.61 −0.19 5.41 0.06 2 37 desirable desirable 0.14 0.70 0

12 months

ANA 2.32 −3.20 7.84 0.41 1 51 desirable desirable <0.001 1 0
EXE −7.44 −11.68 −3.19 0.001 5 391 desirable desirable 22.37 <0.001 82.12
LET 2.03 1.28 2.79 <0.001 2 90 desirable desirable 0.79 0.37 0
TMX −0.76 −3.85 2.33 0.62 2 62 desirable desirable 0.01 0.91 0

TG

3 months

ANA −25.63 −39.97 −11.28 <0.001 2 73 borderline
high desirable 0.16 0.68 0

EXE −9.58 −14.90 −4.27 <0.001 4 318 desirable desirable 0.68 0.87 0
LET 2.06 −3.41 7.53 0.46 6 409 desirable desirable 9.64 0.08 48.14
TMX 34.564 25.87 43.25 <0.001 2 37 high high 0.71 0.39 0

12 months

ANA −14.08 −54.43 26.27 0.49 1 51 borderline
high

borderline
high <0.001 1 0

EXE −20.77 −30.23 −11.30 <0.001 6 418 desirable desirable 2.95 0.70 0

LET 9.96 6.60 13.32 <0.001 2 90 borderline
high

borderline
high 0.17 0.67 0

TMX −0.50 −15.95 14.941 0.94 3 127 desirable desirable 0.43 0.80 0
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3.3.5. HDL-C after 3-Month Administration of AIs and TMX

Pooled differences in the means were calculated for AIs. The values for the ANA, EXE,
and LET subgroups were 5.39 mg/dL (95% CI: 2.71–8.07 mg/dL, p < 0.001), −7.05 mg/dL
(95% CI: −9.72–4.38 mg/dL, p < 0.001), and 0.53 mg/dL (95% CI: −2.29–3.36 mg/dL,
p = 0.71), respectively [35,36,38,40–44]. Two studies were included in the TMX subgroup,
and the mean difference was 2.61 mg/dL (95% CI: −0.19–5.41 mg/dL, p = 0.06) [35–43].
The related forest plot is shown in Supplementary Figure S12. Heterogeneity was unim-
portant in the ANA, EXE, and TMX subgroups, as indicated by I2 values of 0%. However,
heterogeneity was considerable for the LET subgroup (I2 = 94.45%). Detailed data are
presented in Table 2. Funnel plots are shown in Supplementary Figures S1 and S13.

3.3.6. HDL-C after 12-Month Administration of AIs and TMX

One study was included for the ANA subgroup, and the mean difference between
the baseline and treatment endpoint times was 2.32 mg/dL (95% CI: −3.20–7.84 mg/dL,
p = 0.41) [44]. The random effect model was used to calculate the pooled differences in
the means for the EXE, LET, and TMX subgroups, and the values were −7.44 mg/dL (95%
CI: −11.68–−3.19 mg/dL, p = 0.001), 2.03 mg/dL (95% CI: 1.28–2.79 mg/dL, p < 0.001),
and −0.76 mg/dL (95% CI: −3.85–2.33 mg/dL, p = 0.62), respectively [31–34,36,42,44]. The
related forest plot is shown in Supplementary Figure S15. Heterogeneity was insignificant
for ANA, LET, and TMX, as indicated by I2 values of 0%. The heterogeneity for the EXE
subgroup was considerable (I2 = 82.12%). Detailed data are displayed in Table 2, and funnel
plots are shown in Supplementary Figure S16.

3.3.7. TG after 3-Month Administration of AIs and TMX

The pooled differences in the means were calculated for AIs using the random effect
model. The values for the ANA, EXE, and LET subgroups were −25.63 mg/dL (95% CI:
−39.97–−11.22 mg/dL, p < 0.001), −9.58 mg/dL (95% CI: −14.90–−4.27 mg/dL,
p < 0.001), and 2.06 mg/dL (95% CI: −3.41–7.53 mg/dL, p = 0.46), respectively [35,36,38,40–44].
Two studies were included as a TMX subgroup, and the pooled difference in the means was
34.56 mg/dL (95% CI: 25.87–43.25 mg/dL, p < 0.001) [35,43]. The related forest plot is shown
in Figure 3. Heterogeneity was unimportant in the ANA, EXE, and TMX subgroups, as
indicated by I2 values of 0%. However, heterogeneity was moderate for the LET subgroup
(I2 = 48.14%). Detailed data are presented in Table 2. Funnel plots are shown in Supplementary
Figures S17 and S18.

3.3.8. TG after 12-Month Administration of AIs and TMX

One study was included for the ANA subgroup, and the mean difference between the
baseline and treatment endpoint times was −14.08 mg/dL (95% CI: −54.43–26.27 mg/dL,
p = 0.49) [44]. The random effect model was used to calculate the pooled differences in the
means for the EXE, LET, and TMX subgroups, and the values were −20.77 mg/dL (95% CI:
−30.23–−11.30 mg/dL, p < 0.001), 9.96 mg/dL (95% CI: 6.60–13.32 mg/dL, p < 0.001), and
−0.504 mg/dL (95% CI: −15.95–14.94 mg/dL, p = 0.949), respectively [31–34,36,42,44]. The
related forest plot is shown in Figure 4. Heterogeneity was not crucial for EXE, LET, and
TMX, as indicated by I2 values of 0%. Detailed data are displayed in Table 2, and funnel
plots are shown in Supplementary Figures S19 and S20.

3.3.9. Subgroup Analyses of Aromatase Inhibitors LET and EXE

To see which aromatase inhibitor provided the most potent meta-analytic result, we
performed additional subgroup analyses and evaluated them based on criteria.

Thirty-two subgroup analyses were conducted with AIs. Our meta-analytic criteria
were the significantly different endpoint lipid levels from the baseline (p < 0.05), the
highest number of included studies, symmetric funnel plots, a non-significant (p < 0.1) or
unimportant (I2 = 0–40%) Q-value of heterogeneity, and the highest number of patients.
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Detailed results can be found in Table 2. Two subgroups of AIs met the aforementioned
meta-analytic criteria and provided reliable interpretations.

Subgroup analysis of the LET 3-month treatment arm, which included 409 patients,
demonstrated a 5.16 mg/dL (95% CI: 3.47–6.85 mg/dL, p < 0.001) increase in serum TC
levels, where the pooled baseline value was 202.45 mg/dL (95% CI: 199.25–205.65 mg/dL)
[36,38,40,41,43,44]. The subgroup analysis is shown in Figure 2. According to the guide-
line, the overall baseline population was classified as the “borderline high” risk category
(200–230 mg/dL) for serum TC levels, which did not change at the end of the 3-month
administration of LET. Detailed data are listed in Table 2.

The second AI subgroup that satisfied all the criteria and demonstrated statisti-
cally significant lipid alterations was the EXE 12-month treatment arm, which included
418 patients. Serum TG levels exhibited a 20.71 mg/dL (95% CI: −30.23–−11.30 mg/dL,
p < 0.001) decrease, and the pooled baseline value was 129.63 mg/dL (95% CI:
117.53–141.73 mg/dL) [31–34,42,44]. The subgroup analysis is shown in Figure 4. According
to the guidelines, the pooled baseline serum TG levels fell within the “desirable” risk cate-
gory (<150 mg/dL), which also did not change by the end of the 12-month administration
of EXE.

Of note, the observed lipid level reduction was consistent with the observed alterations
of the 3-month administration of the EXE subgroup; however, the criterion regarding the
maximum number of included studies was not satisfied. Here, the average of the pooled
baseline serum levels of 318 patients was 116.59 mg/dL (95% CI: 104.45–128.73 mg/dL),
and the difference at the endpoint was −9.58 mg/dL (95% CI: −14.90–−4.27 mg/dL,
p < 0.001). The subgroup analysis is shown in Figure 3. The resultant directions of lipid
changes in the 32 subgroup analyses are summarized in Table 3.

Table 3. Results of 32 subgroup analyses of 3- and 12-month AI and TMX administration.

Aromatase Inhibitors (AIs) Tamoxifen (TMX)

ANA EXE LET
3-Months

3-Months 3-Months 3-Months

TC LDL-C HDL-C TG TC LDL-C HDL-C TG TC LDL-C HDL-C TG TC LDL-C HDL-C TG
↑ ↓ ↑ ↓ ↓ ↑ ↓ ↓ ↑ ↑ ↑ ↑ ↓ ↓ ↑ ↑

12-Months 12-Months 12-Months 12-Months

TC LDL-C HDL-C TG TC LDL-C HDL-C TG TC LDL-C HDL-C TG TC LDL-C HDL-C TG
↑ ↓ ↑ ↓ ↑ ↑ ↓ ↓ ↓ ↑ ↑ ↑ ↓ ↓ ↓ ↓

Red color shows undesirable changes in lipid levels (↑: elevated lipid level at the endpoint of administration
compared with baseline) according to the 2018 AHA/ACC Guidelines on managing blood cholesterol. Green color
shows undesirable changes in lipid levels (↓: decreased lipid level at the endpoint of administration compared
with baseline) according to the 2018 AHA/ACC Guidelines on managing blood cholesterol. AIs, aromatase
inhibitors; ANA, anastrozole; EXE, exemestane; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density
lipoprotein cholesterol; LET, letrozole; TC, total cholesterol; TG, triglyceride; TMX, tamoxifen.

4. Discussion

Our study was intended to systematically and statistically encompass lipid changes in
AI-administered populations. The meta-analysis included 15 publications and
1708 patients to reveal possible alterations in fasting lipid levels after 3- and 12-month
treatment periods with ANA, EXE, and LET.

After 3- and 12-month administrations, ANA consistently increased TC and HDL-C,
while LDL-C and TG decreased. Considering EXE, only LDL-C was consistently elevated,
and HDL-C and TG were also reduced. Further consistency in lipid level elevation was
concluded regarding LET in LDL-C, HDL-C, and TG. Interestingly, this phenomenon was
noticed when analyzing the lipid levels. Except for TC, increases of similar magnitude and
direction occurred over time in the subgroups if EXE was administered. By the end of the
12-month administration, the LDL-C, HDL-C, and TG levels increased by 5.3-, 1.05-, and
2.16-fold, respectively, compared with the levels during the 3-month interval; however,
subgroup TG completely satisfied all of the meta-analytical criteria. A possible explanation
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for this phenomenon could be the irreversible binding of EXE as a false substrate to the
aromatase enzyme.

In contrast, non-steroidal inhibitors ANA and LET reversibly bind to the active site
of the aromatase enzyme, inhibiting the transformation of androstenedione into estrone
and testosterone into estradiol [46]. Subgroup TMX decreased TC and LDL-C after 3- and
12-month administrations. This result is due to TMX having an agonistic estrogenic effect,
and it is beneficial to lipid levels [47].

Considering postmenopausal dyslipidemia, further estrogen reduction may contribute
to CVD risk, as bilateral ovariectomy studies have already demonstrated this associa-
tion [48,49]. Treatment guidelines involve third-generation AIs. Thus, patients are typ-
ically administered them at least once, which raises concerns about the aggravation of
dyslipidemia-derived CVD risks [50]. The lipid-altering effect of estrogen receptor mod-
ulators was also analyzed, and the studies concluded that tamoxifen (TMX) reduced
lipoprotein(a); TC and LDL-C were decreased by raloxifene and fulvestrant after a 3-year
trial [51–54].

After performing the 32 subgroup analyses and based on our meta-analytic criteria,
we found that two of the subgroups provided the highest level of evidence based on
heterogeneity, significance, patient number, and funnel plot symmetry. TC was significantly
elevated in 409 patients by LET after the 3-month treatment, and TG was decreased in
418 patients after the 12-month administration of EXE. However, the risk category was
unchanged. One or more meta-analytical criteria were not satisfied in the 30 subgroups.
Furthermore, among the TMX subgroups, only the 3-month administration arm exhibited
a significant decrease in TC levels; however, the number of included studies and patients
and the heterogeneity did not satisfy our meta-analytical criteria.

Regarding the overall risk classification, only five subgroups exhibited alterations in
the risk category; therefore, changes did not occur in 85% of the subgroups. Furthermore,
there was no significant association between lipid levels and the duration of treatment.
The strength of our meta-analysis was that results were further evaluated based on meta-
analytic criteria, wherein EXE and LET provided the most potent evidence regarding TC
and TG, respectively. In their meta-analysis, Yang et al. [55] reported that exemestane
administration increased LDL-C (4.42 mg/dL) levels and decreased HDL-C (−6.03 mg/dL)
and TC (−5.40 mg/dL) levels, whereas EXE lowered TG levels (−14.60 mg/dL) in a shorter-
than-one-year period. These data align with our findings in the cases of LDL-C and HDL-C,
but a decrease in TC was reinforced at three months, unlike the 12-month treatment in
our analysis. The other difference is that we concluded that the TG level was significantly
lower after the 12-month treatment with EXE.

To summarize the analyses of the 32 subgroups, lipid changes during the 3-month
administration were mainly consistent with the 12-month administration of AIs and TMX,
where LET and EXE changed the lipid profile rather undesirably. Desirable lipid changes
can only be found in the 3- and 12-month ANA and TMX treatment arms.

This meta-analysis has limitations mainly due to the analyzed studies. Several eligible
studies were statistically heterogeneous, with occasionally missing values. Consequently,
several selection steps had to be established to manage these missing data to construct
our meta-analysis, resulting in fewer included studies and patients. Furthermore, lipid
values were primarily measured in CLIA-approved laboratories; however, there were some
studies in which the methodology, standards, and measurement locations still needed to be
published. Nevertheless, the mentioned weaknesses were handled accordingly, resulting
in a robust and reliable analysis.

Based on the provided evidence, this study is the first comparative meta-analysis to
evaluate the effects of third-generation steroidal EXE and non-steroidal ANA and LET
on serum lipid TC, LDL-C, HDL-C, and TG levels. Due to the detailed analyses of the
included studies, our investigation successfully established a baseline population, han-
dling confounding factors so that the effects of AIs and TMX on serum lipid levels could
be determined.
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In reviewing state-of-the-art treatment protocols, the aromatase inhibitors and tamox-
ifen drugs did not have any precautions for use regarding possible undesirable changes in
the blood lipid profile [56]. Our current meta-analysis studied a population where lipid
levels were essentially normal. Conversely, we observed a significant deterioration in the
lipid profile after letrozole and exemestane treatment. Still, this change in a population
with initially normal blood lipid values does not require a blood-lipid-regulating treatment.
Although we have no evidence, it is conceivable that patients treated with LET or EXE with
an initially unfavorable lipid profile warrant further attention.

5. Conclusions

In conclusion, our systematic review and meta-analysis have shed light on the intricate
relationship between AI therapy and lipid profiles in postmenopausal women with estrogen
receptor-positive breast cancer. Through the analysis of 15 studies involving 1708 patients,
we observed that specific AIs, namely, letrozole and exemestane, are associated with
changes in serum total cholesterol and triglyceride levels, respectively. These findings
suggest that AI therapy can indeed influence lipid metabolism, although the clinical
significance of these alterations appears limited within the contexts explored in our review.

The implications of our findings for clinical practice are two-fold. First, pre-existing
dyslipidemia before AI treatment raises concerns about using EXE and LET in first-line
therapy for ER+ breast cancer. Second, we underscore the necessity and importance of
healthcare providers maintaining a vigilant approach to monitoring lipid levels in AI-
treated postmenopausal patients, particularly in those with pre-existing cardiovascular
risk factors or a significant family history of cardiovascular disease. The postmenopausal
condition in itself is a risk factor for undesirable lipid alterations; if we add to this pre-
existing dyslipidemia caused by cardiovascular risk factors, applying EXE and LET raises
concerns and may further deteriorate lipid levels according to our results, in which the
population was free from dyslipidemia.

Future research should further delineate the long-term cardiovascular impacts of AI
therapy, exploring both lipid-dependent and lipid-independent mechanisms. Such studies
are crucial for developing comprehensive, evidence-based guidelines that balance the
oncologic benefits of AI therapy with the potential metabolic and cardiovascular risks.
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