
Citation: Stefanoni, M.; Sarcevic, P.;

Sárosi, J.; Odry, A. Optimization

Techniques in the Localization

Problem: A Survey on Recent

Advances. Machines 2024, 12, 569.

https://doi.org/10.3390/

machines12080569

Academic Editor: Dan Zhang

Received: 9 July 2024

Revised: 9 August 2024

Accepted: 13 August 2024

Published: 19 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Review

Optimization Techniques in the Localization Problem: A Survey
on Recent Advances
Massimo Stefanoni 1,* , Peter Sarcevic 2 , József Sárosi 2 and Akos Odry 2

1 Doctoral School of Applied Informatics and Applied Mathematics, Obuda University,
1034 Budapest, Hungary

2 Department of Mechatronics and Automation, Faculty of Engineering, University of Szeged,
6725 Szeged, Hungary; sarcevic@mk.u-szeged.hu (P.S.); sarosi@mk.u-szeged.hu (J.S.);
odrya@mk.u-szeged.hu (A.O.)

* Correspondence: massimo.stefanoni@stud.uni-obuda.hu

Abstract: Optimization is a mathematical discipline or tool suitable for minimizing or maximizing a
function. It has been largely used in every scientific field to solve problems where it is necessary to
find a local or global optimum. In the engineering field of localization, optimization has been adopted
too, and in the literature, there are several proposals and applications that have been presented. In
the first part of this article, the optimization problem is presented by considering the subject from a
purely theoretical point of view and both single objective (SO) optimization and multi-objective (MO)
optimization problems are defined. Additionally, it is reported how local and global optimization
problems can be tackled differently, and the main characteristics of the related algorithms are outlined.
In the second part of the article, extensive research about local and global localization algorithms
is reported and some optimization methods for local and global optimum algorithms, such as the
Gauss–Newton method, Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Differential
Evolution (DE), and so on, are presented; for each of them, the main concept on which the algorithm
is based, the mathematical model, and an example of the application proposed in the literature for
localization purposes are reported. Among all investigated methods, the metaheuristic algorithms,
which do not exploit gradient information, are the most suitable to solve localization problems due to
their flexibility and capability in solving non-convex and non-linear optimization functions.

Keywords: local optimization; global optimization; mathematical programming; single objective
problem; multi-objective problem; metaheuristic algorithms; deterministic algorithms

1. Introduction

Optimization is a mathematical discipline which provides tools to select the best
element from a set of possible alternatives based on some given criteria. In general, an
optimization problem is one of maximizing or minimizing a real function by methodically
selecting input values from a permitted set and figuring out the output values of the
function itself. Optimization problems can be classified as continuous or discrete, and to
solve them, several optimization techniques and approaches have been developed. These
techniques can be divided into exact methods, approximate algorithms, metaheuristics,
and greedy algorithms [1]. Each of them has pros and cons, and the user must choose the
proper and most appropriate technique to solve the specific problem.

Nowadays, optimization, sometimes also referred to as mathematical programming, is
used in every scientific field where it is necessary to deal with mathematical problems char-
acterized by high complexity, constraints, interdependencies among variables, and a large
space of solution [2]. Finance [3], chemical engineering [4], mechanical engineering [5], elec-
trical engineering [6], and system and database design [7] are only a few examples where
optimization has been applied in the last decades. In the field of localization, optimization
methods have been widely used to solve localization problems pertaining to robots [8],

Machines 2024, 12, 569. https://doi.org/10.3390/machines12080569 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines12080569
https://doi.org/10.3390/machines12080569
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0009-0009-2102-2755
https://orcid.org/0000-0003-4050-8231
https://orcid.org/0000-0002-6303-5011
https://orcid.org/0000-0002-9554-9586
https://doi.org/10.3390/machines12080569
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines12080569?type=check_update&version=2

Machines 2024, 12, 569 2 of 50

smartphones [9], permanent magnets [10], vehicles [11], underground structures [12], urban
utilities [13], and so on. By referring to this field, this paper aims to investigate and collect
the main used optimization methods in the localization literature, such as the Gradient
Descent method, Levenberg–Marquardt method, Genetic Algorithm (GA), Particle Swarm
Optimization (PSO), etc., by reporting the concept of the used technique and an example
of its application in the considered field. Furthermore, the paper also aims to provide in
the initial part a general introduction to the classic optimization problem, providing the
mathematical formulation, and, in the second part, a clear mathematical formulation of
each investigated technique.

The rest of the paper is organized as follows. In Section 2, firstly, the single objective
(SO) optimization problem is mathematically defined; then, the local vs global cases are
presented, and at the end of the section, the multi-objective optimization (MO) problem with
the related approaches is reported. In Section 3, some of the most interesting and important
applications of the optimization methods in the field of localization are summarized and
classified; for each of them, a brief explanation of the method and the inspired idea are
reported. In Section 4, the conclusions are reported.

2. A Brief Overview of the Optimization Problem
2.1. Definition

Optimization methods are used to find a set of inputs to an objective function that
results in the evaluation of the minimum or maximum of the function. Mathematically, the
optimization problem is defined as follows [14]:

minimize : f0(x)
such that : gj(x) ≤ 0 j = 1, . . . , m

hk(x) = 0 k = 1, . . . , p
(1)

where f0(x) is a function, called an objective function, and defined as f0 : Rn → R ,
x = (x1; x2; . . . ; xn)

T is the optimization vector variable (or the design variables) of the
problem, and gj(x) and hk(x) are the inequality and equality functions, respectively, that
are constraint functions.

If for any z with g1(z) ≤ 0, . . . , gm(z) ≤ 0 and h1(z) = 0, . . . , hk(z) = 0, the relation
f0
(
x*) ≤ f0(z) is verified, then the vector x* is the optimal solution of the problem and it

has the smallest objective value among all vectors that satisfy the constraint functions. The
maximum problem of a function f(x) can be solved considering the minimum problem of
−f(x).

The objective function and the constraint functions can be linear or non-linear and an
optimization problem can be called a linear program if the objective (f0, . . . , fm) and con-
straint functions satisfy the linear condition that can be expressed, for example,
as follows:

fs(αx + βy) = αfs(x) + βfs(y) (2)

where the variable s x, y ∈ Rn, and the coefficients α, β ∈ R. If the equality in (2) is not
verified, the problem is a non-linear program [14]. The problems can also be classified as
convex optimization problems if the following condition is satisfied:

fs(αx + βy) ≤ αfs(x) + βfs(y) (3)

where α + β = 1, α ≥ 0, and β ≥ 0. The convex optimization can be considered a
generalization of a linear programming because any linear program is also a convex
optimization problem [14].

The solution to the problem is found inside the searchable design space that is sub-
jected to the side constraints defined as xiL ≤ xi ≤ xiU with i = 1, . . . , n, where variables
are limited between the upper and lower bounds [15].

Machines 2024, 12, 569 3 of 50

Optimization problems can have some or all of the design variables restricted to
integer or discrete values, and they are referred to as integer or discrete optimization
problems, respectively.

To find a solution for a class of optimization problems in relation to a given accuracy,
a specific algorithm is needed; most of them are able to deal with the side constraints
and the constraints function separately because the side constraints are managed directly
by the algorithms themselves; unconstrained problems exist, but they can still have side
constraints [15].

One or more equality and/or inequality constraints, with or without side restrictions,
characterize a constrained optimization problem. For a generic problem, an equality
constraint can only either be violated or satisfied, while an inequality constraint can be
violated, active, or satisfied. An active inequality constraint, defined as gj(x) ≤ 0, is said to
be active (or tight) when at a design point x*, it is satisfied as an equality, i.e., gj(x) = 0 [15].

Optimization techniques, or algorithms, use a specific procedure that is able to find
the solution among design variable values that results in the best objective function value,
and at the same time, it satisfies all the constraint functions (equality, inequality) and the
side constraints; more than one optimum can be found, and they are referred to as local or
relative optima.

2.2. A Comparison between Local and Global Extrema

The extreme minimum or extreme maximum of the objective function over the whole
input search space is known as a global optimum. In general, finding a local optimum
may be rather simple, whereas finding the global optimum may be more challenging, in
particular for non-linear functions [16]. As an example, Figure 1 shows a generic function
f(x) which has three minima: two of them are of the local type, and one is the global
minimum of the problem.

Machines 2024, 12, x FOR PEER REVIEW 2 of 9

Optimization problems can have some or all of the design variables restricted to in-

teger or discrete values, and they are referred to as integer or discrete optimization prob-

lems, respectively.

To find a solution for a class of optimization problems in relation to a given accuracy,

a specific algorithm is needed; most of them are able to deal with the side constraints and

the constraints function separately because the side constraints are managed directly by

the algorithms themselves; unconstrained problems exist, but they can still have side con-

straints [15].

One or more equality and/or inequality constraints, with or without side restrictions,

characterize a constrained optimization problem. For a generic problem, an equality con-

straint can only either be violated or satisfied, while an inequality constraint can be vio-

lated, active, or satisfied. An active inequality constraint, defined as g୨ሺxሻ ൑ 0, is said to
be active (or tight) when at a design point x∗, it is satisfied as an equality, i.e., g୨ሺxሻ ൌ 0
[15].

Optimization techniques, or algorithms, use a specific procedure that is able to find

the solution among design variable values that results in the best objective function value,

and at the same time, it satisfies all the constraint functions (equality, inequality) and the

side constraints; more than one optimum can be found, and they are referred to as local

or relative optima.

2.2. A Comparison between Local and Global Extrema

The extreme minimum or extreme maximum of the objective function over the whole

input search space is known as a global optimum. In general, finding a local optimum

may be rather simple, whereas finding the global optimum may be more challenging, in

particular for non-linear functions [16]. As an example, Figure 1 shows a generic function

fሺxሻ which has three minima: two of them are of the local type, and one is the global min-

imum of the problem.

Figure 1. Local and global minima representation for a generic optimization problem.

It follows that optimization problems and algorithms can be classified into two types:

local optimization and global localization algorithms. The former type of algorithm looks

for local optimum solutions in a particular area of the search space, whereas the latter

looks for the best solution for problems with multiple local optimums. Furthermore, there

could be multiple local optimal points for an objective function, and if there is only one,

that local optimum point is referred also to as the global optimum point. In case a global

optimum does not exist for an objective function, the problem cannot be classified as an

optimization problem.

In general, optimization problems are typically classified as multimodal or unimodal

in terms of their modality. When a problem has more local optima solutions in addition

to the global optimum, it is said to be multimodal; when it has only the global optimum

Figure 1. Local and global minima representation for a generic optimization problem.

It follows that optimization problems and algorithms can be classified into two types:
local optimization and global localization algorithms. The former type of algorithm looks
for local optimum solutions in a particular area of the search space, whereas the latter
looks for the best solution for problems with multiple local optimums. Furthermore, there
could be multiple local optimal points for an objective function, and if there is only one,
that local optimum point is referred also to as the global optimum point. In case a global
optimum does not exist for an objective function, the problem cannot be classified as an
optimization problem.

In general, optimization problems are typically classified as multimodal or unimodal
in terms of their modality. When a problem has more local optima solutions in addition to
the global optimum, it is said to be multimodal; when it has only the global optimum as its
local optima solution, it is said to be unimodal. Multimodal problems can sometimes be
trickier and therefore more complex to solve [17].

The authors in reference [18] classify optimization problems as reported in Figure 2.
It is highlighted that non-convex functions do not need to be multimodal because a non-

Machines 2024, 12, 569 4 of 50

convex function can have only one local optimum, and it follows that this is also the
global optimum.

Machines 2024, 12, x FOR PEER REVIEW 3 of 9

as its local optima solution, it is said to be unimodal. Multimodal problems can sometimes

be trickier and therefore more complex to solve [17].

The authors in reference [18] classify optimization problems as reported in Figure 2.

It is highlighted that non-convex functions do not need to be multimodal because a non-

convex function can have only one local optimum, and it follows that this is also the global

optimum.

Figure 2. The classification of the optimization problems.

Figure 2. The classification of the optimization problems.

Local and global optimization algorithms deal with different problems; a local opti-
mization technique is utilized when the objective function includes a single optimum or
when the region of the global optimum is known; when the objective function response sur-
face’s structure is unknown or the function has local optimum points, a global optimization
procedure is employed [19].

In order to discover the extrema of the function in a certain region of the search space
or to come as close to them as possible, a local optimization method is developed to cross
the considered region looking for the minima (or maxima) [14].

Global optimization techniques are suitable for situations where there are few variables
and no necessity for fast computation time. They work with a single candidate solution or
a population of them, from which new candidate solutions are generated iteratively and
assessed using a predetermined function to see whether the newly generated variables are
getting better or worse [14].

2.3. Local Optimization Algorithms

Most local optimization algorithms exploit the gradient information of the function
to find the optimum solution. They work well for solving problems with lots of design
variables, and fine-tuning their settings is rather simple. Furthermore, they are considered
efficient compared to the number of function evaluations (or iterations) needed to find the
solution. Among the drawbacks are that they can only locate a local optimum, they have
issues solving discrete optimization problems, they require algorithms that are difficult to
implement efficiently, and they suffer from numerical noise [15].

There are many types of gradient-based algorithms, and each of them is characterized
by a different logic or idea to determine the search direction. In general, gradient-based
algorithms typically use a two-step iterative process to reach the optimum: the first one is
to exploit the gradient information to find a search direction S in which to move, and the
second step is moving in the direction d; the last one is called one-dimensional or a line
search and also provides the optimum step size, αk. The two steps are repeated until no
more progress is obtained and mathematically, they can be expressed as follows:

xk = xk−1 + αkd (4)

where k identifies the number of the k-th-step [20]. The gradient information is not always
easily accessible in complex problems, and techniques such as Finite Difference Gradient
Calculations, Automatic Differentiation, or Analytic/Semi-Analytic Gradient Calculations
can be used to compute the gradient. Moreover, the first one provides gradient information
that is accurate at the working precision; the second one provides only an approximation

Machines 2024, 12, 569 5 of 50

of the gradient, giving an accuracy that is related to the selected step size; the last one can
be applied to linear finite element codes, and it is inexpensive [15].

2.4. Global Optimization Algorithms

Many problems can have multiple local optima (like the problem represented in
Figure 1), and local globalization algorithms are able to find one of them without guar-
anteeing or saying if it is a local or global minimum point because all minima satisfy the
Karush–Kuhn–Tucker (KKT) condition, which is a mathematical tool to verify if a solution
is a minimum or not, but without specifying if it is a global one.

The found minima depend on the starting point, giving the first met minima as a
result. To find other minima in the design space, a multi-start approach can be adopted,
which starts from different points [21].

Global optimization algorithms have a far higher possibility of locating the global
or near-global optimum. It is preferable to speak of these algorithms as having global
properties because, in general, no algorithm can ensure convergence on a global optimum.

They fall into one of two categories: metaheuristic algorithms and deterministic
algorithms [22].

2.4.1. Metaheuristic Algorithms

Metaheuristic (or stochastic) algorithms can be defined as computational intelligence
paradigms which are especially used for solving complex optimization problems [23].
When precise optimization methods are unable to provide outcomes, they can provide
satisfactory results. Metaheuristic algorithms can be classified into evolution-based, swarm
intelligence-based, physics-based, and human behavior-related algorithms [24].

This class of optimization techniques is suitable for complex non-linear and discontin-
uous problems where classical optimization techniques might fail [25].

These algorithms, in contrast to the local methods, use a certain number of design
points, which are often referred to as a population of individuals; they allow for determining
the optimum without adopting any gradient information. These techniques frequently
draw inspiration from various natural events, and some of their advantages include a
higher likelihood of locating a global or nearly global optimum, robustness, and simplicity
in implementation; moreover, they are also suitable for solving discrete optimization
problems. On the other hand, some disadvantages include high computing costs, the
limited size of the problem, weak constraint-handling capabilities, and difficulties in tuning
problem-specific parameters [15].

These days, PSO and the GA are the two most often used metaheuristic algorithms.
Additionally, evolutionary algorithms include genetic programming, Ant Colony Opti-
mization (ACO), Simulated Annealing (SA), Differential Evolution (DE), Evolutionary
Programming, Harmony Search, and others [22].

2.4.2. Deterministic Algorithms

Deterministic algorithms aim to find the global solution of an optimization problem
by guaranteeing that the found solution is the real global minimum (or maximum) of the
problem with a predefined tolerance. These algorithms usually deal with specific classes of
problems, such as linear programming (LP), mixed-integer linear programming (MILP),
non-linear programming (NLP), and mixed-integer non-linear programming (MINLP).
An example of a deterministic technique is the DIRECT algorithm [26], which can find
the global minimum of a multivariate function with simple bounds; it is a modification
of the conventional Lipschitzian method where the need to specify a Lipschitz constant
is eliminated.

In general, deterministic approaches can obtain advantages by exploiting the analytical
properties of a problem to find the global solution; however, over the years, heuristic
methods have shown to be more efficient and flexible than deterministic ones [18].

Machines 2024, 12, 569 6 of 50

2.5. From Single to Multi-Objective Optimization

The case described by Equation (1) is referred to as a single objective optimization
problem because the function to be optimized is only one. However, in many applications,
the optimization of more than one objective function at the same time is requested, and this
case, it is referred to as a multi-objective (MO) optimization problem. It is mathematically
described as follows:

minimize : fm(x) m = 1, . . . , M
such that : gj(x) ≤ 0 j = 1, . . . , J

hk(x) = 0 k = 1, . . . , K
(5)

where m is the m-th function among the M functions to be optimized.
In MO optimization problems, two spaces are defined: the first is the decision variable

space of the solution vector that contains all possible solutions x of the problem; the
second is the multi-dimensional space of the objective function vector that contains the
evaluations of each objective function; each x solution belonging to the decision variable
space corresponds to a point in the objective function space. The spaces for a problem with
a vector solution x with three components and two membership functions are represented
in Figure 3 [27].

Machines 2024, 12, x FOR PEER REVIEW 4 of 9

Figure 3. Representation of the two spaces for a generic MO problem.

Figure 3. Representation of the two spaces for a generic MO problem.

If every objective function and solution region in a MO problem are convex, the prob-
lem is said to be convex too, and the convexity is crucial to solving the
optimization problem.

The methods to find the solution to MO problems can be classified into two different
types: the Pareto method and the scalarization method [28]. The former is used when
performance indicators and desired solutions are distinct, and in such a way, the Pareto
approach is applied to generate a compromise solution, or trade-off, that can be represented
as a Pareto optimal front (POF). Unlike in the latter, a performance indicator component
method is exploited to create a scalar function that is integrated into the fitness function [29].

The process of finding the optimal solution can be assisted by using metaheuristic
algorithms such as GA, PSO, ACO, and so on.

2.5.1. Pareto Method

From a mathematical point of view, a MO problem with n objective functions solved
by using the Pareto method is expressed as follows:

f1,opt = min f1(x)
f2,opt = min f2(x)
. . .
. . .

fn,opt = min fn(x).

(6)

Machines 2024, 12, 569 7 of 50

The method keeps the elements of the solution vectors independent and exploits the
concept of dominance with which a solution can be considered a Pareto optimal solution
(POS) or a non-dominated solution if around the considered solution there is no way of
improving any objective without degrading at least one other objective; on the contrary,
a solution is said to be a Pareto-dominated solution (PDS) if it can be improved without
worsening at least one other objective. As an example, Figure 4 shows the solutions in
the space of the objective functions where POSs are represented by red dots, whilst the
PDSs are represented by red squares. Furthermore, in agreement with the representation in
Figure 4, it is possible to give the following definitions [29]:

• Anchor point: the best value provided by an objective function.
• Utopia point: a point which is obtained by intersecting the best values provided by

the objective functions.
• Pareto optimal front (POF): the line where the POSs lay.

Machines 2024, 12, x FOR PEER REVIEW 5 of 9

 .

Figure 4. The space of the objective functions for a generic problem with two objective functions.

Figure 4. The space of the objective functions for a generic problem with two objective functions.

Once the POF has been obtained, the MO problem is solved by computing which
of the solutions on the POF has the shortest Euclidean distance. The following equation
is used:

dE = min

√√√√(Q1 − Q*
1

Q1norm

)2

+

(
Q2 − Q*

2
Q2norm

)2

(7)

where (Q*
1, Q*

2) are the coordinates for the utopia point related to f1 and f2, respectively,
(Q1, Q2) are the coordinates of the solution point on the POF, and Q1norm and Q2norm are
normalization factors based on the minimum values of each function.

In general, by considering a MO problem with two objective functions, four types of
problems can be obtained and are given as follows:

Problem 1 :
{

f1,opt = min f1(x)
f2,opt = min f2(x)

, (8)

Problem 2 :
{

f1,opt = min f1(x)
f2,opt = max f2(x)

, (9)

Problem 3 :
{

f1,opt = max f1(x)
f2,opt = min f2(x)

, (10)

Problem 4 :
{

f1,opt = max f1(x)
f2,opt = max f2(x)

. (11)

Each of the four problems gives rise to a different shape of the POF and they are shown
in Figure 5.

Machines 2024, 12, 569 8 of 50

Machines 2024, 12, x FOR PEER REVIEW 6 of 9

represented.

Figure 5. Representation of POF for problems with 2 objective functions.

Figure 5. Representation of POF for problems with 2 objective functions.

The objective function space for a problem with three functions can be represented in
a three-dimensional space, but for a problem with a number of objective functions greater
than three, the space cannot be represented.

To find non-dominated solutions, specific algorithms are used such as the continuously
updated method reported in [29].

2.5.2. Scalarization Method

The scalarization method includes each function of the MO problem into a single
scalar fitness function, practically transforming the MO problem into a single objective
problem. Different types of scalarization can be defined and some basic approaches are the
Weighted Global Criterion Method (WGCM), Weighted Sum Method (WSM), Exponential
Weighted Criterion (EWC), or the Weighted Product Method (WPM) [30].

From a conceptual point of view, the WSM is the easiest way to implement the
scalarization method. Each function of the MO problem is summed by adopting weights; it
gives rise to a new total objective function F(x) which is given as follows:

F(x) = w1f1(x) + w2f2(x) + . . . + wifi(x) + . . . + wnfn(x) (12)

where i is the i-th function of the original MO problem, wi represents the weight of the i-th
function, and fi is the i-th function of the original MO problem composed of n objective
functions [29]. The values of the weights are chosen in agreement with the performance
priority: a large weight is given to functions with higher priority and vice versa for functions
with lower priority. The following are three examples of how weights can be set:

• Equal weights: wi = 1/n.
• Rank Order Centroid (ROC) weights: wi =

1
n ∑n

k=i
1
k .

• Rank Sum (RS) weights: wi =
2(n+1−i)

n(n+1) .

To provide a balance among functions, normalization is needed, and it can be obtained
by dividing each objective function by its own RMS value fRMS

i [31]. The final expression is
given as follows:

F(x) = +
w1f1(x)

fRMS
1

+
w2f2(x)

fRMS
2

+ . . . +
wnfn(x)

fRMS
n

(13)

In Equation (13), the sign of each objective function must agree with the request of
minimization (minus) or maximization (plus).

Machines 2024, 12, 569 9 of 50

The WSM can be considered as a particular case of the WGCM approaches, in which
the scalarization can be obtained by adopting one of the following definitions [30]:

F(x) =
n

∑
i=1
ωi[fi(x)]

p (14)

F(x) =
n

∑
i=1

[ωifi(x)]
p (15)

where p is a parameter which can enhance the minimization of the function, and weights
must satisfy ∑ωi = 1.

The EWC method is defined as follows [32]:

F(x) =
n

∑
i=1

(epωi − 1)epfi(x), (16)

whilst the WPM is given as follows [33]:

F(x) =
n

∏
i
[fi(x)]

ωi . (17)

2.5.3. Summary of the Optimization Problems

In summary, from the point of view of the number of objectives, optimization problems
can be divided into two types: SO and MO problems. The main difference in the formulation
of the problem is that in the former, only one objective is considered, whereas in the latter,
there are at least two objectives. The MO case can be considered an extension of the SO
case, and allows the optimization of more functions at the same time that belong to the
same problem and have the same design variables.

Finally, the MO problem can be solved by using either the Pareto method or one of the
scalarization approaches. The first one deals with the optimization problem by solving each
fitness function separately, whereas the second ones provide a function that is a single figure
of merit that englobes all the objectives of the problem in one function. The main advantage
of the Pareto approach is that each fitness function is solved independently without any
regard for the other objectives, and the final solution is extracted by considering the solution
that has the shortest distance from the utopia point. On the other hand, scalarization
transforms the MO problem into the SO type, but has the drawback of setting the weights
of each objective properly in order to correctly set their priority.

3. Optimization Algorithms Used in the Field of Localization

In this section, all optimization methods in the field of localization are reported.
Generally, a description of the algorithm, its concept, and the mathematical formulation
are reported; then, a real and meaningful application for localization purposes is described.

3.1. Newton’s Method, Gradient Descent, and Gauss–Newton Method

Newton’s Method and the Gradient Descent (GD) algorithm are the first methods
which were studied in the field of optimization to deal with local problems, and they have
a similar structure but with the difference that the GD algorithm is a first-order method
and Newton’s method is a second-order type. The latter has the disadvantage of a higher
computational cost because it requires the calculation of the Hessian matrix. At the end
of the paragraph, an extension of Newton’s method called the Gauss–Newton method
is presented.

Machines 2024, 12, 569 10 of 50

3.1.1. Newton’s Method

Newton’s algorithm is a classical method and is an unconstrained algorithm that is
derived from a second-order Taylor series expansion of the objective function starting from
an initial design point x0. The function can be expressed as follows [15]:

f(x) ≈ f(x0) +∇f(x0)
T(x − x0) +

1
2
(x − x0)

TH(x0)(x − x0) (18)

where x is the variable of the problem, and H(x0) is the Hessian matrix that contains the
second-order gradient information of the objective function. By differentiating
Equation (18) with respect to x and setting the result equal to zero according to the KKT
conditions, it gives rise to the following iterative formula for the current design point [34]:

xn+1 = xn − f′(xn)

f′′(xn)
(19)

where f′ and f′′ are the first and the second derivative, respectively, which can be expressed
as f′(xn) = ∇f(xn) and f′′(xn) = H(xn)

−1. The step size cannot be changed, and no
one-dimensional search is required because it is provided by −H(xn)

−1∇f(xn).
The method has a quadratic rate of convergence, requiring only a single step to obtain

the optimum; however, the estimation of the second-order derivative requires a high
computational cost and often the method can result in being unpractical. To overcome this
drawback, some variation of gradient-based methods can be adopted, which makes use
only of the first-order gradient information.

3.1.2. Gradient Descent Algorithm

The GD algorithm is a first-order optimization algorithm that finds a local minimum
(or maximum) by using an iterative process. The function to be optimized must be differ-
entiable and convex. However, it is also possible to apply the algorithm to quasi-convex
functions, but with the risk of being stuck at saddle points.

The GD algorithm is based on this iterative equation [35]:

xk+1 = xk − α∇f(xk) (20)

where f is the function to be optimized, xk is the input variable at the k-th step, and α is
a parameter which controls the step size. It is highlighted that the value of α controls the
behavior of the method because, for example, the smaller the learning rate, the longer the
GD convergence time, and a too-small α could make the algorithm reach the maximum
number of iterations too early without finding the right solution; on the other hand, a too-
large α could make the process diverge or just jump around to the minimum (or maximum)
of the problem. The value α∇f(xk) in (20) is subtracted when the minimum is looked for,
whereas it is summed when the maximum is the desired output.

The GD algorithm deals with unconstrained problems, and it can be extended to also
handle constraints by adopting a specific approach called the penalty function method,
which is able to transform an unconstrained problem into a constrained one [20]. The
method adds a penalty function to the original objective function that is composed of a
penalty parameter multiplied by a measure of violation of the constraints. The latter is zero
when there is no violation and greater than zero when violations are obtained. Considering
a generic problem min = f(x) subjected to ci(x) ≤ 0, it is transformed into a series of
unconstrained minimization problems, given as follows [36]:

min Φk(x) = f(x) + σk∑
i

g(ci(x)) (21)

where g(ci(x)) = max (0, ci(x))
2 is the exterior penalty function, σk is the penalty coeffi-

cient, and k represents the iteration. In each step of the algorithm, the penalty coefficient

Machines 2024, 12, 569 11 of 50

is increased, the unconstrained problem is solved, and the provided result is used in the
next iteration as the initial guess. In this manner, the solution of the original constrained
problem is obtained by the convergence of the unconstrained one.

In general, this method has been used in many different scientific fields, and, in
particular, one of them where it has been widely adopted is Machine Learning (ML), in
which the GD algorithm has three variations: the Batch GD, Stochastic GD, and Mini-Batch
GD algorithms. These three different approaches manage the training process of a neural
network in different ways: in the first one, the algorithm calculates the gradient to correct
the weights by considering the complete training dataset in each iteration, in the second one,
the gradient is calculated by considering only one sample of the dataset in each iteration,
and in the last case, which is an intermediate approach between the two aforementioned
approaches, the dataset is split into small subsets (batches) and the gradients are computed
for each sub-batch in each iteration [37].

3.1.3. Gauss–Newton Method

The Gauss–Newton method is adopted to solve convex non-linear least-squares prob-
lems, i.e., a class of problems where it requested to minimize a sum of squared function
values. Given an objective function which is twice differentiable, it has a form given
as follows:

f(x) =
1
2

m

∑
i=1

fi(x)
2 (22)

and its gradient is defined as follows:

∇f(x) =
m

∑
i=1

fi(x)∇fi(x). (23)

The search direction of the Gauss–Newton method is as follows [14]:

∆xgn = −
(

m

∑
i=1

∇fi(x)∇fi(x)
T

)−1(m

∑
i=1

fi(x)∇fi(x)

)
. (24)

where it is assumed that the inverse exists. The difference with the classic Newton’s
method is that in this case, the direction is obtained by neglecting the second term from
the Hessian. This result can be obtained by considering the first order of Taylor’s series
fi(x + v) = fi(x) +∇fi(x)

Tv, which gives rise to the following:

f(x + v) =
1
2

m

∑
i=1

(
fi(x) +∇fi(x)

Tv
)2

(25)

where v = ∆xgn is the needed exact value to minimize this approximation; furthermore, it
is highlighted that the Gauss–Newton step direction can be estimated by solving a linear
least-squares problem.

3.1.4. The Integer Least-Squares Problem

A particular case among least-squares problems is when the design variables are
integers and these types of problems are named integer-least-squares (ILS) problems; they
arise, for example, to solve the integer frequency ambiguity in Global Navigation Satellite
Systems (GNSSs) for real-time applications, or in other fields such as communications,
cryptography, and lattice design [38].

The pseudorange and carrier phase are extracted from GNSS measurements, and
only the latter allows pose estimation with high precision in the order of the millimeter
and centimeter level. However, the unknown integer part of the carrier phase, i.e., the
frequency integer ambiguity, needs to be solved, and it can be performed by adopting

Machines 2024, 12, 569 12 of 50

the geometry-based model, which relies on the resolution of an ILS problem [39]. Such a
problem can be defined as follows [38]:

min
a∈Zn

(
(a − â)TQ−1

â (a − â)
)

(26)

where a is the double-differenced integer ambiguity vector, â is the integer estimation of a,
and Qâ is the symmetric positive n × n variance–covariance matrix.

To solve the problem represented by Equation (22), specific algorithms, such as the
least-squares AMBiguity Decorrelation Adjustment (LAMBDA) algorithm or its variations,
have been developed to reduce the computational resolution complexity of the problem [38].
They are composed of two parts: the reduction process, and the discrete search process.
In this review, they are not investigated further because these algorithms are considered
numerical techniques adopted to simplify the resolution of an optimization problem.

3.1.5. Integer Frequency Ambiguities Resolution

The authors in reference [39] propose a single-epoch triple-frequency real-time kine-
matic positioning method that exploits the information provided by the GNSS to obtain
high-precision positioning in urban environments.

In their article, they propose the Random Sample Consensus (RANSAC) that is
adopted after the ILS is solved to detect and exclude incorrectly fixed ambiguities of
the Extra-Wide-Lane (EWL), Wide-Lane (WL), and original frequencies. The method deals
with a triple-frequency integer ambiguity, and the double-differenced pseudorange Pi and
carrier phase Li observations for the i-th frequency are given as follows:

Pi = ρ+ Mi + εi
Li = ρ+ λiNi + mi + ϵi

(27)

where ρ is the double-differenced geometric range; Mi and mi are the multipath errors in
the pseudorange and carrier phase, respectively, λ1 is the wavelength of the carrier; Ni
is the integer ambiguity, and εi and ϵi are random noises of the pseudorange and carrier
phase, respectively. By considering three frequencies, i.e., i = {1, 2, 3}, as presented in
reference [39], it is possible to define two robust double-differenced geometric ranges,

∼
ρ1

and
∼
ρ2, which allows for the computation of the EWL and WL ambiguities that are given,

respectively, as follows:

N(0,−1,1) = round

((
L3

λ3
− λ2

λ2

)
−
(∼
ρ1
λ3

−
∼
ρ1
λ2

))
(28)

N(1,−1,0) = round

((
L1

λ1
− λ2

λ2

)
−
(∼
ρ2
λ1

−
∼
ρ2
λ2

))
. (29)

Equations (28) and (29) allow for the definition of the following system of equations:
N(1,−1,0) = N1 − N2
N(0,−1,1) = N3 − N2
L1 = ρ+ λ1N1 + m1 + ϵ1
L2 = ρ+ λ2N2 + m2 + ϵ2
L3 = ρ+ λ3N3 + m3 + ϵ3

(30)

and by adopting an ILS method, it is possible to estimate ρ, N1, N2, and N3 of the problems.

3.2. Levenberg–Marquardt

The Levenberg–Marquardt algorithm (LMA), or the Damped least-squares (DLS)
method, is used to solve non-linear optimization problems. The LMA exploits a parameter
λ such that it can switch between the GD algorithm and the Gauss–Newton algorithm;

Machines 2024, 12, 569 13 of 50

practically, the LMA interpolates between the Gauss–Newton algorithm and the method of
GD according to the current prediction accuracy, but at the expense of a certain convergence
rate [40]. The algorithm needs the initial guess and, if it is too far, then the error might
be large, and the algorithm might not be able to give a correct global solution due to
the presence of many local minima, and it might provide a local minimum which is not
necessarily the global minimum. To obtain a better correct initial guess for the LMA,
it is possible to use EAs in the initial phase because they do not suffer from the initial
value problem.

Considering a non-linear least-squares problem, it can be expressed mathematically
as follows:

f(x) =
1
2

m

∑
j=1

r2
j (x) =

1
2
∥r(x)∥2 (31)

where x is the vector input, f is the objective function, ri is the residual and it is defined as a
function such that Rn → R with the assumption of m ≥ n, and
r(x) = (r1(x), r2(x), . . . , rm(x))T is the residual vector and is defined such that Rm → Rn .

The Levenberg–Marquardt algorithm is a modification of the Gauss–Newton method,
and it is based on a local linearization of the residuals as follows [40–42]:

rm(x + δx) ≈ rm(x) + Jmµδx (32)

where Jmµ = J(x) = ∂rm
∂xµ

is the Jacobian Matrix, and δx is an infinitesimal of x. Next, the
Gauss–Newton technique recursively updates in accordance with the following:

δx = −
(

JTJ
)−1

∇f = −
(

JTJ
)−1

JTr. (33)

If the initial guess of the Gauss–Newton method is near the optimum of f, it will
usually converge quickly; however, this is not always the case, and the method can take
very large and uncontrolled steps, failing to converge. To deal with this issue and control
the steps in a useful way, Levenberg [41] and Marquardt [42] each proposed the damping
of the JTJ matrix by a diagonal cut-off, modifying (33) as follows:

δx = −
(

JTJ + λDTD
)−1

∇f (34)

where DTD is a positive–definite, diagonal matrix that is the relative scale of the parameters
and λ is a damping parameter adjusted by the algorithm. If λ is large, the steps are small
along the gradient direction, and vice versa when λ is small. As the method is reaching
a solution, λ is chosen to be small and the method converges quickly via the Gauss–
Newton method.

The implementation of the Levenberg–Marquardt algorithm follows these iterative
steps [40]:

1. Based on the current parameter values, update the function and Jacobian values
(if necessary);

2. Update the scaling matrix DTD and damping parameter λ;
3. Propose a parameter step δx and evaluate the function at the new parameter values

x + δx;
4. Accept or reject the parameter step depending on whether the cost has decreased at

the new parameters;
5. Stop if any of the desired convergence criteria of the algorithm are met or if the limit

of function evaluations or iterations has been exceeded.

The methods for the choice strategy of the damping parameter λ and the scaling matrix
DTD require specific methods (as described in [40]) which are not further investigated in
this article.

Machines 2024, 12, 569 14 of 50

Magnetic Localization Technique Based on the Levenberg–Marquardt Algorithm

The authors in reference [10] propose a method for the localization of a permanent
magnet based on the LMA. The permanent magnet is modelled as a dipole, and the
magnetic field is measured by an array of 4 × 4 magnetometers (16 in total). The general
optimization problem can be expressed as follows:

f(a, b, c, θ,φ) =
N

∑
i=1

∣∣B̂i − Bi
∣∣2 (35)

where f is the objective function, a, b, and c are the coordinates of the permanent magnet
position, θ and φ identify the orientation of the permanent magnet, N is the number of the
i-th magnetometer, B̂i is the measured magnetic field, and Bi is a function representing the
model of the system based on the magnetic dipole theory, and it includes the coordinates
and the orientation angles.

The problem can be solved by using the LMA, but the issue is the need for a good
initial guess to obtain a solution because when a too-far initial point is provided, divergence
can occur. To deal with this problem, a solution could be to combine the PSO and LMA
methods: the former is used to calculate an initial guess, and the second is used to calculate
the local minima because it results in a faster method. The drawback of this approach is
that it is not suitable for real-time applications, and the authors of paper [10] deal with it by
proposing to use only the LMA and a properly modified model of Equation (35). In the first
step, the new model neglects the orientation to find only the coordinates of the permanent
magnet; then, in the second step, the orientation is also obtained. The modified model is
expressed as follows:

f(a, b, c) =
N

∑
i=1

∣∣∣∣∣B̂i −
BT

|Ri|3
Aim̂avg

∣∣∣∣∣
2

(36)

where BT is a scalar quantity that represents the magnetic strength, Ri is the vector from
the center of the permanent magnet to the i-th sensor, Ai is a matrix that is a function of the
magnet position, and m̂avg is the averaged orientation vector, expressed as follows:

m̂avg =

N
∑

i=1

∼
mi∣∣∣∼mi

∣∣∣∣∣∣∣∣ N
∑

i=1

∼
mi∣∣∣∼mi

∣∣∣
∣∣∣∣∣

(37)

where
∼
mi = |Ri|3

2BT
(Ai − I)B̂i, and I is the one-diagonal matrix. The orientation vector is

obtained by applying the following equation:

m̂ =
|Ri|3

2BT
(Ai − I)Bi (38)

The authors claim that in such a way, a more suitable optimization problem for the
LMA is obtained, and for this application, the method always provides an acceptable
solution independently from the distance of the initial guess; moreover, the speed of
computing is improved.

3.3. Lagrange Multipliers Method and Lagrange Duality
3.3.1. Lagrange Multipliers Method

The Lagrange multipliers method is an analytic method for finding the local maxima
and minima of a function subject to equality constraints. The concept is to reformulate the
original problem, obtaining a new function called the Lagrangian function, which allows
for solving a new problem without constraints. Given a problem with an objective function

Machines 2024, 12, 569 15 of 50

f(x) subjected to the equality constraint h(x) = 0, the Lagrangian function is expressed as
follows [43]:

L(x, λ) ≡ f(x) + λh(x) (39)

where λ is the Lagrangian multiplier. The solution is obtained by finding the stationary
point of L by setting ∂L(x,λ)

∂x = 0 and ∂L(x,λ)
∂λ = 0, which gives rise to the following system:{

∂f(x)
∂x + λ ∂h(x)

∂x = 0
h(x) = 0

(40)

The solution corresponding to the original problem is always a saddle point of the
Lagrangian function [44]. Then, a possible solution of the system (40) (x*, λ*) allows for the
finding of an optimal point of the original problem given by f(x*).

The method of Lagrange multipliers is generalized by the KKT condition, also allowing
for the consideration of inequality constraints; given a minimization non-linear problem
(in which the x variable is a vector) with an objective function f(x) subject to equality
constraints hi(x) = 0 (with i = 1, . . . , p), and inequality constraints gj(x) ≤ 0 (with
j = 1, . . . , m), the Lagrangian function is set as follows:

L(x, λ,µ) ≡ f(x) + µTg(x) + λTh(x) (41)

where µ and λ are the Lagrange multipliers related to inequalities and equalities, respec-
tively, and they are vectors. If (x*, λ*,µ*) is a saddle point of L(x, λ,µ) in the x domain, and
the KKT conditions are satisfied, then x* identifies an optimal solution. The KKT conditions
can be summarized as follows [45]:

gj
(
x*) ≤ 0

hi
(
x*) = 0

µ*
j ≥ 0
µ*

j gj
(
x*) = 0

∇f
(
x*)+ ∑

j
µ*

j ∇gj(x
*) + ∑

i
λ*

i∇hi
(
x*) = 0

(42)

In general, once the gradient has been obtained, to determine if a constrained local
optimum has been found, the KKT conditions are used to verify the necessary conditions
for a local optimum; for unconstrained problems, the KKT conditions only require the
gradient of the objective function to vanish at the optimum design point.

It is highlighted that the KKT conditions cannot indicate whether a global optimum
has been found, and they are useful only for identifying a local optimum.

3.3.2. Lagrange Duality

The duality principle claims that an initial optimization problem called the primal
problem can be transformed into a dual problem by applying a specific procedure. In such
a way, it allows for the transformation of a minimization problem into a maximization one
and vice versa. In some cases, the method might make the solution of the transformed
problem easier and more manageable than the primal problem [14].

Mathematically, the Lagrange duality is defined as follows [46]. A not necessarily
convex optimization problem is considered and is represented as:

minimize : f0(x)
subject to : fi(x) ≤ 0 i = 1, . . . , m

hi(x) = 0 i = 1, . . . , p
(43)

Machines 2024, 12, 569 16 of 50

where x ∈ Rn, with a domain D and optimal value p*. Then, by using (41), the Lagrangian
function of the problem is obtained and given as:

L(x, λ,ν) ≡ f0(x) +
m

∑
i=1
λifi(x)+

p

∑
i=1
νihi(x) (44)

where L(x, λ,ν) is such that Rn ×Rm ×Rp → R with a domain L = D ×Rm ×Rp, and λi
and νi are the Lagrange multipliers related to inequalities and equalities, respectively. Now,
it is possible to define the Lagrangian dual function g(λ,ν) of the problem as the infimum
of the Lagrangian function over x and it is given as:

g(λ,ν) = inf
xϵD

L(x, λ,ν) = inf
xϵD

(
f0(x) +

m

∑
i=1
λifi(x)+

p

∑
i=1
νihi(x)

)
(45)

where g(λ,ν) is such that Rm ×Rp → R . It is observed that the infimum is unconstrained
(unlike the beginning problem) and g(λ,ν) is concave; moreover, the function g could be
−∞ for some λ, ν.

At this point, by adopting the lower bound property, if λ ≥ 0, then g(λ,ν) ≤ p*; this
allows us to define the dual problem by maximizing the obtained Lagrangian dual function
in (45). It is given as follows:

maximize
λ,ν

g(λ,ν)

subject to λ ≥ 0
(46)

The solution of (46), denoted with λ*, ν*, provides for all convex and non-convex
problems a lower bound for the optimum function such that g

(
λ*,ν*

)
≤ f(x*), like it is

represented in Figure 6.

Machines 2024, 12, x FOR PEER REVIEW 7 of 9

6.

Figure 6. Representation of weak and strong duality.

Figure 6. Representation of weak and strong duality.

Furthermore, Figure 6 clearly represents the weak and strong duality principles. The
former provides a bound for the optimal values of the transformed problem, whereas the
latter claims that the optimal values of the two problems are equal. The strong duality is
usually true for convex optimization problems.

3.3.3. A Localization Non-Convex Problem

The authors in reference [47] propose a method to obtain localization by exploiting
only the range measurement data provided by wireless sensors. The robot localization is
modelled as a non-convex optimization problem, and to obtain the solution, as a first step,
it is reformulated as a convex problem, and then duality theory is applied to find, in an
easier way, the optimum.

The localization problem is formulated as follows. The measured range data from
anchors are given as follows:

d̂k = ∥x − yk∥2 + ηk (47)

Machines 2024, 12, 569 17 of 50

where x and yk are two column vectors to determine the positions of the target and the
anchors, respectively, ηk is the corresponding measurement noise, k = 1, . . . , m identifies
the k-th anchor, which are m in total. The optimal position can be obtained by minimizing
the measurement noise between the measured distance d̂k and the real distance dk =
∥x − yk∥2; then, the objective function can be expressed as follows:

f0(x) =
m

∑
k=1

(
d̂k − ∥x − yk∥2

)2
(48)

The function in (48) is non-convex, and to solve the problem, the authors proceeded
in this way. In the first step, they reformulated the problem into a convex-constrained
problem by exploiting a change in the variable; the new problem is expressed as follows:

min f(z) = ∥Az − b∥2
2

subject to (zTCz + 2fTz) = 0
(49)

where z =
[

xT xTx
]

=
[

xT t
]T and coefficients are defined as

A =


−2yT

1
−2yT

2
...
−2yT

k

1
1
...
1

, b =


d2

1 − ∥y1∥
2
2

d2
2 − ∥y2∥

2
2

...
d2

k − ∥yk∥
2
2

, C =

 1 0 0
0 1 0
0 0 0

, and f =

 0
0
−1/2

.

Then, duality theory is adopted, and the obtained Lagrangian function is given as follows:

L(z, v) = ∥Az − b∥2
2 + v

(
zTCz + 2fTz

)
= zT

(
ATA + vC

)
z − 2

(
ATb − vf

)T
z + bTb (50)

where v is the Lagrange multiplier. Now, by computing the minima of L(z, v) over z, it is
possible to obtain the Lagrangian dual function, and the final Lagrange dual problem is
given as follows:

maximize G(v) = −
(

ATb − vf
)T(

ATA + vC
)(

ATb − vf
)
+ ∥b∥

2

2
subject to (ATA + vC) ≥ 0

(ATb − vf)ϵR
(

ATA + vC
) (51)

where R identifies the domain. The problem in (51) is a convex problem and the solution
can be computed.

3.4. Genetic Algorithm

The GA was inspired by Darwin’s principle of survival of the fittest solutions and can
solve both constrained and unconstrained optimization problems; it is based on natural
selection, the process that drives biological evolution [48]. The algorithm is implemented
with the following steps:

1. Creation of the initial population.
2. Calculation of fitness of each individual.
3. New individual generation by adopting the following operators:

3.1. Selection;
3.2. Crossover;
3.3. Mutation;

4. Calculation of fitness of each individual.
5. Test:

5.1. If the convergence criteria are satisfied, stop.
5.2. Otherwise, repeat from step 3.

Machines 2024, 12, 569 18 of 50

It is iterative, and after the first cycle, it is repeated from step 3 until the desired criteria
are satisfied. In step 1, the process begins with a set of individuals, which is called the
population; each individual is a solution to the problem to be solved. An individual is
characterized by a set of parameters (variables) known as genes, which are joined into a
string to form a chromosome, i.e., a solution. In the second step, the fitness function of
the problem determines how an individual (or solution) fits, and it measures the ability
of an individual to compete with other individuals. The output is a fitness score for each
individual, and the probability that an individual will be selected for reproduction is based
on its score. In step 3, the new individual generation process begins, and it is composed
of four operators, i.e., (i) selection, (ii) crossover, and (iii) mutation. In the selection, some
individuals are chosen to generate new ones and selected individuals pass some of their
genes into the next generation; in other words, some individuals are selected as parents to
generate children. In general, individuals are selected based on their fitness scores, and the
higher the fitness value, the higher the probability of being selected for reproduction. In
the literature, there are many proposals for selection operators, and some of them are the
following: roulette wheel selection, sequential selection, tournament selection, dominant
selection, hybrid selection, kin selection, back controlled selection, and so on [49]. It is
important to highlight that, at every cycle, an elitist population is extracted from the
population of the current iteration to directly pass some of the best individuals to the next
generation. In some cases, such a procedure might give rise to problems of fast convergence,
and to tackle such an issue, an adaptive elitist population strategy which changes the
number of the elitist population can be implemented, as proposed in reference [50]. After
selection, the crossover operator creates new children by mixing the relative genes. For
example, Figure 7 shows the concept of the 1-crossover point operator, where two parents
generate two offspring by exchanging portions of their genes. In the literature, there are
many proposals for crossover operators and the authors in reference [51] classify them in
three categories: standard (such as 1-crossover point, k-crossover point, shuffle-crossover,
reduced surrogate-crossover, and so on), binary (random respectful crossover, masked
crossover, 1-bit adaption crossover, and so on), and application dependent (or real/tree).

Machines 2024, 12, x FOR PEER REVIEW 8 of 9

Figure 7. Representation of the standard 1-crossover point operator concept.

Figure 7. Representation of the standard 1-crossover point operator concept.

Finally, the mutation operators can introduce random variation of the genes, and for
this purpose, the mutation probability value is adopted, which is a random value between
0 and 100%; a value equal to zero means no-mutations are adopted, whereas a 100% value
modifies all genes of the child. In general, mutations should not occur so often, but they
are important because they allow for the avoidance of being stuck in local minima [52].
For example, some mutation operators in the literature are mirror mutation and binary
bit-flipping mutation, mutation based on directed variation techniques, directed mutation,
and so on [53].

Once a new population is obtained, step 4 computes the fitness values of the offspring
and, finally, step 5 verifies whether the convergence criteria are satisfied or not. If not, the
cycle is repeated from step 3 until a satisfactory solution is found or the maximum number
of iterations is reached; over successive generations, the population evolves toward an
optimal solution [15,48,54].

The GA can solve a variety of optimization problems that are not well-suited for
standard optimization algorithms, including problems in which the objective function
is discontinuous, nondifferentiable, stochastic, or highly non-linear. Furthermore, GAs
are also suitable for problems of mixed-integer programming where solutions have some
components that are defined as integers.

Machines 2024, 12, 569 19 of 50

Evolutionary Optimization Strategy for Indoor Position Estimation Using Smartphones

The authors in reference [9] propose a smartphone-based indoor localization system
adopting a sensor fusion algorithm where localization information from an Inertial Mea-
surement Unit (IMU), Wireless Local Area Network (WLAN), Bluetooth, and magnetic
field anomalies is fused to provide the estimated localization.

In the fusion step, the probability distributions of each localization information source
are superimposed; in the summation, each distribution is weighted with a coefficient in the
interval from 0 to 1.

For determining the weights, optimization methods can be applied; they exploit the
result of some tests that were run in buildings to obtain the ground truth points (GTPs). In
such a way, it is possible to estimate the weights with a Root-Mean-Square Error (RMSE)-
based fitness metric, defined as follows:

Fitness =
N

∏
test run=1

10
RMSEtest run

(52)

Due to the high ambiguity and the unknown (mixed) stochastic distributions of
the input variables, using classical search methods (e.g., gradient-based methods), the
optimization quickly converges to a local minimum. Then, a global optimization procedure
is needed to maximize the quality metric and avoid local extrema. Because of the building
model’s non-linearities, no gradients can be easily derived analytically, and gradient-based
optimization methods are not applicable. Therefore, the authors proposed the use of a GA
for finding the optimal weights, and in their article, they compared the results with four
other local and global optimization strategies: Hill Climbing, the Nelder–Mead method,
SA, and PSO. The outcome is that the GA outperforms the other algorithms; however, the
drawback is that it needs the most computing time, but it is not a particular issue because
the optimization process of the parameters must only be calculated once the end of the
offline phase is reached.

3.5. Quantum Genetic Algorithm

The Quantum Genetic Algorithm (QGA) exploits the concept of qubits and the super-
position of states in quantum mechanics. The algorithm is explained as follows [11,55]. The
information is represented by a quantum bit or qubit which may be in the ‘0’ state, in the
‘1’ state, or any superposition of the two states [55]. A representation of the qubit state is
given as follows:

|Ψ⟩ = α|0⟩ + β|1⟩ (53)

where α and β are complex numbers that specify the probability amplitudes of the cor-
responding states, and |α|2 and |β|2 are the probabilities of the states to be either 0 or 1,
respectively, and the condition |α|2 + |β|2 = 1 must be satisfied.

A system with m qubits represents 2m states at the same time, which collapse into a
single state during the observing process of a quantum state.

In general, the traditional GA can use binary, numeric, or symbolic representation
for a solution encoded with a chromosome. The QGA uses the qubits, where one qubit is

represented as
[
α

β

]
, whilst m qubits are represented as follows:

[
α1
β1

∣∣∣∣ α2
β2

∣∣∣∣ . . .
. . .

∣∣∣∣ αm
βm

]
(54)

Machines 2024, 12, 569 20 of 50

where |αi|2 + |βi|2 = 1 for i = 1, 2, . . . , m. For example, considering m = 3 and the following
chosen amplitudes of probability, a superimposition of states is represented as follows:[1√

2
1 1

2
1√
2

0
√

3
2

]
, (55)

and the system state is expressed as follows:

1
2
√

2
|000⟩+

√
3

2
√

2
|001⟩+ 1

2
√

2
|100⟩+

√
3

2
√

2
|101⟩ . (56)

It has four pieces of information at the same time, i.e., the probabilities of |000⟩ , |001⟩ ,
|100⟩ , and |101⟩ are 1

8 , 3
8 , 1

8 , and 3
8 , respectively. For a better comprehension of how

coefficients are obtained, the coefficient 1
2
√

2
of the binary number |000⟩ is obtained by

multiplying each αi in the matrix (55), i.e., α1α2α3 = 1√
2
1 1

2 , whereas the coefficient
√

3
2
√

2

of the number |101⟩ is obtained by β1α2β3 = 1√
2
1

√
3

2 . The square power of a coefficient
gives the probability of the related binary number. Moreover, the second digit is always
zero, because α2 = 1.

Because QGA computing can represent a superposition of states, it provides a better
characteristic of diversity than classical approaches; Equation (56) is one qubit chromosome
that represents four states at the same time, whereas, in a classical representation, at least
four chromosomes (000, 001, 100, and 101) would be needed.

During the convergence process, the |α|2 or |β|2 of the qubit chromosomes can ap-
proach 1 or 0, giving rise to a single state.

In the QGA, a population of qubit chromosomes Q(t) =
{

qt
1, qt

2, . . . , qt
n
}

at generation
t is defined, where n is the size of the population, and qt

j is a qubit chromosome with m
qubits defined as follows:

qt
j =

[
αt

1
βt

1

∣∣∣∣ αt
2
βt

2

∣∣∣∣ . . .
. . .

∣∣∣∣ αt
m
βt

m

]
. (57)

Considering the main step to implement the QGA, in the initialization step of Q(t),
and all αt

i and βt
i of each qt

j are set to 1/
√

2 and it means that the qubit chromosome at
t = 0 represents the linear superposition of all possible states with the same probability(

1√
2m

)
, and it can be expressed as follows:

∣∣∣∣Ψq0
j

〉
=

2m

∑
k=1

1√
2m

|Sk⟩ (58)

where Sk is the k-th state represented by the binary string x1x2 . . . xm, where xi can be equal
to 0 or 1.

The next step is to generate a set of solutions from Q(t), and this is called the observing
process, which provides P(t) =

{
pt

1, pt
2, . . . , pt

n
}

at the time t.
One binary solution, pt

j , for j from 1 to n, is a binary string of length m, and is formed

by selecting each bit using the probability of qubit |αi|2 (or |βi|2), which is compared with
an ri value that is a randomly generated number between 0 and 1; if ri ≥ |αi|2, then the
i-th element xi of the j-th binary string pt

j is 1, or, if ri < |αi|2, it is 0. Each solution pt
j is

evaluated to give a measure of its fitness. The initial best solution is then selected and
stored among the solutions P(t).

After initialization, the iterative part of the algorithm begins, and a set of binary
solutions P(t) is formed by observing the Q(t − 1) population; each binary solution in P(t)
is evaluated to give the fitness value. In the next step, called “update Q(t)”, a set of qubit

Machines 2024, 12, 569 21 of 50

chromosomes qt
j is updated by applying an appropriate quantum gate U(t). A quantum

gate is a reversible gate represented by a unitary operator U acting on the qubit basis states,
and it satisfies the relation U+U = UU+, where U+ is the Hermitian adjoint of U. The
quantum gate is selected or designed in agreement with the considered practical problem
to be solved; for example, the rotation gates can be used for knapsack problems, and it is
given as follows:

U(θ) =

[
cos (θ) −sin (θ)
sin (θ) cos (θ)

]
(59)

where θ is the rotation angle. For instance, a qubit amplitude probability
[
αi βi

]T in a
chromosome can be updated by a quantum rotation that is given as follows:[

α′i
β′i

]
= U(θi)

[
αi
βi

]
(60)

where θi = s(αi,βi)∆θi, and s(αi,βi) is a function to determine the sign of θi, and ∆θi is
the variation of θi−1. The functions s(αi,βi) and ∆θi are chosen in agreement with the
lookup table (as indicated in reference [55]), which is based on experience and experiments;
∆θi is a key parameter because it influences the computation quality and efficiency of the
method; if it is too small, the number of iterations might be too big, whereas when it is too
large, the solution might be trapped into divergent locations or give rise to a premature
convergence to a local optimum [11].

Thanks to this step, the qubit chromosomes move and can converge to a better solution.
In the next step, among the P(t) solutions, the best one is selected and compared with the
previous best one; if the new solution is better than the previous one, the older solution is
discarded; otherwise, the old one is retained. By the application of some genetic operators,
it is also possible to obtain mutations and crossovers of chromosomes; the mutation gives
rise to new individuals characterized by a small change, whereas the crossover allows the
generation of new individuals by combining parts of two or more different chromosomes.
Genetic operators make the probability of the linear superposition of states change; however,
mutation and crossover are not needed in the QGA because the quantum representation
provides a diversity in chromosomes and the application of genetic gates with a high
probability of variation can result in worse performance.

The diversity of the QGA can provide better convergence than conventional GAs,
which can deal only with fixed 0 and 1 information. Moreover, the QGA has a speed of
calculation

√
N times faster than the speed of the traditional genetic method. The main

steps of the QGA are summarised as follows:

1. Initialize of Q(t = 0).
2. t = t + 1.
3. Observe Q(t − 1) and create P(t).
4. Evaluation of P(t).
5. Update Q(t) using quantum gates U(t)
6. Store the best solution among P(t).
7. If max generation is not reached or convergence criteria are not satisfied, repeat from

step 2.

An Adaptive Quantum-Inspired Evolutionary Algorithm for Localization of Vehicles

The authors in reference [11] introduce a method based on an Adaptive Quantum-
Inspired Evolutionary Algorithm (AQIEA) to estimate the calibration parameters for a
real-size intelligent vehicle that can be driven along a non-predefined road path. They
use the Differential Global Positioning System (DGPS) as a ground truth and propose
an optimization-based calibration method to reduce the systematic errors of wheeled
odometers (the differences between the actual wheel diameters and the nominal diameters)
and the gyroscope (initial installation error due to misalignment of the sensor with the
longitudinal axis of the vehicle). The diameter of the left and right rear wheels and the

Machines 2024, 12, 569 22 of 50

heading of the gyroscope are considered as the calibration parameters to be optimized to
reduce the localization errors in the dead reckoning.

The dead reckoning model can be expressed as follows:

xt+∆t = xt + ∆d·cos (ϑt + ∆ϑ/2)
yt+∆t = yt + ∆d·sin (ϑt + ∆ϑ/2)
ϑt+∆t = ϑt + ∆ϑ

(61)

where x, y, and ϑ are, respectively, the coordinates of the vehicle along the x and y-direction
in the Cartesian coordinate system and the heading of the vehicle at time t; ∆t is the
sampling period; ∆d is the incremental travel displacement of the vehicle, and it can be
expressed as ∆d = ∆dr+∆dl

2 , where ∆dr(l) is the displacement of the right (left) rear wheel
of the vehicle, and ∆ϑ is the heading change during the sampling period.

The wheel displacement can be expressed as follows:

∆dr =
∆Nr(l)

Rr(l)
πDr(l) (62)

where ∆Nr(l) is the increment of the encoder pulses of the right (left) during the sampling
period, Rr(l) is the encoder resolution of the right (left) wheel in the unit of pulses per
revolution, and Dr(l) is the nominal diameter of the right (left) wheel.

In the real application, this model is influenced by systematic errors and random
errors; for example, considering the odometers, the former are due to differences between
wheel diameters, different nominal diameters, and the misalignment of wheels; the latter is
due to the limited resolution of encoders, the limited sampling rate, the condition of the
road (rough surface), the wheel slippage, and so on.

The systematic errors can be compensated and by including them in the model, the
displacements and heading variation are expressed as follows:

∆
∼
dr = ∆dr + c1

∆
∼
dl = ∆dl + c2

∼
ϑt = ϑt + c3

(63)

where the symbol ∼ denotes the new variables that include systematic errors, and c1,
c2, and c3 are the parameters to compensate for the right wheel diameter, the left wheel
diameter, and the misalignment of the gyroscope, respectively. By considering these errors,
the model represented by Equation (61) is rewritten as follows:

∼
xt+∆t =

∼
xt +

∆
∼
dr+∆

∼
dl

2 ·cos (
∼
ϑt + ∆

∼
ϑ/2)

∼
yt+∆t =

∼
yt +

∆
∼
dr+∆

∼
dl

2 ·sin (
∼
ϑt + ∆

∼
ϑ/2)

∼
ϑt+∆t =

∼
ϑt + ∆t.

(64)

The positioning error Ei at the i-th sample is defined as the difference between the data
provided by DGPS and the dead reckoning method, and it is computed by the following:

Ei

(
c1, c2, c3, pGPS

i , pDR
i

)
=

√(
xGPS

i − ∼
xi

)2
+
(

yGPS
i − ∼

yi

)2
(65)

for i = 1, 2, . . . , N where N is the total number of samples.
Then, it is possible to formulate the optimization problem, which is expressed

as follows:
minimize : M(c1, c2, c3)

subject to :


cL

1 ≤ c1 ≤ cU
1

cL
2 ≤ c2 ≤ cU

2
cL

3 ≤ c3 ≤ cU
3

(66)

Machines 2024, 12, 569 23 of 50

where M is the objective function to be minimized with respect to c1, c2, and c3, and the
superscript L and U denote the low and upper limits, respectively, for the considered
variables. Two different optimization objective functions are considered to determine the
optimal calibration parameters; the first one is the maximum positioning error, which is
defined as follows:

M = max Ei, (67)

and the second one is the mean positioning error, defined as follows:

M =
1
N

N

∑
i=1

Ei (68)

To solve the optimization problem, the authors use the AQIEA, which is an evolution
of the QGA. In the adaptive method, the lookup table is not used because it is substituted
by a different approach based on the idea of choosing as input for the quantum gate either a
large value for ∆θi or a small one. The former is used when an individual is away from the
optimal solution, and it needs to bring individuals quickly towards the optimal solution;
the latter is used to avoid an individual moving away from the optimal solution when it is
going to be reached. Then the magnitude of the rotation angle is obtained by the following:

∆θi =

{
θmax − (θmax − θmin)

f−fave
fmax−fave

f > fave

θmax f ≤ fave
(69)

where θmax and θmin are two positive real numbers (0.001π ≤ θmin < θmax < 0.5π), fmax is
the maximum fitness in the current population, fave is the average fitness of the individuals
in the current population, and f is the fitness of the selected individual. In such a way, an
adaptive change in the rotation angle magnitude of the quantum rotation gate is obtained.

The sign of the rotation angle is determined by the following:

s(αi,βi) =


sgn
((

o*
i − c

)
αiβi

)
αiβi ̸= 0

0
(
αi = 0 and o*

i = 1
)

or
(
βi = 0 and o*

i = 0
)

±1 otherwise

(70)

where sgn is a function that provide the sign, o*
i is the observed state (0 or 1) of the i-th

qubit of the best individual, and c is a positive real number between 0 and 1. The proof of
(70) is given in reference [11].

Moreover, to improve global searching and to avoid being trapped in local optimal
minima, an adaptive quantum mutation operation is introduced (unlike the traditional
QGA, where mutations are not used). Given a selected chromosome in the population, the
mutation operation is conducted based on a mutation probability pm:

pm =

{
pmax − (pmax − pmin)

f−fave
fmax−fave

f > fave

pmax f ≤ fave
(71)

where pmax and pmin are two small positive real values between 0 and 1. It is observed,
for example, that for an individual with f = fmax, pm is 0 and no mutations are applied.
The mutation is applied by choosing two random positions in the selected individual, and
two qubits are mutated by a quantum-not gate that exchanges the values of the amplitude
probabilities; the gate is defined as follows:

U(θ) =

[
0 1
1 0

]
. (72)

3.6. Differential Evolution Algorithm

The DE algorithm is a power population-based and stochastic evolutionary algorithm
to solve continuous global optimization problems that can be constrained or unconstrained;

Machines 2024, 12, 569 24 of 50

it maintains a population of candidate solutions and creates new candidate solutions by
combining existing ones according to its formula and then keeping whichever candidate
solution has the best score or fitness on the considered optimization problem. In this way,
the optimization problem is treated as a black box that provides a measure of quality given
by a candidate solution.

The main steps of the DE algorithm are as follows: (i) generate the initial population
of the specified size; the population evolves by using (ii) mutation, (iii) crossover, and (iv)
selection operators during each generation; and (v) step (ii) is repeated until a termination
criterion is obtained [56].

In the initialization step, a number N of populations is set and each of them has a
number M of D-dimensional vectors (D is a number related to the nature of the problem),
which are potential solutions to the problem. The i-th individual, i.e., the i-th D-dimensional
vector, is given as follows:

xi,G =
{

x1
i,G, x2

i,G, . . . , xD
i,G

}
(73)

where G identifies the number of the generation. Initial individuals are set with the
following formula:

xi,0 = xmin + rand(0, 1) ∗ (xmax − xmin) (74)

where xmin and xmax are vectors which identify the limits of the solution, and rand(0, 1) is
a function to generate random individuals with a normal distribution.

In the mutation step, mutation vectors vi,G are generated for each individual of a pop-
ulation, which is called the target vector. The basic mutation strategies are as follows [57]:

(1) DE/rand/1 : vi,G = xr1,G + F(xr2,G − xr3,G) (75)

(2) DE/best/1 : vi,G = xbest,G + F(xr1,G − xr2,G) (76)

(3) DE/current to best/1 : vi,G = xi,G + F(xbest,G − xi,G) + F(xr1,G − xr2,G) (77)

(4) DE/best/2 : vi,G = xbest,G + F(xr1,G − xr2,G) + F(xr3,G − xr4,G) (78)

(5) DE/rand/2 : vi,G = xr1,G + F(xr2,G − xr3,G) + F(xr4,G − xr5,G) (79)

where r1, r2, r3, r4, and r5 are integers randomly generated in the range between 1 and
M, F is a scale factor, and xbest,G is the best individual vector in a population during the
G-th generation.

As for the crossover step, trial (or test) vectors ui,G are created by crossing each
individual xi,G (or target vector) and the corresponding mutation vector vi,G; it needs
to form a set of trial vectors used in the selection step; there are two types of crossover
methods largely used in the literature: binomial and exponential. In the former, the test
vector is given as follows:

uj
i,G =

{
vj

i,G if randi,j(0, 1) ≤ CR

xj
i,G otherwise

(80)

where CR is the crossover factor in the range 0 and 1 and controls the probability that
a component of a trial vector is obtained from either a mutant or a previous individual,
and j is between 1 and D. In this method, the distribution of the number of parameters
inherited from the mutant is (almost) binomial. On the other hand, in the latter, a random
integer r in the range [1, D] is chosen and it is the component starting point for the crossover
process. The components for the trial vector uj

i,G are donated from the mutated vector until
a Bernoulli experiment linked to a probability CR is true [58].

uj
i,G =

{
vj

i,G j = r, r + 1, . . . until Bernulli experiment is true or j = D

xj
i,G otherwise .

(81)

Machines 2024, 12, 569 25 of 50

In the end, in the selection step, the objective function of the problem is evaluated for
all generated trial vectors and the corresponding target vectors; the best one is selected,
and it is a new individual of the next generation. The selection is given as follows:

xi,G+1 =

{
ui,G if f(ui,G) ≤ f(xi,G)
xi,G otherwise

(82)

There are two main differences between the GA and DE algorithm: (i) the GA is
conducted by changing some genes in the chromosomes, while in the DE algorithm, the
mutant individuals are obtained by adding the difference between two individuals to a
third individual, which has a stronger global search capability; (ii) in the traditional GA,
offspring individuals replace their parent individuals with a certain probability, while in
the DE algorithm, such a condition only happens when the fitness of the offspring is better
than the fitness of their parents; in such a way, a greatly increased convergence speed is
provided [59].

Visible Light Communication Using a Modified Differential Evolution Algorithm

Authors in reference [59] have developed a Visible Light Communication (VLC) system
where the VLC positioning model is transformed into a global optimization problem
and a DE algorithm is used to calculate the z-coordinate of the receiver by adopting a
modified DE algorithm that is called the self-adaptive DE algorithm; in this work, the 3D
problem is reduced to a 1D problem, improving the speed of localization. Because the
individual dimension is one (only the z-coordinate), the crossover process is ignored. The
3D positioning strategy exploits some specific equations to calculate the overlapped area of
three circles determined by the position of the sources and the target, and is obtained by
the projection on the x-y plan; the DE algorithm is used to solve the specific equation and
calculate the z-coordinate by finding the optimal fitness value; the x and y coordinates are
calculated by exploiting three equations for trilateration in the projection plan.

The proposed algorithm has three steps: (i) the generation of the population, (ii) calcu-
lation of the fitness, and (iii) mutation operator. The fitness function evaluates the quality of
each of the candidate solutions in the population. In the VLC-based 3D positioning system,
the individual with the smallest overlapped area can be regarded as the estimated position.
The fitness equation can be treated as the overlapped area S and is represented as follows:

fitness(z) = S (83)

If no overlapped area is formed between the three circles, the fitness is zero; the
presumed height z is increased by 0.2 m for each iteration until the overlapped area
appears. If the fitness ≤ 10−7, then the currently estimated height jumps out of the iteration
loop and it is considered as the optimal solution ze; otherwise, the iteration process goes on
(step (iii)). In the case that the number of iterations reaches the maximum, and the fitness is
still higher than 10−7, the algorithm goes back to step (i).

The authors considered three types of DE algorithms: (i) DE/rand/1/binomial; (ii)
DE/current-to-best/1/binomial; and (iii) the proposed self-adaptive DE algorithm. The
first and the second are two traditional DE algorithms which adopt the strategy given in
(75) and in (77), respectively; furthermore, the DE/current-to-best/1/binomial benefits
from its fast convergence because the best solutions in the search space are used and its
performance is better than the performance of the DE/rand/1/binomial algorithm. As for
the third algorithm, the proposed self-adaptive DE algorithm is derived on the following
observation: as the iteration number increases, the difference among individuals is reduced,
and therefore a smaller amount of adjustment is needed because an individual has a better
fitness and most of its information can be retained; on the contrary, when the number of
iterations are low, the solution is still far from the optimal solution and a larger scaling factor
might help the exploration process. Then, the authors proposed the following variation:

vi,g+1 = xbest,g + F(xr2,g − xr3,g) (84)

Machines 2024, 12, 569 26 of 50

where F is defined as follows:

F =

(
|fit(xi)− fit(xbest)|

σ+ fit(xworst)− fit(xbest)

)
× (Fmax − Fmin) + Fmin (85)

where xbest and xworst are the best and worst individuals in the population, namely the
vectors with the lowest and highest fitness values in the entire search space, and σ = 10−13

is a constant added to avoid the zero division. In such a way, the scaling factor varies
between the maximum Fmax and minima Fmin values according to its difference with the
best individual at each generation.

3.7. Mind Evolutionary Algorithm

The Mind Evolutionary Algorithm (MEA) is a method which emulates the learning
modes and activities of the human mind. Unlike genetic-based algorithms, which use
mutation, crossing, and selection operators, in the MEA, an evolutionary process is also
exploited but with the difference that two operations named similartaxis and dissimilation
are adopted to overcome the drawback of the bad solutions generated during the mutation
process; furthermore, every generation’s evolutionary information is memorized, and it is
used to guide the evolution toward the global optimum [60].

The MEA steps are defined as follows:

1. Initialization.
2. Similartaxis and local competition.
3. Dissimilation and global competition.

In the initialization, two main spaces are considered: the superior group space, which
is composed of S superior groups, and the temporary group space with T temporary
groups. Every group is initialized with m individuals, which are generated by considering
an individual as the center and adopting a uniform distribution to generate the other
individuals around the center. Furthermore, every individual is scored in agreement with
their adaptability to the search space [60,61].

The similartaxis and local competition phase aims to make the subgroups mature by
performing a local competition. In every group, individuals compete with each other to
find the local optimum. To create a new generation, a winner who has the best score is
selected, and a new generation is created around it. Then, individuals are scored again
to identify if there is a better new solution or to keep the previous one; in such a way, a
new generation can be created, competition starts again, and so on. The information of
every new winner is recorded on the local billboard of the group. The generation process
in a group continues until the maximal and minimal scores within one group satisfy the
mature condition; then, the information related to the mature group is stored in the global
billboard. The process to make the group mature is named similartaxis and is performed
for both superior and temporary space [60,61].

In the dissimilation and global competition phase, all groups compete against each
other by observing the information reported on the global billboard. If, in the temporary
space, there is a group with a higher score than any group in the superior space, then this
temporary group will replace the bad groups in the superior space. Moreover, if the score
of any mature group in the temporary space is lower than the score of any group in the
superior one, this temporary group will be discarded, and new ones will be generated in
the temporary space with random values. The generation process is called dissimilation,
and in such a way, the similartaxis can continue in every group [60,61].

The aforementioned operations are repeated until the scores of the groups in the
superior space are so high that they cannot be further improved. At this point, the algorithm
is considered convergent, and the winning individual of the group with the best score in
the superior space is the global optimum [61]. The architecture of the MEA is reported in
Figure 8 [60].

Machines 2024, 12, 569 27 of 50

Machines 2024, 12, x FOR PEER REVIEW 9 of 9

Figure 8. The architecture of MEA. Figure 8. The architecture of MEA.

A Mind Evolutionary Algorithm-Based Geomagnetic Positioning System for
Indoor Localization

The authors in reference [60] propose a solution to solve the problem in the pedestrian
dead reckoning field where a large error is introduced when a walker goes backwards or
laterally but the position is still updated forward. To address this problem, they propose
a system for the indoor localization of smartphones based on magnetic positioning and
the pedestrian dead reckoning (PDR) method, which are fused using an Extended Kalman
Filter (EKF).

To improve the performance of magnetic positioning, the MEA-based heuristic search-
ing strategy is adopted to search for the optimal magnetic position.

The geomagnetic features are extracted using a three-axis magnetometer installed on
a smartphone. The magnetic vector measured in the device coordinate reference system
is transformed into the equivalent vector in the geographic coordinate reference system
in order to obtain a measurement that is independent of the attitude of the device. The
transformation can be expressed as follows:

BG =
(

Cb
n

)T
BD (86)

where BG is the magnetic vector in the geographic coordinate system, Cb
n is the matrix for

the transformation, and BD is the magnetic vector in the device coordinate system.
Then, five magnetic features for matching are extracted from BG and they are the

three magnetic vector components, the horizontal component of the magnetic field, and the
magnitude of the vector.

A fine-grained magnetic database is constructed by linearly interpolating the features
and the coordinates. Once the fingerprint has been obtained, the MEA can be performed
to estimate the magnetic position. The proposed algorithm exploits the large number of
samples that are provided by the measurement process, which can be considered to be
at a high frequency; over an interval time of one second, these samples generate many
temporary positions that are used to generate a population for the MEA; by considering an
epoch every second identified by k, the population M(k) can be represented as follows:

M(k) = {gk(x1, y1), . . . , gk(xi, yi), . . . , gk(xn, yn)} (87)

where gk(xi, yi) is the i-th individual (i.e., the estimated position) of M(k), xi and yi are
the coordinates values, i = 1, 2, . . . , n is the number of the sample, and n is the sampling
frequency. The score is calculated considering the following formula:

score{k, i} =
1

∥G(k − 1)− gk(xi, yi)∥2
(88)

Machines 2024, 12, 569 28 of 50

where G(k − 1) is the previous estimated magnetic position.
As the first step, the MEA initializes the population (using the data generated by

measurements), and the temporary individuals (i.e., the geomagnetic positions) are scored
using Equation (88). The positions with higher scores are selected as centers of the superior
groups, whereas the positions with lower scores are selected as centers of the temporary
groups. Around the centers, individuals of the population are generated with a random
distribution, and they are scored using Equation (88).

As the second step, the MEA executes the similartaxis where individuals within the
same subgroup compete by comparing their scores. The second step is completed when
the mature condition |scoremax − scoremin| ≤ ε is obtained.

In the end, as the third step, the MEA executes dissimilation for the global competition.
The MEA executes similartaxis and dissimilation until convergent conditions are satisfied
and the individual with the best score in the mature superior groups is selected as the
estimation of the final magnetic position.

3.8. Particle Swarm Optimization

PSO algorithms are based on a simplified social model that tries to emulate the
behavior of a swarm of animals such as bees or birds that are searching for a food source. It
can be explained as follows [15,62].

PSO finds a solution by exploiting information from each individual of the population
(or swarm) and also information from the swarm as a whole. At the beginning of the
process, the number of particles in the swarm and the number of iterations are set, and an
initial population distributed throughout the design space is randomly generated. In the
next step, the position of each particle is updated using the following formula:

xq+1
i = xq

i + vq
i ∆t (89)

where i is the i-th individual in the swarm, q is the q-th iteration, vq
i is the velocity vector

of the i-th individual at the q-th iteration, and ∆t is the time increment. At the beginning,
the velocity vector of each particle is initialized randomly and is updated at each iteration
using the following formula:

vq+1
i = ωvq

i + c1r1
(pi − xq

i)

∆t
+ c2r2

(pg − xq
i)

∆t
(90)

whereω is the inertial parameter, r1 and r2 are random numbers between 0 and 1, c1 and c2
are the trust parameters, pi is the best point found so far by the i-th particle, and pg is the
best point found by the swarm. The search behavior of the algorithm is controlled by the
inertial parameterω; the larger the value, the larger the focus in global searching, whereas
the smaller the value, the larger the focus in local searching; reference values for these
two extremes are 1.4 and 0.5, for either a more focused global search or for more focused
local search, respectively [15]. The c1 and the c2 are two trust parameters; the former, also
referred to as cognitive memory, indicates how much the particle trusts itself, whereas the
latter, also referred to as social memory, indicates how much the particle trusts the group.
The pg can be defined as either considering some best points among a subset of particles or
considering the best point among all particles of the swarm. The values of ω, c1, and c2
parameters must be tuned in agreement with the managed problem.

The main drawbacks of the method are the tuning parameters and the fact that it is an
inherently unconstrained optimization algorithm. The last one is a common characteristic
of most of the evolutionary algorithms; researchers have tried to deal with this problem
by proposing many constraint-handling techniques for evolution, and among these, the
penalty function approach is the most widely used because it has the advantage that it is
easy to implement [15].

Machines 2024, 12, 569 29 of 50

3.8.1. Particle Swarm Optimization-Based Artificial Neural Network (PSO-ANN)

The authors in reference [63] use an Artificial Neural Network (ANN) to solve the
fingerprint localization problem by exploiting the Received Signal Strengths Indicator
(RSSI) of the Wi-Fi signal in an indoor environment. The ANN provides the localization of
the target, and it is trained by a traditional PSO algorithm; this approach provides a strong
learning skill which allows one to better deal with complicated indoor environments. Tradi-
tionally ANNs are trained by exploiting a backpropagation algorithm that is characterized
by a feedforward propagation of signals and a backpropagation of errors; this approach
requires significant time for training and can be easily trapped in a local minimum. To
solve these issues, authors adopt the PSO algorithm to find the parameters of the trained
ANN; they define the following:

(i) Each fingerprint is composed by F = [φi(t), P], where φi(t) is the RSSI value at time t
of the i-th Wi-Fi source, and P is the position of the collected fingerprint.

(ii) The particle of the PSO is given as particlej = [W1, . . . , Wn, B1, . . . , Bn], where Wj and
Bj represent the weight and bias of the j-th neuron.

(iii) The updating equations for the particle position and velocity are defined by
the following:

pk+1 = pk + vk+1
vk+1 = ωvk + r1c1 × (pbestk − pk) + r2c2 × (gbestk − pk)

(91)

where vk is the velocity in the k-th iteration, pk is the particle in the k-th iteration, c1 and c2
are two acceleration coefficients, and pbestk and gbestk are the personal best position and
global best position in the k-th iteration, respectively, r1 and r2 are two random constriction
coefficients in the range (0, 1) sampled from a uniform distribution to prevent explosion and
induce particles to converge on optima, andω is the inertia factor which helps to control
the ability of particles to jump out of the local optimum and find the global optimum.

Considering the above definitions, the proposed algorithm follows these steps:

1. Set the particle group size M, the max iteration number m, and the expected error e.
Then, initialize randomly the initial position and velocity of the particles;

2. For all RSSI training sets [φi(t), P], put [φi(t)] in the ANN model and compute the

ANN output
∼
P;

3. Update the pbest and gbest according to the distance between the predicted position
∼
P

and the real position P;
4. Update the particle position and velocity according to Equation (91);

5. Repeat steps 3 and 4 until the distance between
∼
P and the real position P is less than

the expected error or the max iteration number n has been reached.

3.8.2. Particle Swarm Optimization-Based Minimum Residual Algorithm

The authors in reference [64] adopt an RSSI range-based localization method for a
mobile robot working in an indoor environment where the localization is estimated by a
Minimum Residual (MinRe) localization algorithm based on PSO.

According to the principle of MinRE localization, the sum of the target’s squared
residual between the real and the measured distances is given as follows:

f(X) =
N

∑
i
{∥X − ANi∥ − dmes

i }2 (92)

where f(X) is the function to be minimized, X is the real vector position to be found on the
target, ANi is the vector position of the i-th anchor node, N is the total number of nodes,
and dmes

i is the measured distance from the RSSI, which can be expressed as dmes
i = di +ωi,

where di is the unknown real distance andωi is the noise.

Machines 2024, 12, 569 30 of 50

The term ∥X − ANi∥ represents the Euclidean distance between X and ANi and it can
be expressed as follows:

∥X − ANi∥ =
√
(x − xi)

2 + (y − yi)
2(z − zi)

2 (93)

where x, y, and z are the coordinates of the position of the target X, and xi, yi, and zi are the
coordinates of the position of the ANi. If there is no error, f(X) would be zero.

The PSO algorithm is applied to estimate the position of the target and the final
problem can be written as follows:

X = arg min f(X) =
N

∑
i

{√
(x − xi)

2 + (y − yi)
2 + (z − zi)

2 − dmes
i

}2
(94)

Setting the number of particles M, the maximum number of iterations W, considering
w as the index of the particle updating iteration for this problem, and m as the index of the
m-th particle, the solution of the problem follows these steps:

1. Initialization, where the particles and their initial velocity are generated randomly
within the target environment: X1

m =
[
x1

m, y1
m, z1

m
]
, and V1

m =
[
vx1

m, vy1
m, vz1

m
]
. The

fitness f(X1
m) of the m-th particle is calculated and the initial individual best value is

set: B1
m = X1

m. The initial global best fitness of the particle swarm is the particle which
achieves the minimum of f(X) and it is represented as B1

g = argmin f(X1
m) where

m = 1 : M.
2. Particle velocities and positions, which are updated in agreement with the individual

best and global best values atω-th iteration for 2 ≤ w ≤ W.

Vw
m = ωVw−1

m + c1ξ
(

Bw−1
m − Xw−1

m

)
+ c2η

(
Bw−1

g − Xw−1
m

)
Xw

m = Xw−1
m + Vw−1

m

(95)

whereω is the inertia weight that controls the exploration search region, c1 and c2 are
the acceleration constants between 0 and 2, and ξ and η are random numbers between
0 and 1.

3. The updating of the optimal particle and optimal swarm is initiated:

Bw
m =

{
Bw−1

m , f(Xw
m) > f(Bw−1

m)

Xw
m, f(Xw

m) ≤ f(Bw−1
m)

Bw
g =

{
Bw−1

g , minm=1:Mf(Xw
m) > f(Bw−1

g)

arg (minm=1:Mf(Xw
m)), minm=1:Mf(Xw

m) ≤ f(Bw−1
g).

(96)

4. The stopping criterion is checked: if w < W, then set w = w + 1 and go to step 2;

otherwise, the estimated position is
∼
X = B

w

g .

The estimated
∼
X is the position at the time t where the localization is estimated.

3.8.3. Mobile Robot Localization Based on PSO and Simultaneous Perturbation

The authors in reference [65] propose a mobile robot localization based on the PSO
estimator where the system exploits the dynamic optimization to find the best robot
pose estimate, recursively. The proposed solution is an alternative to using EKF or PF.
PSO searches recursively and stochastically along the state space for the best robot pose
estimation. Unlike the localization based on PF, in the proposed method, the resampling
step (where samples with negligible weights are discarded and substituted by resampling)
is not required, and no noise distribution is required either. The robot localization xt
at the t-th epoch is modelled like a Markov process (a random process in which the
future is independent of the past given the present), where the initial distribution is p(xt).

Machines 2024, 12, 569 31 of 50

Considering a maximum, a posteriori point of view, the localization estimation can be
considered as an optimization problem, where the process seeks to estimate the pose that
maximizes the a posteriori probability density, defined as follows:

arg max
x

p(xt∣∣zt) (97)

where xt = {x0, . . . , xt} is the history of the estimated positions, and zt = {z0, . . . , zt} is the
history of the observations. By applying Bayes, the posterior over the robot path is given
by the following:

p
(
xt∣∣zt) = ηp(zt

∣∣∣xt, zt−1)p(xt

∣∣∣xt−1, zt−1)p(xt−1
∣∣∣zt−1) (98)

where η is a normalizing constant. The problem can be reformulated as follows:

arg max
x

(
t

∏
i=1

p
(

zi

∣∣∣xi, zi−1
) t

∏
i=1

p
(

xi

∣∣∣xi−1, zi−1
)

p(x0)

)
(99)

where p(x0) = p(xt−1
∣∣zt−1) and i is an index to count the epochs. After some mathematics

passages, the objective function can be expressed as follows:

f0(xt) = log p(zt|xt) + log p(xt|xt−1) + f0(xt−1) (100)

where f0(xt−1) considers the previous history for all the t − 1 epochs; it is suitable for an
iterative application.

Now, the following is considered: (i) the motion model that gives the robot pose at
time t. Specifically, this is considered as follows:

xt = f(xt−1, ut) +ωt−1 ∼ p(xt|xt−1, ut) (101)

where f is a non-linear function, ωt is the Gaussian noise distribution with covariance
matrix Qt, and ut is the control; (ii) the measurement model for the observed Qt feature is
defined as follows:

zt = h(xt, θ) + vt ∼ pθt(zt
∣∣xt) (102)

where h is the function of the model, vt is the measurement Gaussian noise distribution
with covariance matrix Rt; (iii) the state transition probability density pωt(xt

∣∣xt−1) derived
from the robot motion model and the observation probability density pυt(zt|xt) derived
from the observation model the problem is rewritten in the following form:

min
xt

(log pυt(zt|xt) + log pωt(xt
∣∣xt−1)) (103)

wherepυt(zt|xt) ∝ exp
(

1
2(zt − ẑt)R−1

t (zt − ẑt)
T
)

and pωt(xt

∣∣∣xt−1) ∝ exp
(

1
2(xt − x̂t)Q−1

t (xt − x̂t)
T
)

,
where ẑt and x̂t are the estimated measurement vector and the estimated state vector, respec-
tively; then, the fitness function can be written as follows:

Fitness = (zt − ẑt)R−1
t (zt − ẑt)

T + (xt − x̂t)Q−1
t (xt − x̂t)

T. (104)

It is a quadratic and strictly convex function; the problem is solved using PSO, which
can be applied to complex problems such as non-linear and non-differentiable problems.

It is now assumed that the current particles of PSO are given as follows:

CG
t =

{
xG

t,1, . . . , xG
t,Np

}
(105)

where CG
t is an Np dimensional vector, and xG

t,i represents each candidate solution i to the
optimization problem at iteration G at time t. In standard PSO, the local information of an

Machines 2024, 12, 569 32 of 50

objective function obtained, for example, from the gradient, is not exploited. This means
that even if a search point of PSO around the optimal value exists, the particle could go past
the optimum point, since local information is not considered; nevertheless, the searching
ability of PSO can be improved when gradient information is considered, but with the risk
of being trapped in a local minimum and missing the global solution of the problem. In
order to overcome this problem, authors combine PSO with the Simultaneous Perturbation
(SP) method and gradient. The SP is a method that is given as follows:

xt+1 = xt + a∆gt

∆gj
t =

f(xt+ct)−f(xt)

cj
t

(106)

where a is a positive constant, ct and cj
t are a perturbation vector and its j-th element, which

is determined randomly, and ∆gj
t represents the j-th element of ∆gt, which estimates the

gradient.
As proposed in reference [66], the combination of PSO and SP gives rise to the follow-

ing equations:
xt+1 = xt + ∆xt
∆xt+1 = χ(−a∆gt +ϕ1(pt − xt) +ϕ2(nt − xt))

(107)

where xt is the particle, pt is the best value of the particle, nt is the best value of the swarm,
ϕ1 and ϕ2 are two positive numbers in a predefined range, and χ is a gain coefficient. To
provide global and local search capabilities at the same time, and keeping in the meantime
population diversity, the authors define a combination of PSO and SP, given as follows:

xi
t = xi

t−1 + vi
t (108)

vi
t =


vmax vi

t > vmax

w(−γ∇ψ
(
xi

t−1
)
) + c1r1

(
Ppest − xi

t−1
)
+ c2r2(Pgest − xi

t−1) −vmax < vi
t < vmax

−vmax vi
t < −vmax

(109)

where c1 = 2, c2 = 2 are positive coefficients, r1 and r2 are random numbers in the interval
(0, 1), vmax is the maximum velocity limited to 10% of the dynamic range of the variables
on each dimension, w is the inertial weight, γ is a positive constant, and ∇ψ is the gradient
of the objective function.

3.9. Differential Evolution and Particle Swarm Optimization: DEPSO

The authors in reference [67] propose a hybrid algorithm that combines the DE algo-
rithm and PSO and is composed of two main steps. In the former, mutation and selection
operators are used to produce a new population, while in the latter, PSO is adopted to
explore local optimums, followed by crossover and selection operations. In this way, it is
possible to increase and decrease the extent of searching regions for the population.

The advantages are that the algorithm overcomes degradation defects, enhances the
effectiveness of the particles, and improves accuracy and robustness.

Hybrid Algorithm DEPSO

In reference [67], authors use DEPSO in a Particle Filter (PF) algorithm to reduce the
particle number and the computational time complexity. The DE algorithm aims to create a
new candidate, and to select the best ones among the current individuals and the candidate
for the next generation. In this work, the DE steps are developed as follows:

1. Mutation. Three individuals from the population are randomly selected and the i-the
mutant vector vi

k is generated with this equation:

vi
k(g + 1) = F

(
xr2

k (g)− xr3
k (g)

)
+ xr1

k (g) (110)

Machines 2024, 12, 569 33 of 50

where F is the mutation parameter, r1, r2, and r3 identify the three selected individuals
among N, k identifies the k-th step of the PF, and g identifies the generation of the DE.

2. Crossover. This step performs the crossover operator to generate a candidate for
the trial vector and the current individual. The j-th dimension of the candidate is
calculated by the following:

ui,j
k (g + 1) =

{
vi,j

k (g + 1) if((rand(0, 1) ≤ CR)or(j = jrand))

xi,j
k (g) otherwise

(111)

where jrand is a random integer in the range of [1, n], where n is the number of
dimensions of the decision variables and CR is the crossover parameter.

3. Selection. In this step, the fitness function of ui
k(g + 1) and xi

k are compared and the
best current individual is selected.

xi
k(g + 1) =

{
ui

k(g + 1) if(f(ui
k(g + 1)) ≥ f(xi

k(g)))

xi,j
k (g) otherwise

(112)

4. End. The end condition is reached when a maximum number of iterations are exe-
cuted or when the population’s average fitness meets requirements. Otherwise, the
algorithm is repeated from step 1.

Considering the PSO algorithm, each particle of the swarm has a position X and a
velocity V; it is recalled that their evolution is classically based on the following formulas:

Vi = w·Vi + c1·rand·(pbesti − Xi) + c2·rand·(gbesti − Xi)
Xi = Xi + Vi

(113)

where w is the inertia weight, pbesti is the best position of particle Xi so far; gbesti is the
best position of the swarm so far; rand is a random number between (0,1); and c1 and c2
are acceleration constants.

The DE algorithm and PSO have both advantages and disadvantages; for example,
the differential algorithms have (i) a good global search capability due to the mutation step,
which increases the diversity of the population, (ii) good local search capability, which is
improved by the crossover step, and (iii) a memory function due to the selection process;
however, the convergence speed is slow. On the other hand, PSO is characterized by a
faster convergence rate, but it has the drawback that it might be stuck in a local optimum
without converging to the global one because the diversity of the population can be lost
very easily. Then, to exploit the characteristics of PSO, i.e., the high rate of convergence and
the possibility to explore a local minimum quickly, Equation (113) is simplified as follows:

Vi = w·Vi + c1·rand·(gbesti − Xi)
Xi = Xi + Vi

(114)

After the aforementioned considerations, the hybrid algorithm DEPSO can be repre-
sented with the following steps:

1. Set t = 0, and randomly initialize all individual positions Xi and velocities Vi.
2. t = t + 1.
3. Calculate individual fitness function f(Xi).
4. Update the position of particles using the equation for mutation (110) and

selection (112).
5. Select the individual in the best position of the swarm so far.
6. Update the position and velocity of particles according to (114).
7. Perform crossover and selection using (111) and (112), respectively.
8. If the counter is larger than a threshold, then exit; otherwise, return to step 2.

Machines 2024, 12, 569 34 of 50

Authors claim that DEPSO avoids particle degradation, improves positioning accuracy,
reduces the number of particles needed for positioning, and enhances the diversity of
particles and robustness of the system.

3.10. Bat Algorithm

The bat algorithm (BA) idea is inspired by the echolocation behavior of bats to find
food; in nature, they usually emit short pulses, and when they encounter food, they change
the frequency to tune the echolocation time and increase the location accuracy of the
prey [68]. The parameters of loudness and frequency determine the global search capability,
and if a bat is near its scope, the impulse rate increases, whereas loudness decreases. In
the standard bat algorithm, each individual i has a defined position xi(t) and velocity
vi(t) in the search space, which are updated iteration by iteration with the following set
of equations:

xi(t + 1) = xi(t) + vi(t + 1) (115)

vi(t + 1) = vi(t) + (xi(t)− p(t))·fi (116)

fi = fmin + (fmax − fmin)·β (117)

where t is the t-th iteration, p(t) is the current global optimal solution, fi is the frequency
of the i-th individual, fmin = 0, fmax = 1, and β is a random vector in the range [0, 1] with
uniform distribution.

To implement the local search strategy, the following equation is considered:

xi(t + 1) = xi(t) + εA(t) (118)

where ε is a random number in the range [−1, 1] and A(t) is the average loudness of
the population.

The global search is controlled by loudness Ai(t + 1) and pulse rate ri(t + 1), which
are updated with the following equations:

Ai(t + 1) = αAi(t) (119)

ri(t + 1) = ri(t) + (1 − exp (−γt)) (120)

where 0 < α < 1 is the amplitude decrease rate and is a constant term, and γ > 0 is a
constant. The initial values of loudness Ai(0) and pulse rate ri(0) are set in the initialization.

The steps of the standard algorithm are as follows:

1. Initialize, for each bat, the position and velocity parameters and randomly generate
the frequency with Equation (117).

2. Update the position and velocity of each bat with (115) and (116).
3. For each bat, generate a random number rand1 in the range [0, 1];

if rand1 < ri(t), then update the temp position with (118) and calculate the fitness
value for the corresponding i-th bat.

4. For each bat, generate a random number rand2 in the range [0, 1];
if rand2 < Ai(t) and if F(xi(t)) < F(pi(t)), where F is the fitness function, then update
the loudness with (119) and the pulse rate with (120).

5. Sort each individual based on fitness values and save the best position.
6. If the final condition is met, then exit; otherwise, go to step 2.

Mobile Robot Localization Based on the Leader-Based Bat Algorithm

The authors in reference [69] propose a modified BA to solve the mobile robot global
localization problem, which is often characterized by complex multimodal beliefs. In some
problems, the standard BA might provide a premature convergence solution. Authors
propose the leader-based bat algorithm (LBBA), introducing leaders who can influence the
behavior of other individuals. This gives rise to more stable particle movements at multiple

Machines 2024, 12, 569 35 of 50

local optimum points, providing a convergence to the global optimum in more complex
environments.

The LBBA is a nonparametric filter with N individuals, and each of them approxi-
mately corresponds to one region in the search space. The a priori states of individuals are
represented by a set of random samples, and this enables the simultaneous representation
of multiple optimal locations.

Unlike the standard BA, the LBBA uses both the best global g* and the best individual
x*. The last one enables a higher diversity of solutions in the population, and, in addition,
the performance and efficiency in the search for the global optimum are improved thanks
to the adoption of leaders, who promote the creation of different colonies, decreasing the
randomness of flight.

To determine the target position, the following object function is defined:

O(xi) =
(mi − m)

m
(121)

where mi is the measurement performed by the simulated sensor of the i-th individual, and
m is the measurement performed by the real robot sensor.

The main steps of a general LBBA are as follows:

• Step 1. Initialization of xi, vi where i = 1, . . . , N. Define the number of leaders
L = 1, . . . , Lmax.
Define the number of leaders L = 1, . . . , Lmax.
Initialization of frequency fi, impulse rate ri, and amplitude Ai.
Assess the fitness of each bat using the fitness function fit(xi).
Determine leaders x*

L with the fitness function.
Define the best global bat and the relative best fitness: x* and fit(x*).

• Step 2. Compute the following:

- fi = fmin + (fmax − fmin)·β;
- vi(t + 1) = vi(t) + (xi(t)− x*

L)·fi;
- x̂i = xi(t) + vi(t + 1), where x̂i is a temporary variable.

• Step 3. If rand1 > ri then x̂i = x* + δ, where x* is the best global variable, and δ is a
random displacement variable.

• Step 4. Estimate the fitness of x̂i using fit(x̂i).
• Step 5. Define new leaders x̂*

L.
• Step 6. If fit(x̂i) ≤ fit(xi) and rand2 < Ai, then compute the following:

- xi = x̂i;
- fit(xi) = fit(x̂i);
- ri = r(0)(1 − e−γt);
- Ai(t + 1) = αAi(t).

• Step 7. If fit(x̂i) ≤ fit
(
x*), then compute x* = x̂i, and fit(x*) = fit(x̂i).

• Step 8. If the condition is met, return x*; otherwise, repeat from step 2.

Authors claim that the LBBA has better performances when compared to other algo-
rithms for robot localization such as PF and PSO, showing the ability to escape from local
minima in highly complex environments. Moreover, it also succeeds in solving the robot’s
kidnapping problem without premature convergences.

3.11. Artificial Bee Colony Optimization Algorithm

The Artificial Bee Colony (ABC) algorithm is a metaheuristic search algorithm inspired
by the intelligent foraging behavior of honeybees in nature [70]. The algorithm is explained
as follows [71]. The colony of artificial bees is composed of three groups: employed bees,
onlookers, and scouts. The number of employed bees and onlooker bees is equal to the
number of food sources. Every bee can only exploit one food source at a time. The scout
bee was an employed bee that became a scout bee when it left the food source looking for a

Machines 2024, 12, 569 36 of 50

new one. A possible solution to the problem corresponds to a food source and the fitness of
a solution corresponds to the nectar amount of a source. Each employed bee first explores
the associated solution (or food source) according to their memories and explores possible
solutions in corresponding neighborhoods. Then, they fly back to the hive and share the
information about the food sources with the onlooker bees. The onlooker bees select the
food sources, and a source is chosen using a probability criterion based on the value of
fitness or amount of nectar: the food sources with more nectar have a higher probability of
being selected. If a food source does not provide any better solution after several times that
it is explored, the employed bee of that source becomes a scout bee and randomly selects a
new source as it continues the work as an employed bee. The main steps of the algorithm
are as follows [71]:

1. Initialization. A solution is considered a multi-dimensional vector xi and SN solutions
are randomly generated at the beginning; the components of the vector are generated
by the following equation:

xij = xmin
j + rand(0, 1)× (xmax

j − xmin
j) (122)

where i is one of the SN solutions, j is one of the D dimensions of the vector, the xmin
j

and xmax
j represent the lower and upper bound of the j-th dimension, respectively,

and rand(0, 1) provides a random number in the range [0, 1].
2. Employed bee phase. Each employed bee is associated with a solution xi and

then new solutions, vi, are explored (or new food sources are generated) using the
following equation:

vij = xij + rand(−1, 1)× (xij − xkj) (123)

where vij is the j-th component of a new solution, rand(−1, 1) provides a random
number in the range [−1,1], xkj is the j-th component of another food source xk that is
selected randomly from the remaining population, and k ̸= i. The old solution, xij,
and the new one, vij, are compared and the employed bee brings back the information
of the better one, i.e., the solution with a smaller objective value or the best fitness. It
is called the greedy selection strategy. The fitness values, fiti, are calculated with the
following equation:

fiti =

{
1

1+fi
fi ≥ 0

1 + abs(fi) fi < 0
(124)

where fi is the output of the objective function calculated using the xi solution.
3. Onlooker bee phase. The employed bees share the fitness information with the

onlooker bees. Each onlooker bee chooses a solution for itself using a probability
criterion: the higher the probability of a solution, the higher the possibility of being
chosen. The selection probability of the i-th solution is called the roulette wheel
selection and the probability pi is calculated as follows:

pi =
fiti

SN
∑

m=1
fitm

. (125)

After the selection, each onlooker bee generates a new solution in the surroundings
of the chosen solution by using (123). Each generated solution is compared with the
corresponding previous food source via the greedy selection strategy, and if the new
one is better, it is set as xij = vij. The difference between the updating process of the
employed bees and the onlooker bees is that the employed bees update all solutions,
while the onlooker bees only update the selected one.

4. Scout bee phase. A solution may be explored several times without providing a
better solution in the surroundings. After a pre-set number of explorations in the
surroundings of the same solution without better results, the solution is abandoned,

Machines 2024, 12, 569 37 of 50

and then the corresponding employed bee transforms into a scout bee to randomly
generate a new solution by using (122). Then, it continues as an employed bee.

Multistage Localization in Wireless Sensor Networks Using the Artificial Bee
Colony Algorithm

The authors in reference [72] propose a method based on the ABC algorithm to solve
the sensor localization problem in a wireless sensor network, providing some simulation
results. In the considered scenario, N nodes are deployed in a square plan, and each
of them has a communication range of r units. A few nodes of them are considered as
anchor nodes and they are in a known position; the other nodes are deployed in random
locations. A node in an unknown position with at least three non-collinear anchors in its
range can estimate the distances from anchors by parameters such as RSSI, Time of Arrival
(ToA), and so on; if at least three anchor nodes are not available, the sensor cannot be
localized. Each localizable node executes the ABC algorithm to estimate the coordinates
of its location; once a sensor in an unknown position has been localized, it is used as a
new anchor node to identify the other sensors. The aim is to determine the locations of all
or as many nodes as possible, and in such a way, the distributed localization problem is
modelled as a two-dimensional optimization problem.

The ABC algorithm computes the estimated location (ûjx, ûjy), finding the minimum
of the mean localization error Ej, which is expressed as follows:

Ej =
1
3

3

∑
i=1

(√(
ûjx − aix

)2
+
(
ûjy − aiy

)2 − d̂i

)
(126)

where j is the j-th node in an unknown position, i is the i-th anchor node with known
coordinates (aix, aiy), d̂i is the distance measured (that includes noise and errors), and
(ûjx, ûjy) are the unknown coordinates.

The authors compared the performances of the ABC and PSO algorithms in finding the
solution to the specific problem. The ABC algorithm can result in more accurate localization
than PSO, but requires a higher computational time.

3.12. Simulated Annealing

The SA algorithm is a random-search technique that is based on the analogy between
the process of metal crystalline formation from the liquid phase, and the process of search-
ing for an optimal minimum in a problem. If the cooling process is too rapid, then the
metal will solidify into a sub-optimal configuration. If the cooling process takes the proper
time, the crystals within the material will solidify optimally into a state of minimum energy,
which is the ground state associated with the optimal global solution to the problem. This
is a heuristic method that does not need any particular assumptions and can be used for
non-linear and non-convex problems; in particular, it results in a suitable technique for
solving combinatorial optimization problems.

The main steps of the SA algorithm are as follows [73]:

1. Generate a random initial solution vector x = xo for the system and then evaluate it
using the objective function f(x).

2. Initialize the temperature T = T0.
3. Perturbate the previous solution to obtain a neighboring xi + ∆x. Evaluate the

new solution.
4. A new solution (xi + ∆x) is accepted as a new solution xi+1 = xi + ∆x if f(xi + ∆x) is

better than f(xi).

5. Otherwise, accept the new solution xi + ∆x with a probability e−(∆f
Ti
),

where ∆f = f(xi + ∆x)−f(xi).
6. Reduce the system temperature according to the cooling schedule.
7. Repeat from step 3 until a stopping criterion is met (number of cycles or Ti = 0).

Machines 2024, 12, 569 38 of 50

In the SA problem, temperature is a parameter that controls the probability in step 5.
During the iterations, the lower the temperature, the lower the probability of accepting
a bad solution. This mechanism helps the procedure to avoid being stuck in a global
minimum at the beginning of the iterations, because it allows the algorithm to jump out
of the minima looking for better solutions. To obtain a good result, it is important to
properly set the initial value of temperature T. If the value is too high, then it takes more
cycles to converge, and vice versa; if the value is too small, the algorithm may provide a
local optimum.

In step 6, the choice of an appropriate cooling scheme is important for the algorithm’s
success. In the literature, there are several types of schemes, and they can be classified as
either monotonic or adaptive. The former consists of a static decrease in the temperature
at every iteration independently of the goodness of the solutions and independently of
the current explored neighborhood structure, whereas the last one considers the quality
of transitions, adopting mechanisms for the temperature decrease that can adopt also
reannealing techniques [73].

Simulated Annealing-Based Localization in Wireless Sensor Network

The authors in reference [74] propose a SA localization (SAL) method for wireless
sensor networks. It aims to estimate the position of sensors by determining the position of a
set of anchors and the measured distance between them and the sensors. However, several
factors can influence distance measurements, such as synchronization, multipath, fading,
Non-Line of Sight (NLoS) conditions, and other sources of interference. To estimate the real
distance of the sensor with a minimum error, the authors propose to solve the optimization
problem with the SAL method. The objective function is defined as follows:

CF =
N

∑
i=1

∑
j∈Ni

(
d̂ij − dij

)2
(127)

where N is number of non-anchor nodes, Ni is the set of neighbors of the i-th node, d̂ij and dij
are the estimated distance and the measured distance of node i with its
neighbor j, respectively.

The adopted cooling scheme for temperature is Ti+1 = α*Ti, where α < 1 is the cooling
rate that is determined empirically. The solutions are perturbated as ∆di+1 = β*∆di, where
∆d is chosen to span the whole set of allowable moves and β < 1 is used to bias the
generation of random moves at a lower T.

3.13. Ant Colony Optimization

Ant Colony Optimization (ACO) is a probabilistic method, and it was initially pro-
posed to solve the Travelling Salesman Problem (TSP); in general, ACO is suitable for
solving problems in which the searched solution is the best path through a graph. It is
inspired by the behavior of an ant seeking a path between its colony and food. The ants
live in a colony, roam around it looking for food, and communicate with each other by
using pheromones which can be released on the ground when insects are moving. Once
an ant finds some food, the insect brings it as much as possible back to the colony and,
during the travel, it releases pheromones in agreement with the quantity and quality of the
found food. Other ants can smell it, and when they come out of the colony looking for food,
they choose the path with higher pheromones. The higher the pheromone along a route,
the higher the probability that an ant chooses that path. In such a way, more ants follow
the path, more pheromones are deposited, and the path has a higher probability of being
chosen. After some iterations, the ants will choose the shortest path, which is expected to
be the optimum of the problem.

Mathematically, the algorithm is explained as follows [75]. ACO can be understood
considering a simple graph, G = (V, E), with two nodes, where V represents the nodes of
the graph (the nest vs and the food source vd), E represents two links, e1 and e2, between

Machines 2024, 12, 569 39 of 50

nodes with length l1 and l2, respectively, such that l1 < l2. The artificial pheromone trails
are modelled for each path by τ1 and τ2 and they indicate the strength of the pheromone
trail on the corresponding path. Every ant chooses with a probability given as follows:

pi =
τi

τ1 + τ2
(128)

where i identifies the i-th link; about the lengths, it is τ1 > τ2, which means that link 1 has
a higher probability. As for returning, every ant uses the same path chosen in the outward
journey, and it updates the artificial pheromone value associated with the used link with
the following equation:

τi = τi
Q
li

(129)

where Q > 0 is a parameter of the model. It can be inferred that the shorter the path,
the higher the amount of added pheromones. At each step (or iteration), all the ants are
initially placed in node vs and each of them moves from the nest to the food source. The
evaporation of the pheromone is simulated by the following:

τi = (1 − ρ) (130)

where ρ is in the range (0, 1] and regulates the pheromone evaporation. Finally, all ants
return to the nest and reinforce their chosen path, as reported above. Iteration by itera-
tion, the shortest path will be the one with the highest pheromones, and then, with the
highest probability.

For real combinatory optimization problems with more than two nodes, the solution
is constructed as follows [76]. Each of the m ants is randomly placed on a chosen node
and then at each node, a state transition rule is iteratively applied. The unvisited nodes,
the pheromone trail strength, and the length between two nodes bias the ant’s choice.
The partial tour is stored in a memory called the tabu list which needs to determine at
each construction step the nodes to be visited, to guarantee that a feasible solution is
built, and to retrace the trail of the related ant once it has been completed. When all ants
end up constructing a path, the pheromones are updated using evaporation and new
deposition; short paths are updated with a higher quantity of pheromones. The algorithm
is summarized as follows [76]:

1. Set parameters and initialize pheromone trails.
2. Construct solutions.
3. Apply local search.
4. Update trails.
5. If termination conditions are not met, repeat from step 2.

There are different versions of ACO and historically, the first presented version was
called the Ant System (AS); some variants of the ACO algorithms (here not investigated) are
the Elitist AS (EAS), Rank-based AS (RAS), MAX–MIN Ant System (MMAS), Ant Colony
System (ACS), and Hyper-Cube Framework (HCF).

ANN Topology Optimized by ACO

The author in reference [77] deals with the problem of finding a continuous path for
a robot from an initial position to a goal position where collisions against static objects
must be avoided. The proposed system exploits an ANN that provides the optimum path,
and it is trained by adopting the swarm intelligence-based reinforcement learning (SWIRL)
method based on PSO and ACO. Because the training process of Multi-Layer Perceptron
(MLP) for pattern classification problems can be considered as graph problems where the
neurons are vertices and the connections are directed edges (links), PSO is exploited to
provide the best ANN connection weights, whilst the ACO is used to optimize the topology
of the ANN. In such a way, the SWIRL provides both an appropriate architecture for the
problem and the trained connection weights of the network.

Machines 2024, 12, 569 40 of 50

At each step of the iteration process, the PSO is applied to adjust ANN connection
weights within a given topology structure. Focusing only on the ACO algorithm, it is used
to allocate training iterations among a set of candidate network topologies. The desirability
d(i) for the i-th ANN is given as follows:

d(i) =
1

h + 1
(131)

where h is the number of hidden nodes; each i-th ANN represents a topology of a set
of ANNs with different numbers of hidden nodes. The pheromone concentration τi is
initialized to 0.1, and it is expressed as follows:

τ(i, t + 1) = ρτ(i, t) + na(i)
g(i)
gsum

(132)

where ρ is the rate of evaporation, na is the number of ants returning from the i-th neural
network, g(i) is the global best for i, gsum is the sum of all the current global bests, and
t is the index iteration of the ACO. Each ant represents one training process for the PSO.
During each ACO step, the ants go out into the topology space of ANNs, and they choose
an ANN using a probability criteria, given as follows:

p(i) =
[d(i)]b[τ(i, t)]a

∑
{
[d(i)]b[τ(i, t)]a

} (133)

where a and b are constant factors which control the relative influence of pheromones and
desirability, respectively [77].

3.14. Whale Optimization Algorithm

The Whale Optimization Algorithm (WOA) is a metaheuristic method inspired by
the hunting behavior of humpback whales, and it has been proposed by authors in refer-
ence [78]. The algorithm mimics three behaviors: (i) encircling prey or siege predation,
(ii) spiral bubble-net feeding maneuver, and (iii) searching for prey. In the first one, a whale
is in a location looking for prey to encircle; at the beginning, the locations (or solutions)
are random, and the current best solution, defined as the best search agent, is found by
exploiting the fitness function; the other search agents or candidate solutions move iteration
by iteration towards the current best one. Mathematically, the behavior of each whale can
be modelled by the following:

D =
∣∣∣C·X*(t)− X(t)

∣∣∣ (134)

X(t + 1) = X*(t)− A·D (135)

where t is the t-th iteration, A and C are coefficient vectors, X* is the position vector of the
best solution obtained so far, X is a candidate position vector, and the dot (·) represents
the element-by-element multiplication. Furthermore, it is possible to express A = 2a·r − a
and C = 2·r, where a is linearly decreased from 2 to 0 iteration by iteration, and r is a
random vector in the range [0, 1] that allows it to reach any position of the design space.
The used vectors in this explanation have the same dimension as the input vector of the
problem; however, the algorithm can be applied to a problem with a dimension greater
than three even if the algorithm is inspired by the analogy of a moving whale in a three-
dimensional space.

In the second behavior (spiral bubble-net feeding manoeuvre), two approaches are
adopted: the shrinking encircling mechanism and the spiral updating position. The former
needs to push the X vectors towards X* and it consists in decreasing the value of a iteration
by iteration; in such a way, considering that r is random, the result is that A is composed
by random values in the range [−a, a]. As for the second approach, to mimic an encircling

Machines 2024, 12, 569 41 of 50

movement, a spiral equation is created between the position of a whale and the best
position; it is expressed as follows:

X(t + 1) = Di·ebl·cos (2πl) + X*(t) (136)

where Di =
∣∣∣X*(t)− X(t)

∣∣∣ indicates the distance of the i-th candidate solution (or whale) to
the best solution obtained so far, b is a constant for defining the shape of the exponential
spiral, and l is a random number in the range [−1, 1]. Considering the analogy with whales,
they are swimming around their candidate location prey within a shrinking circle and
along a spiral-shaped path simultaneously. To update the position of whales and to mimic
the simultaneous behavior of the shrinking encircling mechanism and the spiral model, in
the algorithm they are chosen randomly with a probability of 50% in each iteration. The
two approaches are expressed as follows:

X(t + 1) =
{

X*(t)− A·D
D′·ebl·cos (2πl) + X*(t)

if p < 0.5
if p ≥ 0.5

(137)

where p is a random number in the range [0, 1].
In the search for prey behavior, whales look for a prey location, randomly giving the

algorithm the global searching capability. It is expressed as follows:

D = |C·Xrand − X(t)| (138)

X(t + 1) = Xrand − A·D (139)

where Xrand is a random position vector chosen from the current whale population.
The WOA pseudo code is composed of four main parts, and they are given as fol-

lows [78]:

1. Initialize the whale population Xi with i = 1, 2, . . . , n.
Calculate the fitness of each search agent.
Define the best search agent X*.

2. While t < max number of iterations:

• For each search agent:
Update a, A, C, l, and p.
If p < 0.5:

- If |A| < 0.5, update the position of the current search agent by (134).
- Elseif |A| ≥ 0.5, select a random search agent Xrand and update the position

of the current search agent by (139).
}

Elseif p ≥ 0.5, update the position of the current search agent by (136).

• End of for loop.
• Check if any search agent goes beyond the search space and amend it.
• Calculate the fitness of each search agent.
• Update X* whether a better solution has been found.
• t = t + 1.

3. End.
4. Return X*.

In this basic version of the proposed WOA, other evolutionary operations are not
included, but they might have been included by allowing hybridization with other evolu-
tionary search schemes.

Three Magnetic Targets Using Individual Memory-Based WOA and LM Algorithm

The authors in reference [79] deal with multi-permanent magnet localization, exploit-
ing an array of magnetometers. The aim is to estimate the location of the permanent

Machines 2024, 12, 569 42 of 50

magnets inside the human body by measuring the magnetic field. To obtain the best esti-
mation of the measurements, the authors propose an improved WOA combined with the
LM algorithm.

Each magnetometer in the array measures the magnetic flux that is given by the linear
superposition of the flux densities generated by each permanent magnet. The objective
function E of the total error is obtained by considering the sum of the three errors between
the measured values by the magnetometers and the theoretical values; it is given as follows:

E =
N

∑
l=1

[(
B′

lx − Blx
)2

+
(

B′
ly − Bly

)2
+
(
B′

lz − Blz
)2
]

(140)

where each B′
l represents one of the triaxial components of the magnetic flux density mea-

sured by the l-th magnetometer, Bl is the theoretical value of one of the triaxial components
of the magnetic flux, and N is the total number of magnetometers. A generic component
Bl is given by the superimposition of the magnetic fields generated by all permanent
magnets, and it includes the distance variables between each permanent magnet and
each magnetometer.

The name of the proposed algorithm is the Individual Memory-based Whale Opti-
mization and Levenberg–Marquardt (IMWO-LM) algorithm; the IMWO algorithm is used
to provide an approximate solution of each magnet pose, which is given as a guess input to
the LM algorithm, which is suitable for finding the local minima.

In the proposed IMWO, S is defined as the number of whales and each of them
searches for a solution of dimension d; the vector position for the i-th whale is defined as
Xi =

[
xi

1, xi
2, . . . , xi

d
]
. The three behaviors presented in the WOA are here modified to give

whale the ability of self-memory and to always remember the previous best position. The
IMWO behaviors are defined as follows:

1. Search for prey. The current search agent position is updated considering both the
position of the randomly selected whale and the historical optimal position. It is given
as follows: 

Di
rand =

∣∣∣C·Xi
rand − Xt,i

∣∣∣
Di

pbest = CX(t−1),i
pbest − Xt,i

X′t,i = Xi
rand − ADi

rand + ADi
pbest

(141)

where t identifies the t-th iteration, i identifies the search agent, Xt,i is the current
position, X(t−1),i

pbest is the historical optimal position, Di
pbest is the random distance

between the current position and its historical optimal position, Xi
rand is a randomly

selected search agent, Di
rand is the random distance between a randomly selected

search agent and current search agent, C and A are weight vectors defined as in the
WOA, and X′t,i is the newly updated location of the i-th search agent.

2. Encircling prey or siege predation. The best candidate search agent X* of the current
population is considered the target prey at each iteration; search agents have memory
and can remember the previous best position. It is given as follows:

Di
leader =

∣∣∣CX* − Xt,i
∣∣∣

Di
pbest = CX(t−1),i

pbest − Xt,i

X′t,i = X* − ADi
leader + ADi

pbest

(142)

where Di
leader is the random distance between the optimal candidate search agent and

the current search agent, and X* is the optimal candidate search agent in the whole
population so far. In such a way, the current search agent is updated to different
positions around X* and X(t−1),i

pbest .

Machines 2024, 12, 569 43 of 50

3. Spiral bubble-net feeding maneuver or bubble predation. The helix-shaped movement
of the whale is obtained using the spiral equation, considering the position of the
current search agent, its historical optimal position, and the position of the optimal
candidate search agent. The current position is given as follows:

X′ti =
(

r1D* + r2Di
pbest

)
·ebl·cos (2πl) + r1X* + r2X(t−1),i

pbest (143)

where D* =
∣∣∣X* − Xt,i

∣∣∣ is the distance between the current search agent and the optimal
candidate search agent, b is a constant for defining the shape of the exponential spiral,
l is linearly decreased from 1 to −1 throughout iterations, and r1 and r2 are random
numbers in the range [0, 1].

The upper and lower boundary of the pose parameters are set, and at each iteration,
the algorithm must check if the search agents violate them.

3.15. Summary of the Investigated Methods

In this section, Table 1 reports a summary of the investigated methods, where the
main characteristics, the significative advantages and disadvantages, and the investigated
applications are listed to have a comprehensive view of the conducted research.

Table 1. Summary of the investigated methods.

Investigated
Methods Main Characteristics

Significative
Advantages (ADV) and/or

Disadvantages (DIS)
Applications

Newton’s
Method

• Iterative method.
• Fixed step size.
• Suitable for unconstrained

problems.
• Second-order method.
• Quadratic rate of convergence.
• Needing of an initial design point.

• High computation cost. (DIS)
• Needing a twice differentiable

function. (DIS)
• Good initial starting

point. (DIS)

• No applications
investigated for
this method.

GD

• Iterative method.
• Variable step size.
• First-order method.
• Dealing with convex functions.
• Unconstrained problems.
• Convergence time linked to the

parameter α.

• Penalty function can be used.
(ADV)

• The parameter α needs to be
set properly to avoid skipping
the optimum. (DIS)

• Function must at least once
differentiable. (DIS)

• It could skip the global
optimum and converge to a
local one. (DIS)

• No applications
investigated for
this method.

Gauss–
Newton

• Iterative method.
• Suitable for convex non-linear

least-squares problems.
• It requires at least

once-differentiable function.
• Assumption: the inverse of the

gradient exists.

• It is suitable only for a specific
class of problems. (DIS)

• No applications
investigated for
this method.

ILS Method/
LAMBDA

• Iterative method.
• Suitable for ILS problems.

• It is suitable only for a specific
class of problems. (DIS)

• Increase the resolution speed
of the problem. (ADV)

• To solve frequency
ambiguity problems
in GNSS
applications [38,39].

Machines 2024, 12, 569 44 of 50

Table 1. Cont.

Investigated
Methods Main Characteristics

Significative
Advantages (ADV) and/or

Disadvantages (DIS)
Applications

LM

• Iterative method.
• Suitable for non-linear optimization

problems.
• It interpolates between the GN and

the GD.

• A good initial guess is needed.
(DIS)

• If the problem has several
local optima, a wrong global
optimum could be
provided. (DIS)

• No applications
investigated for this
method.

Lagrange
Multipliers

Method

• Analytic method.
• Suitable for constrained problem

(with equality and/or inequality).
• Differentiable functions are needed.

• It guarantees only that an
optimum has been found but
does not guarantee that is the
global
one. (DIS)

• No applications
investigated for this
method.

Lagrange
Duality

• Analytic method.
• It transforms a minimization or

maximization problem into its
dual one.

• It could provide an easier
problem to solve. (ADV)

• To estimate the
measured range of
radio source
anchors [47].

GA

• Iterative method.
• Metaheuristic method.
• Suitable for constrained and

unconstrained problems.
• Inspired by natural selection of

animals.
• It works directly with strings of bits
• It deals with discontinuous,

nondifferentiable, stochastic, or
highly non-linear functions.

• It is suitable for mixed-integer
type problems.

• It can solve many types of
different problems. (ADV)

• Large solutions space can be
spanned. (DIS)

• Slow solving speed. (DIS)
• Each considered problem

needs a specific tunning. (DIS)
• Easy to tune. (ADV)

• Computation of
parameters to
superimpose
information from
different sensors and
radio signal [9].

QGA

• It is a variation of the GA.
• Unlike GA, QGA deals with Q-bits

and therefore can exploits
superimposition of states that
allows to reduce the solution
time convergence.

• The solving speed is
√

N times
faster than the speed of classic
GA. (ADV)

• High complexity. (DIS)

• To calibrate the
parameters of a
wheeled vehicle to
compensate the
systematic errors [11]

DE

• Iterative method.
• Metaheuristic method.
• Suitable for constrained and

unconstrained problems.
• Not inspired by natural selection of

animals.
• It works directly with vectors
• It deals with continuous problems.

• Good global search
capability. (ADV)

• Good local search
capability. (ADV)

• A memory function. (ADV)
• A slow convergence speed.

(DIS)
• Performance affected by the

trial vector. (DIS)
• Needing a tuning

procedure. (DIS)

• To calculate the
z-coordinate of the
receiver in VLC system
for localization
purposes [59].

Machines 2024, 12, 569 45 of 50

Table 1. Cont.

Investigated
Methods Main Characteristics

Significative
Advantages (ADV) and/or

Disadvantages (DIS)
Applications

MEA

• Iterative method.
• Metaheuristic method.
• Suitable for constrained and

unconstrained problems.
• Inspired by learning modes and

human mind activities.
• It deals with discontinuous,

non-differentiable, stochastic,
non-linear, non-convex functions.

• Fast rate of convergence.
(ADV)

• It can deal with data from
sensors that are used as
population generator when
work at high frequency. (ADV)

• To update the forward
or backward
movement of a walker
in a PDR system [60].

PSO

• Iterative method.
• Metaheuristic method.
• Suitable for unconstrained and

constrained (by using penalization
methods) problems.

• Inspired by natural swarm
behaviors of animals.

• It deals with discontinuous,
non-differentiable, stochastic,
non-linear, non-convex functions.

• Fast rate of convergence.
(ADV)

• Needing a tuning procedure to
set the parameters. (DIS)

• Possibility to be stuck in a
local optimum without
converging to the global. (DIS)

• To train an ANN (used
in a fingerprint
localization
system) [63].

• To estimate the RSSI
range by minimizing
the squared residual
between the real and
the measured
distances [64].

• To solve the
localization problem
modelled as a Markov
process in which the
position is extracted by
maximizing the a
posteriori probability
density. The approach
is an alternative to EKF
or PF [65].

• To estimate the best
ANN connection
weights during the
training process for an
on moving robot that is
able to avoid
collisions [77]

DEPSO
• Hybrid algorithm in which the

concepts of DE and PSO are fused.

• Better exploration of local
optima. (ADV)

• Better convergence speed than
classic DE. (ADV)

• To reduce the particle
number and the
computational time
complexity in a
PF [67].

BA

• Iterative method.
• Metaheuristic method.
• Suitable for unconstrained and

constrained (by using penalization
methods) problems.

• Inspired by the echolocation
behavior

• It deals with discontinuous,
non-differentiable, stochastic,
non-linear, non-convex functions.

• Fast rate of convergence.
(ADV)

• Good ability to explore the
search space and to quit from
local optima. (ADV)

• Standard BA might provide a
premature convergence, that it
is improved by adopting
LBBA. (DIS)

• Needing a tuning
procedure. (DIS)

• To localize the robot
position by minimizing
the error between the
real and the measured
position [69].

Machines 2024, 12, 569 46 of 50

Table 1. Cont.

Investigated
Methods Main Characteristics

Significative
Advantages (ADV) and/or

Disadvantages (DIS)
Applications

ABC

• Iterative method.
• Metaheuristic method.
• Suitable for unconstrained and

constrained problems.
• Inspired by the intelligent foraging

behavior of honeybees.
• It deals with discontinuous,

non-differentiable, stochastic,
non-linear, non-convex functions.

• Good ability to explore the
search space. (ADV)

• Slow rate of
convergence. (DIS)

• Needing a tuning
procedure. (DIS)

• To solve the sensor
localization problem in
a wireless sensor
network to get new
anchors; the location is
estimated by
minimizing the mean
localization
error [72].

SA

• Iterative method.
• Metaheuristic method.
• Suitable for unconstrained and

constrained problems.
• Inspired by the process of metal

crystalline formation from the
liquid phase.

• It deals with discontinuous,
non-differentiable, stochastic,
non-linear, non-convex functions.

• Good ability to explore the
search space. (ADV)

• Slow rate of convergence.
(DIS)

• Needing a careful tuning
procedure. (DIS)

• To estimate the real
position of sensors by
exploiting the anchors
positions and the
measured distances
between them and the
sensors [74].

ACO

• Iterative method.
• Metaheuristic method.
• Inspired by the behavior of ants.
• Suitable to solve the problems in

which the best path needs to
be selected.

• Solve a specific class of
problems. (DIS)

• To optimize the best
ANN topology during
the training process for
an on moving robot
that is able to avoid
collisions [77]

WOA

• Iterative method.
• Metaheuristic method.
• Suitable for unconstrained and

constrained problems.
• Inspired by the behavior of a whale

to capture a prey
• It deals with discontinuous,

non-differentiable, stochastic,
non-linear, non-convex functions.

• Slow convergence speed. (DIS)
• In some cases, it is hybridized

with other algorithms to look
for local optima. (DIS)

• To estimate the
location of the
permanent magnets
inside the human body
by measuring the
magnetic field; the
total error is estimated
by minimizing the sum
of the three errors
between the measured
values and the
theoretical values of
the magnetic field [79].

4. Conclusions

This paper provides an extensive study related to the optimization methods used in
the field of localization. In the first part of the article, a light introduction to the optimization
problem was reported, providing a general mathematical framework for the discipline.
Besides the SO problem, some concepts about the MO problem have been introduced as
well, and they aim to provide a clear and complete view of the basis of the subject.

In the second part of the article, extensive research about some interesting algorithms
used in localization has been reported, providing for each of them the concept of the
algorithm, the related mathematics model, and an example of application. Both types
of algorithms for local and global optimization have been described, and it can be noted
that metaheuristic algorithms, such as GA, DE, or PSO, are the most used in the field of

Machines 2024, 12, 569 47 of 50

localization for optimization problems due to their capabilities to manage non-convex and
non-linear problems and provide satisfactory results. Moreover, the GA (as well as its
modified versions, such as the QGA) is the most versatile optimization tool that allows for
different types of problems such as continuous, discrete, or mixed-integer types. However,
the standard GA has a slow speed of convergence. In contrast, PSO has a higher speed, and
by observing Table 1, it is the most used among the investigated methods. Furthermore,
PSO was shown to be the most prone method that allows for hybridization with other types,
such as DEPSO or SWIRL; the modified methods improved the performance in solving
specific problems.

In general, by comparing metaheuristic algorithms to gradient-based algorithms (that
are especially used for local optimum), it is noted that stochastic algorithms do not need
any Jacobian (or Hessian) matrix inversion, demonstrating that they are very flexible and
suitable optimization tools for many optimization problems. On the other hand, they need
to tune the parameters for each specific solved problem.

In the end, it is highlighted that none of the investigated methods is guaranteed to
provide a real global optimum.

Author Contributions: Conceptualization, M.S., P.S. and A.O.; funding acquisition, P.S. and A.O.;
project administration, P.S. and A.O.; resources, M.S., P.S., J.S. and A.O.; supervision, P.S., J.S. and
A.O.; writing—original draft, M.S.; writing—review and editing, P.S., J.S. and A.O. All authors have
read and agreed to the published version of the manuscript.

Funding: The work was supported by the National Research, Development, and Innovation Fund of
Hungary through project no. 142790 under the FK_22 funding scheme.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Talbi, E.G. Metaheuristics: From Design to Implementation; John Wiley & Sons: Hoboken, NJ, USA, 2009.
2. Gogna, A.; Tayal, A. Metaheuristics: Review and Application. J. Exp. Theor. Artif. Intell. 2013, 25, 503–526. [CrossRef]
3. Gilli, M.; Schumann, E. Heuristic Optimisation in Financial Modelling. Ann. Oper. Res. 2012, 193, 129–158. [CrossRef]
4. Agrawal, N.; Rangaiah, G.P.; Ray, A.K.; Gupta, S.K. Multi-Objective Optimization of the Operation of an Industrial Low-Density

Polyethylene Tubular Reactor Using Genetic Algorithm and Its Jumping Gene Adaptations. Ind. Eng. Chem. Res. 2006, 45,
3182–3199. [CrossRef]

5. Kulkarni, N.K.; Patekar, S.; Bhoskar, T.; Kulkarni, O.; Kakandikar, G.M.; Nandedkar, V.M. Particle Swarm Optimization
Applications to Mechanical Engineering—A Review. In Materials Today: Proceedings; Elsevier: Amsterdam, The Netherlands, 2015;
Volume 2.

6. Jordehi, A.R. Particle Swarm Optimisation (PSO) for Allocation of FACTS Devices in Electric Transmission Systems: A Review.
Renew. Sustain. Energy Rev. 2015, 52, 1260–1267. [CrossRef]

7. Lin, M.H. An Optimal Workload-Based Data Allocation Approach for Multidisk Databases. Data Knowl. Eng. 2009, 68, 499–508.
[CrossRef]

8. Odry, A.; Kecskes, I.; Csik, D.; Hashim, H.A.; Sarcevic, P. Adaptive Gradient-Descent Extended Kalman Filter for Pose Estimation
of Mobile Robots with Sparse Reference Signals. In Proceedings of the IEEE International Conference on Intelligent Robots and
Systems, Kyoto, Japan, 23–27 October 2022; Volume 2022.

9. Grottke, J.; Blankenbach, J. Evolutionary Optimization Strategy for Indoor Position Estimation Using Smartphones. Electronics
2021, 10, 618. [CrossRef]

10. Yousefi, M.; Nejat Pishkenari, H.; Alasty, A. A Fast and Robust Magnetic Localization Technique Based on Elimination of the
Orientation Variables from the Optimization. IEEE Sens. J. 2021, 21, 21885–21892. [CrossRef]

11. Yu, B.; Zhu, H.; Xue, D.; Xu, L.; Zhang, S.; Li, B. A Dead Reckoning Calibration Scheme Based on Optimization with an Adaptive
Quantum-Inspired Evolutionary Algorithm for Vehicle Self-Localization. Entropy 2022, 24, 1128. [CrossRef]

12. Lei, J.; Fang, H.; Zhu, Y.; Chen, Z.; Wang, X.; Xue, B.; Yang, M.; Wang, N. GPR Detection Localization of Underground Structures
Based on Deep Learning and Reverse Time Migration. NDT E Int. 2024, 143, 103043. [CrossRef]

13. Su, Y.; Wang, J.; Li, D.; Wang, X.; Hu, L.; Yao, Y.; Kang, Y. End-to-End Deep Learning Model for Underground Utilities Localization
Using GPR. Autom Constr 2023, 149, 104776. [CrossRef]

14. Boyd, S.P.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004.
15. Venter, G. Review of Optimization Techniques. In Encyclopedia of Aerospace Engineering; John Wiley & Sons, Ltd.: Chichester,

UK, 2010.

https://doi.org/10.1080/0952813X.2013.782347
https://doi.org/10.1007/s10479-011-0862-y
https://doi.org/10.1021/ie050977i
https://doi.org/10.1016/j.rser.2015.08.007
https://doi.org/10.1016/j.datak.2009.02.001
https://doi.org/10.3390/electronics10050618
https://doi.org/10.1109/JSEN.2021.3104404
https://doi.org/10.3390/e24081128
https://doi.org/10.1016/j.ndteint.2024.103043
https://doi.org/10.1016/j.autcon.2023.104776

Machines 2024, 12, 569 48 of 50

16. Esmaeilzadeh Azar, F.; Perrier, M.; Srinivasan, B. A Global Optimization Method Based on Multi-Unit Extremum-Seeking for
Scalar Nonlinear Systems. Comput. Chem. Eng. 2011, 35, 456–463. [CrossRef]

17. Tawfik, A.S.; Badr, A.A.; Abdel-Rahman, I.F. Comparative Optimizer Rank and Score: A Modern Approach for Performance
Analysis of Optimization Techniques. Expert Syst. Appl. 2016, 45, 118–130. [CrossRef]

18. Lin, M.H.; Tsai, J.F.; Yu, C.S. A Review of Deterministic Optimization Methods in Engineering and Management. Math. Probl. Eng.
2012, 2012, 756023. [CrossRef]

19. Engelbrecht, A.P. Computational Intelligence: An Introduction, 2nd ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2007.
20. Arora, J.S. Introduction to Optimum Design; Elsevier: Amsterdam, The Netherlands, 2004.
21. Cox, S.E.; Haftka, R.T.; Baker, C.A.; Grossman, B.; Mason, W.H.; Watson, L.T. A Comparison of Global Optimization Methods for

the Design of a High-Speed Civil Transport. J. Glob. Optim. 2001, 21, 415–432. [CrossRef]
22. Kvasov, D.E.; Mukhametzhanov, M.S. Metaheuristic vs. Deterministic Global Optimization Algorithms: The Univariate Case.

Appl. Math. Comput. 2018, 318, 245–259. [CrossRef]
23. Abdel-Basset, M.; Abdel-Fatah, L.; Sangaiah, A.K. Metaheuristic Algorithms: A Comprehensive Review. In Computational

Intelligence for Multimedia Big Data on the Cloud with Engineering Applications; Academic Press: Cambridge, MA, USA, 2018.
24. Agrawal, P.; Abutarboush, H.F.; Ganesh, T.; Mohamed, A.W. Metaheuristic Algorithms on Feature Selection: A Survey of One

Decade of Research (2009–2019). IEEE Access 2021, 9, 3056407. [CrossRef]
25. Francisco, M.; Revollar, S.; Vega, P.; Lamanna, R. A Comparative Study of Deterministic and Stochastic Optimization Methods for

Integrated Design of Processes. In Proceedings of the IFAC Proceedings Volumes (IFAC-PapersOnline), 16th Triennial World
Congress, Prague, Czech Republic, 3–8 July 2005; Volume 38.

26. Jones, D.R.; Perttunen, C.D.; Stuckman, B.E. Lipschitzian Optimization without the Lipschitz Constant. J. Optim. Theory Appl.
1993, 79, 157–181. [CrossRef]

27. Deb, K. Multi-Objective Optimisation Using Evolutionary Algorithms: An Introduction. In Multi-Objective Evolutionary Optimisa-
tion for Product Design and Manufacturing; Springer: London, UK, 2011.

28. De Weck, O. Multiobjective Optimization: History and Promise. In Proceedings of the The Third China-Japan-Korea Joint
Symposium on Optimization of Structural and Mechanical Systems, Kanazawa, Japan, 30 October–2 November 2004. Invited
Keynote Paper, GL2-2.

29. Gunantara, N. A Review of Multi-Objective Optimization: Methods and Its Applications. Cogent Eng. 2018, 5, 1502242. [CrossRef]
30. Marler, R.T.; Arora, J.S. Survey of Multi-Objective Optimization Methods for Engineering. Struct. Multidiscip. Optim. 2004, 26,

369–395. [CrossRef]
31. Gunantara, N.; Sastra, N.P.; Hendrantoro, G. Cooperative Diversity Pathsselection Protocol Withmulti-Objective Criterion in

Wireless Ad-Hoc Networks. Int. J. Appl. Eng. Res. 2014, 9, 22395–22407.
32. Athan, T.W.; Papalambros, P.Y. A Note on Weighted Criteria Methods for Compromise Solutions in Multi-Objective Optimization.

Eng. Optim. 1996, 27, 155–176. [CrossRef]
33. Gerasimov, E.N.; Repko, V.N. Multicriterial Optimization. Sov. Appl. Mech. 1978, 14, 1179–1184. [CrossRef]
34. Meza Juan, C. Newton’s Method. Wiley Interdiscip. Rev. Comput. Stat. 2011, 3, 75–78. [CrossRef]
35. Lee, J.D.; Simchowitz, M.; Jordan, M.I.; Recht, B. Gradient Descent Only Converges to Minimizers. J. Mach. Learn. Res. 2016, 49,

1246–1257. [CrossRef]
36. Smith, A.E.; Coit, D.W.; Baeck, T.; Fogel, D.; Michalewicz, Z. Penalty Functions. Handb. Evol. Comput. 1997, 97, C5.
37. Wang, X.; Yan, L.; Zhang, Q. Research on the Application of Gradient Descent Algorithm in Machine Learning. In Proceedings

of the 2021 International Conference on Computer Network, Electronic and Automation, ICCNEA 2021, Xi’an, China, 24–26
September 2021.

38. Chang, X.W.; Yang, X.; Zhou, T. MLAMBDA: A Modified LAMBDA Method for Integer Least-Squares Estimation. J. Geod. 2005,
79, 552–565. [CrossRef]

39. Cheng, Q.; Chen, W.; Sun, R.; Wang, J.; Weng, D. RANSAC-Based Instantaneous Real-Time Kinematic Positioning with GNSS
Triple-Frequency Signals in Urban Areas. J. Geod. 2024, 98, 24. [CrossRef]

40. Transtrum, M.K.; Sethna, J.P. Improvements to the Levenberg-Marquardt Algorithm for Nonlinear Least-Squares Minimization.
arXiv 2012, arXiv:1201.5885.

41. Levenberg, K. A Method for the Solution of Certain Non-Linear Problems in Least Squares. Q. Appl. Math. 1944, 2, 164–168.
[CrossRef]

42. Marquardt, D.W. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. J. Soc. Ind. Appl. Math. 1963, 11, 431–441.
[CrossRef]

43. Hoffman Laurence, D.; Gerald, L. Bradley Calculus for Business, Economics, and the Social and Life Sciences, 10th ed.; McGraw-Hill
Inc.: New York, NY, USA, 2010.

44. Kalman, D. Leveling with Lagrange: An Alternate View of Constrained Optimization. Math. Mag. 2009, 82, 186–196. [CrossRef]
45. Parkinson, A.R.; Balling, R.J.; Hedengren, J.D. Optimization Methods for Engineering Design Applications and Theory; Brigham Young

University: Provo, UT, USA, 1972; Volume 94.
46. Ghojogh, B.; Ghodsi, A.; Karray, F.; Crowley, M. KKT Conditions, First-Order and Second-Order Optimization, and Distributed

Optimization: Tutorial and Survey. arXiv 2021, arXiv:2110.01858.

https://doi.org/10.1016/j.compchemeng.2010.04.003
https://doi.org/10.1016/j.eswa.2015.09.042
https://doi.org/10.1155/2012/756023
https://doi.org/10.1023/A:1012782825166
https://doi.org/10.1016/j.amc.2017.05.014
https://doi.org/10.1109/ACCESS.2021.3056407
https://doi.org/10.1007/BF00941892
https://doi.org/10.1080/23311916.2018.1502242
https://doi.org/10.1007/s00158-003-0368-6
https://doi.org/10.1080/03052159608941404
https://doi.org/10.1007/BF00883255
https://doi.org/10.1002/wics.129
https://doi.org/10.48550/arXiv.1602.04915
https://doi.org/10.1007/s00190-005-0004-x
https://doi.org/10.1007/s00190-024-01833-6
https://doi.org/10.1090/qam/10666
https://doi.org/10.1137/0111030
https://doi.org/10.1080/0025570X.2009.11953617

Machines 2024, 12, 569 49 of 50

47. Xue, K.; Li, J.; Xiao, N.; Liu, J.; Ji, X.; Qian, H. Improving the Robot Localization Accuracy Using Range-Only Data: An
Optimization Approach. In Proceedings of the 2021 6th IEEE International Conference on Advanced Robotics and Mechatronics,
ICARM 2021, Chongqing, China, 3–5 July 2021.

48. Katoch, S.; Chauhan, S.S.; Kumar, V. A Review on Genetic Algorithm: Past, Present, and Future. Multimed. Tools Appl. 2021, 80,
8091–8126. [CrossRef] [PubMed]

49. Kaya, M. The Effects of a New Selection Operator on the Performance of a Genetic Algorithm. Appl. Math. Comput. 2011, 217,
7669–7678. [CrossRef]

50. Liang, Y.; Leung, K.S. Genetic Algorithm with Adaptive Elitist-Population Strategies for Multimodal Function Optimization.
Appl. Soft Comput. J. 2011, 11, 2017–2034. [CrossRef]

51. Umbarkar, A.J.; Sheth, P.D. Crossover Operators in Genetic Algorithms: A Review. ICTACT J. Soft Comput. 2015, 6, 1083–1092.
[CrossRef]

52. Lambora, A.; Gupta, K.; Chopra, K. Genetic Algorithm—A Literature Review. In Proceedings of the International Conference on
Machine Learning, Big Data, Cloud and Parallel Computing: Trends, Prespectives and Prospects, COMITCon 2019, Faridabad,
India, 14–16 February 2019.

53. Lim, S.M.; Sultan, A.B.M.; Sulaiman, M.N.; Mustapha, A.; Leong, K.Y. Crossover and Mutation Operators of Genetic Algorithms.
Int. J. Mach. Learn. Comput. 2017, 7, 9–12. [CrossRef]

54. Frenzel, J.F. Genetic Algorithms. IEEE Potentials 1993, 12, 21–24. [CrossRef]
55. Han, K.H.; Kim, J.H. Genetic Quantum Algorithm and Its Application to Combinatorial Optimization Problem. In Proceedings of

the IEEE Conference on Evolutionary Computation, ICEC, La Jolla, CA, USA, 16–19 July 2000; Volume 2.
56. Deng, W.; Shang, S.; Cai, X.; Zhao, H.; Song, Y.; Xu, J. An Improved Differential Evolution Algorithm and Its Application in

Optimization Problem. Soft Comput. 2021, 25, 5277–5298. [CrossRef]
57. Bhowmik, P.; Das, S.; Konar, A.; Das, S.; Nagar, A.K. A New Differential Evolution with Improved Mutation Strategy. In

Proceedings of the 2010 IEEE World Congress on Computational Intelligence, WCCI 2010—2010 IEEE Congress on Evolutionary
Computation, CEC 2010, Barcelona, Spain, 18–23 July 2010.

58. Lin, C.; Qing, A.; Feng, Q. A Comparative Study of Crossover in Differential Evolution. J. Heuristics 2011, 17, 675–703. [CrossRef]
59. Wu, Y.; Liu, X.; Guan, W.; Chen, B.; Chen, X.; Xie, C. High-Speed 3D Indoor Localization System Based on Visible Light

Communication Using Differential Evolution Algorithm. Opt. Commun. 2018, 424, 177–189. [CrossRef]
60. Sun, M.; Wang, Y.; Joseph, W.; Plets, D. Indoor Localization Using Mind Evolutionary Algorithm-Based Geomagnetic Positioning

and Smartphone IMU Sensors. IEEE Sens. J. 2022, 22, 3155817. [CrossRef]
61. Jie, J.; Zeng, J.; Ren, Y. Improved Mind Evolutionary Computation for Optimizations. In Proceedings of the World Congress on

Intelligent Control and Automation (WCICA), Hangzhou, China, 15–19 June 2004; Volume 3.
62. Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the ICNN’95-International Conference on Neural

Networks, Perth, WA, Australia, 27 November–1 December 1995; IEEE: Piscataway, NJ, USA, 1995; pp. 1942–1948.
63. Li, N.; Chen, J.; Yuan, Y.; Tian, X.; Han, Y.; Xia, M. A Wi-Fi Indoor Localization Strategy Using Particle Swarm Optimization Based

Artificial Neural Networks. Int. J. Distrib. Sens. Netw. 2016, 2016, 4583147. [CrossRef]
64. Zhang, Y.; Hu, H.; Fu, W.; Jiang, H. Particle Swarm Optimization-Based Minimum Residual Algorithm for Mobile Robot

Localization in Indoor Environment. Int. J. Adv. Robot. Syst. 2017, 14, 1729881417729277. [CrossRef]
65. Havangi, R. Mobile Robot Localization Based on PSO Estimator. Asian J. Control 2019, 21, 2167–2178. [CrossRef]
66. Maeda, Y.; Matsushita, N. Simultaneous Perturbation Particle Swarm Optimization Using FPGA. In Proceedings of the IEEE

International Conference on Neural Networks—Conference Proceedings, Orlando, FL, USA, 12–17 August 2007.
67. Huo, J.; Ma, L.; Yu, Y.; Wang, J. Hybrid Algorithm Based Mobile Robot Localization Using de and PSO. In Proceedings of the

Chinese Control Conference, CCC, Xi’an, China, 26–28 July 2013.
68. Wang, Y.; Wang, P.; Zhang, J.; Cui, Z.; Cai, X.; Zhang, W.; Chen, J. A Novel Bat Algorithm with Multiple Strategies Coupling for

Numerical Optimization. Mathematics 2019, 7, 135. [CrossRef]
69. Neto, W.A.; Pinto, M.F.; Marcato, A.L.M.; da Silva, I.C.; Fernandes, D.d.A. Mobile Robot Localization Based on the Novel

Leader-Based Bat Algorithm. J. Control Autom. Electr. Syst. 2019, 30, 337–346. [CrossRef]
70. Karaboga, D. An Idea Based on Honey Bee Swarm for Numerical Optimization; Technical Report TR06; Erciyes University: Kayseri,

Türkiye, 2005.
71. Zhao, Y.; Yan, Q.; Yang, Z.; Yu, X.; Jia, B. A Novel Artificial Bee Colony Algorithm for Structural Damage Detection. Adv. Civ. Eng.

2020, 2020, 3743089. [CrossRef]
72. Kulkarni, V.R.; Desai, V.; Kulkarni, R.V. Multistage Localization in Wireless Sensor Networks Using Artificial Bee Colony

Algorithm. In Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence, SSCI 2016, Athens, Greece, 6–9
December 2016.

73. Amine, K. Multiobjective Simulated Annealing: Principles and Algorithm Variants. Adv. Oper. Res. 2019, 2019, 8134674. [CrossRef]
74. Kannan, A.A.; Mao, G.; Vucetic, B. Simulated Annealing Based Localization in Wireless Sensor Network. In Proceedings of the

Proceedings—Conference on Local Computer Networks, LCN, Sydney, NSW, Australia, 17 November 2005; Volume 2005.
75. Blum, C. Ant Colony Optimization: Introduction and Recent Trends. Phys. Life Rev. 2005, 2, 353–373. [CrossRef]
76. Stützle, T.; Dorigo, M. ACO Algorithms for the Travelling Salesman Problem. Evol. Algorithms Eng. Comput. Sci. 1999, 4, 163–183.
77. Mali, S. Mobile Robot Localization Using Multi-Objective Optimization. Int. J. Latest Technol. Eng. Manag. Appl. Sci. 2015, 4, 21–25.

https://doi.org/10.1007/s11042-020-10139-6
https://www.ncbi.nlm.nih.gov/pubmed/33162782
https://doi.org/10.1016/j.amc.2011.02.070
https://doi.org/10.1016/j.asoc.2010.06.017
https://doi.org/10.21917/ijsc.2015.0150
https://doi.org/10.18178/ijmlc.2017.7.1.611
https://doi.org/10.1109/45.282292
https://doi.org/10.1007/s00500-020-05527-x
https://doi.org/10.1007/s10732-010-9151-1
https://doi.org/10.1016/j.optcom.2018.04.062
https://doi.org/10.1109/JSEN.2022.3155817
https://doi.org/10.1155/2016/4583147
https://doi.org/10.1177/1729881417729277
https://doi.org/10.1002/asjc.2004
https://doi.org/10.3390/math7020135
https://doi.org/10.1007/s40313-019-00453-2
https://doi.org/10.1155/2020/3743089
https://doi.org/10.1155/2019/8134674
https://doi.org/10.1016/j.plrev.2005.10.001

Machines 2024, 12, 569 50 of 50

78. Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
79. Lv, B.; Qin, Y.; Dai, H.; Su, S. Improving Localization Success Rate of Three Magnetic Targets Using Individual Memory-Based

WO-LM Algorithm. IEEE Sens. J. 2021, 21, 3101299. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.advengsoft.2016.01.008
https://doi.org/10.1109/JSEN.2021.3101299

	Introduction
	A Brief Overview of the Optimization Problem
	Definition
	A Comparison between Local and Global Extrema
	Local Optimization Algorithms
	Global Optimization Algorithms
	Metaheuristic Algorithms
	Deterministic Algorithms

	From Single to Multi-Objective Optimization
	Pareto Method
	Scalarization Method
	Summary of the Optimization Problems

	Optimization Algorithms Used in the Field of Localization
	Newton’s Method, Gradient Descent, and Gauss–Newton Method
	Newton’s Method
	Gradient Descent Algorithm
	Gauss–Newton Method
	The Integer Least-Squares Problem
	Integer Frequency Ambiguities Resolution

	Levenberg–Marquardt
	Lagrange Multipliers Method and Lagrange Duality
	Lagrange Multipliers Method
	Lagrange Duality
	A Localization Non-Convex Problem

	Genetic Algorithm
	Quantum Genetic Algorithm
	Differential Evolution Algorithm
	Mind Evolutionary Algorithm
	Particle Swarm Optimization
	Particle Swarm Optimization-Based Artificial Neural Network (PSO-ANN)
	Particle Swarm Optimization-Based Minimum Residual Algorithm
	Mobile Robot Localization Based on PSO and Simultaneous Perturbation

	Differential Evolution and Particle Swarm Optimization: DEPSO
	Bat Algorithm
	Artificial Bee Colony Optimization Algorithm
	Simulated Annealing
	Ant Colony Optimization
	Whale Optimization Algorithm
	Summary of the Investigated Methods

	Conclusions
	References

