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A B S T R A C T

We consider the SIRWJS epidemiological model that includes the waning and boosting of im-
munity via secondary infections. We carry out combined analytical and numerical investigations
of the dynamics. The formulae describing the existence and stability of equilibria are derived.
Combining this analysis with numerical continuation techniques, we construct global bifurcation
diagrams with respect to several epidemiological parameters. The bifurcation analysis reveals a
very rich structure of possible global dynamics. We show that backward bifurcation is possible
at the critical value of the basic reproduction number, 0 = 1. Furthermore, we find stability
switches and Hopf bifurcations from steady states forming multiple endemic bubbles, and
saddle–node bifurcations of periodic orbits. Regions of bistability are also found, where either
two stable steady states, or a stable steady state and a stable periodic orbit coexist. This work
provides an insight to the rich and complicated infectious disease dynamics that can emerge
from the waning and boosting of immunity.

1. Introduction

Compartmental models based on the Susceptible–Infectious–Recovered (𝑆𝐼𝑅) framework, have been used to study the transmis-
sion dynamics of infectious diseases in a population. The classical 𝑆𝐼𝑅 model assumes lifelong and perfect immunity upon recovery
from the infection. An extension of the 𝑆𝐼𝑅 model, known as the Susceptible–Infectious–Recovered–Susceptible (𝑆𝐼𝑅𝑆) model,
accounts for the loss of immunity and can capture the long term persistence of diseases in a population. However, it is unable to
reproduce oscillatory dynamics, which has been frequently experienced in real life.

Through the addition of a 𝑊 compartment, the Susceptible–Infectious–Recovered–Waned–Susceptible (𝑆𝐼𝑅𝑊 𝑆) model can
incorporate both the waning and boosting of immunity. Individuals from the 𝑅 compartment, after the some time, move to the
𝑊 compartment where they have less immunity than the recovered class 𝑅, but still more immunity than the fully susceptible class
𝑆. Moreover, when an individual is in the 𝑊 compartment, and exposed to the pathogen again, then their immunity can be boosted
which can be modeled by moving back to the highly immune 𝑅 compartment from 𝑊 , without experiencing the infected state. The
𝑆𝐼𝑅𝑊 𝑆 model already exhibits a surprisingly rich dynamics with three distinct features depending on the degree of boosting —
fixed points, limit cycles, and bistability between the two. For a comprehensive study of waning and boosting of immunity in a very
general setting, we refer to Barbarossa et al. [1].

Several authors have extended the 𝑆𝐼𝑅𝑊 𝑆 model to explore additional questions, such as the role of age structure, vaccination,
seasonal forcing, and strain dynamics. Carlsson et al. [2] and Lavine et al. [11] examined the resurgence of pertussis by extending the
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𝑆𝐼𝑅𝑊 𝑆 model to include age-structure and vaccination. The impact of waning and boosting of immunity on COVID-19 dynamics
was studied using an age structured model in [4]. Leung et al. [12] showed that the relative duration of vaccine-induced immunity
and infection-induced immunity plays a significant role in determining epidemiological dynamics. Dafilis et al. [6] considered
seasonal forcing of disease transmission and found highly unpredictable behavior. Further work considered the interaction of similar
pathogens and demonstrated the interesting behavior when two phenomena that can cause oscillations — strain dynamics with
cross-immunity and waning/boosting of immunity — are coupled.

A common feature of the previous 𝑆𝐼𝑅𝑊 𝑆-models is the assumption of identical expected transition times from 𝑅 to 𝑊 and
hereon from 𝑊 to 𝑆. In our previous work [15], we have investigated the effects of breaking this symmetry, i.e. we considered
rbitrary partitioning of the total immune period (the overall expected transition time from 𝑅 to 𝑆) between the 𝑅 and the 𝑊

states. We found that the modified model exhibits rich dynamics and displays additional complexity with respect to the symmetric
partitioning.

This article presents an extension of the 𝑆𝐼𝑅𝑊 𝑆 model where boosting of immunity occurs strictly via undergoing a secondary
infection period, by inserting an additional compartment 𝐽 from 𝑊 to 𝑅. Such an extended system was already studied by Strube
et al. [18] permitting, in addition, immune boosting directly from 𝑊 to 𝑅 for a fraction of the cases. We do not consider this latter
possibility here, only the boosting via 𝐽 . However, [18], similarly to [6,12], assumed identical transition times from 𝑅 to 𝑊 and 𝑊
to 𝑆, which is not biologically feasible. To address this gap in the literature, in contrast, here we investigate how the more realistic
asymmetric partitioning of the total immune period affects the dynamics. We find that this natural extension of the model enables
additional complexities in the long term disease dynamics.

We determine the stability of the endemic equilibria and analyze the parameter regimes in which fixed points, limit cycles, and
bistability occur. We establish the possibility of a backward transcritical bifurcation at 0 = 1. Our analysis leads to very complicated
dynamics and convoluted bifurcation diagrams.

2. Description of the SIRWJS model: a compartmental model with waning and boosting, where secondary exposure can
make the host infective

In this section, we describe the SIRWJS model, which incorporates a secondary infectious state, labeled 𝐽 , via which boosting
of immunity occurs. Primarily, the SIRWJS model consists of the following compartments: those who are susceptible (𝑆) to the
infection may become infected (𝐼) upon adequate contact with an infectious individual. The recovered population is further divided
into two compartments based on their level of immunity. Upon recovery from 𝐼 , individuals move to 𝑅 having full immunity. Later,
their immunity may weaken and they progress to the 𝑊 compartment representing waning immunity. Upon re-exposure to the
pathogen, members of 𝑊 move into the 𝐽 compartment representing secondary infections. These individuals eventually recover
from the secondary infection and transition back to 𝑅 where hosts are fully immune. The path from 𝑊 to 𝑅 results in a boosting of
the individual’s immunity level. On the other hand, in the absence of re-exposure to the disease causing pathogen, hosts eventually
lose their immunity modeled as a transition from 𝑊 back to the 𝑆 compartment where they are fully susceptible again to the
infection.

Fig. 1 shows the flow chart of the SIRWJS system, where boosting occurs via 𝐽 . The primary force of infection is 𝛽(𝐼 + 𝜉𝐽 ),
where 𝜉 is the infectivity of secondary infection relative to primary infection and 𝛽 is the transmission rate. Thus, both 𝐼 and 𝐽
are infectious compartments, and individuals in these compartments can infect susceptibles and also boost a waning immunity. The
death rate, 𝜇, is assumed to be the same as the birth rate, 𝛾 and 𝜌 are the recovery rates from the primary and secondary infections
respectively, while 𝜅 is the immune decay rate. Boosting of immunity occurs via the 𝐽 compartment using the boosting coefficient
𝜈.

Many previous waning-boosting models assumed that the average time spent in 𝑅 and 𝑊 compartments are the same. Here,
following [15], we relax this restrictive assumption of symmetric partition of the immunity period, by introducing two additional
parameters 𝛼 > 1 and 𝜔 > 1, such that the time spent in 𝑅 is 1∕(𝛼𝜅) and the time spent in 𝑊 is 1∕(𝜔𝜅). Then, the total period of
immune protection is

1
𝛼𝜅

+ 1
𝜔𝜅

= 1
𝜅
, (1)

under the assumption of 𝛼 +𝜔 = 𝛼𝜔. Note that the formulation of similar models in earlier works such as [6] is equivalent with the
restriction of parameters 𝛼 = 𝜔 = 2.

The descriptions and assumptions on the system parameters are summarized in Table 1.
We consider all parameters to be positive, but 𝜉 is allowed to take value zero as well. The case 𝜉 = 0 represents the scenario

when people in secondary infection are not infectious, whilst 𝜉 = 1 describes the scenario when the secondary infection is equally
infectious to the primary infection. We may allow 𝜉 > 1 modeling reinfections that are more severe than the primary.

We now formulate the governing system of ordinary differential equations describing the dynamics presented in Fig. 1 as
𝑑𝑆
𝑑𝑡

= −𝛽(𝐼 + 𝜉𝐽 )𝑆 + 𝜔𝜅𝑊 + 𝜇(1 − 𝑆),

𝑑𝐼
𝑑𝑡

= 𝛽(𝐼 + 𝜉𝐽 )𝑆 − 𝛾𝐼 − 𝜇𝐼,

𝑑𝑅
𝑑𝑡

= 𝛾𝐼 − 𝛼𝜅𝑅 + 𝜌𝐽 − 𝜇𝑅,

𝑑𝑊
𝑑𝑡

= 𝛼𝜅𝑅 − 𝜔𝜅𝑊 − 𝜈𝛽(𝐼 + 𝜉𝐽 )𝑊 − 𝜇𝑊 ,

𝑑𝐽 = 𝜈𝛽(𝐼 + 𝜉𝐽 )𝑊 − 𝜇𝐽 − 𝜌𝐽 .

(2)
625
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Fig. 1. Flow diagram for the SIRWJS system with sub-clinical state.

Table 1
Parameters of the SIRWJS system.
𝛽 >0 transmission rate

𝜉 ≥ 0 relative infectivity of secondary infections
with respect to primary

𝜇 >0 birth and death rate

𝛾 >0 recovery rate from primary infection
𝜌 >0 recovery rate from secondary infection

𝜅 >0 immune decay rate

𝛼−1 ∈ (0, 1) relative size of the first immune
protection period from 𝑅 ⟶ 𝑊

𝜔−1 (1 − 𝛼−1) ∈ (0, 1) relative size of the second immune
protection period from 𝑊 ⟶ 𝑆

𝜈 >0 boosting coefficient

System (2) models a constant size population normalized to 1 as summing all equations yields

𝑑(𝑆 + 𝐼 + 𝑅 +𝑊 + 𝐽 )
𝑑𝑡

= 𝜇(1 − 𝑆 − 𝐼 − 𝑅 −𝑊 − 𝐽 ).

Theorem 3.4 in [17] immediately guarantees that non-negativity of the solutions is preserved. Thus, our primary interest is in
non-negative solutions satisfying 𝑆 + 𝐼 + 𝑅 +𝑊 + 𝐽 = 1 for all 𝑡. These solutions we refer to as epidemiologically feasible.

Using the substitution

𝑅 = 1 − 𝑆 − 𝐼 −𝑊 − 𝐽 , (3)

we get the reduced system

𝑑𝑆
𝑑𝑡

= −𝛽(𝐼 + 𝜉𝐽 )𝑆 + 𝜔𝜅𝑊 + 𝜇(1 − 𝑆), (4a)
𝑑𝐼
𝑑𝑡

= 𝛽(𝐼 + 𝜉𝐽 )𝑆 − 𝛾𝐼 − 𝜇𝐼, (4b)
𝑑𝑊
𝑑𝑡

= 𝛼𝜅(1 − 𝑆 − 𝐼 −𝑊 − 𝐽 ) − 𝜔𝜅𝑊 − 𝜈𝛽(𝐼 + 𝜉𝐽 )𝑊 − 𝜇𝑊 , (4c)
𝑑𝐽
𝑑𝑡

= 𝜈𝛽(𝐼 + 𝜉𝐽 )𝑊 − 𝜇𝐽 − 𝜌𝐽 . (4d)

Note that the feasible region for our epidemiological setting

(𝑆(𝑡), 𝐼(𝑡),𝑊 (𝑡), 𝐽 (𝑡)) ∈  ∶=
{

(𝑠, 𝑖, 𝑤, 𝑗) ∈ R4
≥0 ∣ 0 ≤ 𝑠 + 𝑖 +𝑤 + 𝑗 ≤ 1

}

is forward invariant based on the above observations.
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3. Equilibria and stability analysis

Now we turn our attention to finding equilibria (𝑆∗, 𝐼∗, 𝑅∗,𝑊 ∗, 𝐽 ∗) of (2). The following lemma establishes that feasible ones
arise from non-negative steady states of the reduced system (4).

Lemma 1. Let (𝑆∗, 𝐼∗,𝑊 ∗, 𝐽 ∗) be a non-negative equilibrium of (4). Then

(𝑆∗, 𝐼∗,𝑊 ∗, 𝐽 ∗) ∈ 

nd, hence, (𝑆∗, 𝐼∗, 𝑅∗,𝑊 ∗, 𝐽 ∗) with 𝑅∗ ∶= 1 − 𝑆∗ − 𝐼∗ −𝑊 ∗ − 𝐽 ∗ is epidemiologically feasible.

Proof. Equilibria of (4) are obtained as solutions of

−𝛽(𝐼∗ + 𝜉𝐽 ∗)𝑆∗ + 𝜔𝜅𝑊 ∗ + 𝜇(1 − 𝑆∗) = 0, (5a)

𝛽(𝐼∗ + 𝜉𝐽 ∗)𝑆∗ − 𝛾𝐼∗ − 𝜇𝐼∗ = 0, (5b)

𝛼𝜅(1 − 𝑆∗ − 𝐼∗ −𝑊 ∗ − 𝐽 ∗) − 𝜔𝜅𝑊 ∗ − 𝜈𝛽(𝐼∗ + 𝜉𝐽 ∗)𝑊 ∗ − 𝜇𝑊 ∗ = 0, (5c)

𝜈𝛽(𝐼∗ + 𝜉𝐽 ∗)𝑊 ∗ − 𝜇𝐽 ∗ − 𝜌𝐽 ∗ = 0. (5d)

Summing all equations yields

(𝜇 + 𝛼𝜅)(1 − 𝑆∗ − 𝐼∗ −𝑊 ∗ − 𝐽 ∗) − 𝛾𝐼∗ − 𝜌𝐽 ∗ = 0,

thus, 𝑆∗ + 𝐼∗ +𝑊 ∗ + 𝐽 ∗ ≤ 1 as 0 < 𝛾, 𝜌, (𝛼𝜅 + 𝜇) and 0 ≤ 𝐼∗, 𝐽 ∗. □

The converse is readily satisfied, namely, given (𝑆∗, 𝐼∗, 𝑅∗,𝑊 ∗, 𝐽 ∗) an epidemiologically feasible equilibrium of (2), we have
(𝑆∗, 𝐼∗,𝑊 ∗, 𝐽 ∗) ∈ . Consequently, in the following we concentrate on finding non-negative equilibria of (4) and, then, we study
their local stability.

Note that Eq. (5a) implies 𝑆∗ > 0 for any non-negative equilibrium.

3.1. Disease free equilibrium

Assume 𝐼∗ = 0. Then, 𝐽 ∗ = 0 follows from (5b) and the above observation on 𝑆∗ being positive. The non-negativity implies
𝑆∗ = 1 and, in turn, 𝑊 ∗ = 0 from (5a). The resulting equilibrium (𝑆∗, 𝐼∗,𝑊 ∗, 𝐽 ∗) = (1, 0, 0, 0) is referred to as the disease free
equilibrium (DFE).

We note that even if we relax the non-negativity condition, no other equilibria exists with 𝐼∗ = 0. We refer to our computer
algebra codes for further details [5].

3.2. Existence of non-trivial equilibria

Let us now consider 𝐼∗ ≠ 0 and assume 𝜉 > 0. We will return to the case 𝜉 = 0 later. Eq. (5d) implies 𝑊 ∗ = 0 if and only if
𝐽 ∗ = 0 and then

𝑆∗ =
𝛾 + 𝜇
𝛽

,

𝐼∗ = 𝜇
(

1
𝛾 + 𝜇

− 1
𝛽

)

,

𝛼𝜅𝛾
(

1
𝛾 + 𝜇

− 1
𝛽

)

= 0.

hus, in this case 𝛽 = 𝛾 +𝜇 and we, again, obtain the DFE. Hence, we may assume both 𝑊 ∗ ≠ 0 and 𝐽 ∗ ≠ 0. Also, 𝜌+𝜇− 𝜈𝛽𝜉𝑊 ∗ ≠ 0
as equality would imply 𝐼∗ = 0 by (5d).

After these preliminary observations, we begin by expressing (𝑆∗, 𝐼∗, 𝐽 ∗) in terms of 𝑊 ∗. From (5b) and (5d), we obtain
𝐽 ∗

𝐼∗
=

𝛾 + 𝜇 − 𝛽𝑆∗

𝛽𝜉𝑆∗ =
𝜈𝛽𝑊 ∗

𝜌 + 𝜇 − 𝜈𝛽𝜉𝑊 ∗

yielding

𝑆∗ =
𝛾 + 𝜇
𝛽

−
𝜈𝜉(𝛾 + 𝜇)
𝜌 + 𝜇

𝑊 ∗. (6)

Then, adding (5a) and (5b) results in

𝐼∗ =
𝜔𝜅𝑊 ∗ + 𝜇(1 − 𝑆∗)

𝛾 + 𝜇
that simplifies to

𝐼∗ = 𝜇
(

1 − 1
)

+
(

𝜔𝜅 +
𝜇𝜈𝜉

)

𝑊 ∗. (7)
627
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Finally, (6) and (5d) gives

𝐽 ∗ =
𝜈𝛽𝐼∗𝑊 ∗

𝜌 + 𝜇 − 𝜈𝛽𝜉𝑊 ∗ . (8)

We note that (8) could be expanded solely in terms of 𝑊 ∗ using (7). Nevertheless, the added complexity would serve no benefit
and, thus, the expansion is omitted.

Using the above formulae, we obtain a quadratic equation for 𝑊 ∗ from (5) as

𝑓 (𝑊 ∗) ∶= 𝐴(𝑊 ∗)2 + 𝐵𝑊 ∗ + 𝐶 = 0, (9)

with

𝐴 = 𝜈𝛽2
[

−𝜈𝜉2(𝛾 + 𝜇)𝑄0 + 𝜉𝑄1 +
(

𝛼𝜅(𝜌 + 𝜇) − 𝜈𝜉𝜇(𝛾 + 𝜇) − 𝜂𝜅(𝜌 + 𝜇)
)

𝑄2
]

,

𝐵 = 𝛽(𝜌 + 𝜇)
[

(

𝜈𝜉(𝛾 + 𝜇) − 𝜈𝜉(𝛽 − 𝛾 − 𝜇)
)

𝑄0 −𝑄1 − 𝜈𝜇(𝛽 − 𝛾 − 𝜇)𝑄2

]

,

𝐶 = (𝛽 − 𝛾 − 𝜇)(𝜌 + 𝜇)2𝑄0,

(10)

where
𝜂 ∶= 𝛼 + 𝜔 = 𝛼𝜔,

𝑄0 ∶= 𝛼𝜅𝛾,

𝑄1 ∶=
[

(𝛾 + 𝜇)(𝜂𝜅 + 𝜇) + 𝜂𝜅2] (𝜌 + 𝜇),

𝑄2 ∶= 𝛼𝜅 + 𝜌 + 𝜇.

(11)

Therefore, based on the sign of the discriminant 𝛥 = 𝐵2 − 4𝐴𝐶, system (5) has 0, 1 or 2 additional real solutions besides the DFE.
Note that an equilibria originating from a real root of the quadratic equation coincides with the DFE if and only if the root is zero.

Let us now investigate the non-negativity of these non-trivial equilibria. Based on our initial considerations at the beginning of
this section, we are looking for positive solutions and, thus, we assume that (9) has a solution 𝑊 ∗ > 0. Then, the inequality

𝑊 ∗ <
𝜌 + 𝜇
𝜈𝛽𝜉

=∶ 𝑊 (12)

must hold in order to ensure 𝑆∗ > 0 based on (6). Similarly,

𝑊 ∗ >
𝜇(−𝛽 + 𝛾 + 𝜇)(𝜌 + 𝜇)

𝛽(𝜇𝜈𝜉(𝛾 + 𝜇) + 𝜔𝜅(𝜌 + 𝜇))
=∶ 𝑊 (13)

follows from (7). Finally, one can see from (8) that 𝐽 ∗ > 0 readily follows from (12), (13), and 𝑊 ∗ > 0. Summarizing these findings
nd using Lemma 1 yield that a solution 𝑊 ∗ of (9) leads to an epidemiologically feasible equilibrium other than the DFE by (3),
6), (7), and (8) if and only if

max{0,𝑊 } < 𝑊 ∗ < 𝑊 . (14)

Note that the above conditions guarantee the non-negativity of the equilibrium, hence, it follows from Lemma 1 that
(𝑆∗, 𝐼∗,𝑊 ∗, 𝐽 ∗) ∈ . In particular, 𝑊 ∗ ≤ 1 must hold implying that no such 𝑊 ∗ may exist if 𝑊 ≥ 1.

For the upper bound, straightforward calculation shows that the quadratic formula (9) is negative at

𝑓 (𝑊 ) = −
(𝜌 + 𝜇)2(𝜇𝜈𝛽𝜉 + (𝜂 − 𝛼)𝜅(𝜌 + 𝜇))

𝜈𝜉2
𝑄2 < 0, (15)

given any parametrization conforming Table 1.
Let us now analyze the lower bound and the sign of 𝑓 at that point. Clearly, 0 ≥ 𝑊 if and only if 𝛽 ≥ 𝛾 + 𝜇. Note that the basic

reproduction number 0 of the system (4) — and of (2) — is obtained as the spectral radius of

−𝐓Σ−1 = −
⎡

⎢

⎢

⎣

𝛽 0 𝛽𝜉
0 0 0
0 0 0

⎤

⎥

⎥

⎦

×
⎡

⎢

⎢

⎣

−(𝛾 + 𝜇) 0 0
−𝛼𝜅 −(𝛼𝜅 + 𝜔𝜅 + 𝜇) −𝛼𝜅
0 0 −(𝜌 + 𝜇)

⎤

⎥

⎥

⎦

−1

=

⎡

⎢

⎢

⎢

⎣

𝛽
𝛾+𝜇 0 𝛽𝜉

𝛾+𝜇
0 0 0
0 0 0

⎤

⎥

⎥

⎥

⎦

via the next generation matrix method [8], where 𝐓 and Σ represent the transmission part describing the production of new
nfections, and the transition part describing changes in state, of the linearized infected subsystem composed of (𝐼,𝑊 , 𝐽 ),
espectively, where 𝐓 +Σ is the corresponding Jacobian. Therefore,

0 =
𝛽

𝛾 + 𝜇
and the condition 𝛽 ≥ 𝛾 + 𝜇 translates to 0 ≥ 1.

Consider now 0 > 1. The 𝑦-intercept of the parabola in (9) is positive, i.e., 𝑓 (0) = 𝐶 > 0. Hence, 𝑓 has exactly one root in the
𝑊 ) and, as a consequence, (4) has one other epidemiologically feasible equilibrium besides the DFE. This new equilibrium
628
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is referred to as the endemic equilibrium (EE). Note that, independent of the parametrization, the formula for EE is obtained by using
the root

𝑊 ∗ ≡ 𝑊 ∗
− = −𝐵 −

√

𝐵2 − 4𝐴𝐶
2𝐴

. (16)

The case 0 < 1 is more involved. The lower bound in (14) is now given by 𝑊 and elementary calculations yield

𝑓 (𝑊 ) =
(𝛽 − 𝛾 − 𝜇)(𝜌 + 𝜇)2(𝜔𝜅(𝜌 + 𝜇)𝑄0 + 𝜇𝑄1)(𝜇𝜈𝛽𝜉 + 𝜔𝜅(𝜌 + 𝜇))

(𝜇𝜈𝜉(𝛾 + 𝜇) + 𝜔𝜅(𝜌 + 𝜇))2
< 0. (17)

Thus, by (15) and (17), if 𝑓 has a root in (𝑊 ,𝑊 ), then 𝑓 is a downward parabola with non-negative discriminant 𝛥. Moreover, if
𝛥 > 0, then it has two roots of the sought quality leading to two other epidemiologically feasible equilibria. A more thorough sign
analysis of 𝛥 reveals that if such equilibria exist then they do so for an interval of 𝛽 values in the left neighborhood of 𝛾 + 𝜇 distant
from 0.

Theorem 1. Let

𝛩 = 𝜈𝜉(𝛾 + 𝜇)𝑄0 −𝑄1, (18)

with 𝑄0, 𝑄1 defined in (11). If 𝛩 > 0, then there is a 0 < 𝛽 < 𝛾 +𝜇 such that, besides the DFE, there are two other epidemiologically feasible
equilibria for 𝛽 ∈ (𝛽, 𝛾 + 𝜇) and only the DFE for 𝛽 < 𝛽. On the other hand, if 𝛩 ≤ 0, then the only epidemiologically feasible equilibrium is
the DFE for 0 < 1.

emark. We emphasize that the possibility of 𝛩 > 0 is not a consequence of the asymmetric partitioning we consider in this
anuscript as in the symmetric case it translates to

𝜈𝜉(𝛾 + 𝜇)2𝜅𝛾 −
[

(𝛾 + 𝜇)(4𝜅 + 𝜇) + 4𝜅2] (𝜌 + 𝜇) > 0

that is clearly satisfiable with an appropriate choice of e.g. 𝜈 or 𝜉. Therefore, the associated results are applicable to [18] as well.

Proof. We consider 𝛽 ∈ (0, 𝛾 + 𝜇] that is 0 ≤ 1. By the formulae (9), (10), (12), and (13) we have that 𝐴, 𝐵, 𝐶, 𝛥, 𝑓 , 𝑊 , and 𝑊
are continuous in 𝛽. Recall that 𝑓 is guaranteed to take negative values at the endpoints of the interval [𝑊 ,𝑊 ] as seen in (15) and
(17). Hence, if for a 𝛽0 ∈ (0, 𝛾 +𝜇] the parabola 𝑓 has two roots in (𝑊 ,𝑊 ) (and consequently the discriminant 𝛥(𝛽0) > 0), then, due
to the continuity of all relevant expressions, there exists a corresponding maximal sub-interval (𝛽, 𝛽) with

(0, 𝛾 + 𝜇) ⊇ (𝛽, 𝛽) ∋ 𝛽0

uch that the two roots persist (and 𝛥(𝛽) > 0) for 𝛽 ∈ (𝛽, 𝛽). Clearly, if 0 < 𝛽, then 𝛥(𝛽) = 0 and, analogously, 𝛽 < 𝛾 + 𝜇 implies
𝛥(𝛽) = 0.

From (10), we see that the discriminant 𝛥, as a function of 𝛽, takes the form

𝛥(𝛽) = (𝜌 + 𝜇)2 ⋅ 𝛽2 ⋅ 𝑞(𝛽),

where 𝑞 is an upward parabola with lead coefficient 𝜈2(𝜉𝑄0 + 𝜇𝑄2)2 > 0. Hence, 𝛥(𝛽) can have at most two zeros in 𝛽 ∈ (0, 𝛾 + 𝜇].
These observations imply that the subset of (0, 𝛾 + 𝜇) where 𝑓 has two roots in (𝑊 ,𝑊 ) must have one of the forms:

– 𝛥 has no zeros in (0, 𝛾 + 𝜇): ∅ or (0, 𝛾 + 𝜇),

– 𝛥 has one single zero 𝛽 in (0, 𝛾 + 𝜇): (0, 𝛽) or (𝛽, 𝛾 + 𝜇),

– 𝛥 has two single zeros 𝛽1, 𝛽2 in (0, 𝛾 + 𝜇):
(or a double zero at 𝛽1 = 𝛽2)

(0, 𝛽1) ∪ (𝛽2, 𝛾 + 𝜇).

We can rule out the options having 0 as a left endpoint by noting that

lim
𝛽→0

𝑊 = lim
𝛽→0

𝑊 = ∞,

thus, in a neighborhood of 0, the inequality 𝑊 > 1 holds guaranteeing that no suitable root exists. Therefore, we are left with two
possible forms ∅ and (𝛽, 𝛾 + 𝜇) with 𝛽 > 0 in the latter.

In order to finish our proof, we now show that the sign of 𝛩 determines if 𝑓 has a root in the left neighborhood of 𝛽 = 𝛾 + 𝜇.
First, note that the sign of the 𝑦-intercept of 𝑓 is given as 𝐶(𝛽) = 0 when 𝛽 = 𝛾 + 𝜇 and 𝐶(𝛽) < 0 for 𝛽 < 𝛾 + 𝜇 and that 𝑊 (𝛽) = 0

hen 𝛽 = 𝛾 + 𝜇. Next, the discriminant at the critical point is

𝛥(𝛽)||
|𝛽=𝛾+𝜇

= 𝛩2(𝛾 + 𝜇)2(𝜌 + 𝜇)2.

Finally, the slope of the parabola 𝑓 in (9) at 𝑊 ∗ = 0 as a function of 𝛽 is given by

𝐵(𝛽) = 𝛽(𝜌 + 𝜇)
[

𝛩 − (𝛽 − 𝛾 − 𝜇)𝜈(𝜉𝑄0 + 𝜇𝑄2)
]

.

Clearly, for 𝛽 = 𝛾 + 𝜇, the inequality 𝛩 > 0 implies that the above slope is positive securing the existence of another root of the
parabola 𝑓 in (0,𝑊 ) as 𝑓 (𝑊 ) < 0 holds. Then, by continuity and by 𝛥(𝛽)|𝛽=𝛾+𝜇 > 0, we have that this root persists in an open
eighborhood of 𝛽 = 𝛾 + 𝜇. On the other hand, when 𝛩 ≤ 0, the slope is non-positive in an open left neighborhood of 𝛽 = 𝛾 + 𝜇,
hus, no other root may exist there as the 𝑦-intercept is negative. □
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It is apparent that 0 = 1 marks a significant change in the dynamics. We analyze the corresponding bifurcation in the following
section. Not surprisingly, the key expression 𝛩 of Theorem 1 will appear there as well, broadening our understanding of its origin.

3.3. Transcritical bifurcation at 0 = 1

In this section, we analyze the local stability of the DFE and its connection with 0. First, let us consider the Jacobian matrix
of our SIRWJS system (4)

𝐉 =

⎡

⎢

⎢

⎢

⎢

⎣

−𝛽(𝐼 + 𝜉𝐽 ) − 𝜇 −𝛽𝑆 𝜔𝜅 −𝛽𝜉𝑆
𝛽(𝐼 + 𝜉𝐽 ) 𝛽𝑆 − (𝛾 + 𝜇) 0 𝛽𝜉𝑆

−𝛼𝜅 −𝜈𝛽𝑊 − 𝛼𝜅 −𝜈𝛽(𝐼 + 𝜉𝐽 ) − (𝛼𝜅 + 𝜔𝜅 + 𝜇) −𝜈𝛽𝜉𝑊 − 𝛼𝜅
0 𝜈𝛽𝑊 𝜈𝛽(𝐼 + 𝜉𝐽 ) 𝜈𝛽𝜉𝑊 − (𝜌 + 𝜇)

⎤

⎥

⎥

⎥

⎥

⎦

.

and evaluate at the DFE to obtain

𝐉|(1,0,0,0) =

⎡

⎢

⎢

⎢

⎢

⎣

−𝜇 −𝛽 𝜔𝜅 −𝛽𝜉
0 𝛽 − (𝛾 + 𝜇) 0 𝛽𝜉

−𝛼𝜅 −𝛼𝜅 −(𝛼𝜅 + 𝜔𝜅 + 𝜇) −𝛼𝜅
0 0 0 −(𝜌 + 𝜇)

⎤

⎥

⎥

⎥

⎥

⎦

.

The corresponding eigenvalues are

𝜆1 = 𝛽 − (𝛾 + 𝜇), 𝜆2 = −(𝛼𝜅 + 𝜇), 𝜆3 = −(𝜔𝜅 + 𝜇), 𝜆4 = −(𝜌 + 𝜇). (19)

Then, as the eigenvalues 𝜆2, 𝜆3, and 𝜆4 are negative and 𝜆1 < 0 if and only if 𝛽 < 𝛾 + 𝜇, we can conclude that the DFE is locally
asymptotically stable when 0 < 1 and unstable if 0 > 1.

The following theorem establishes that a transcritical bifurcation happens at 0 = 1. We show that the sign of 𝛩, defined in
(18), gives the direction of this bifurcation. The proof relies on Theorem 4.1 of [3].

Theorem 2. If 𝛩 > 0, then a transcritical bifurcation of backward type occurs at 0 = 1, and when 𝛩 < 0, then a transcritical bifurcation
of forward type occurs at 0 = 1.

Proof. We apply Theorem 4.1 of [3] to the system �̇� = 𝑔(𝐱, 𝑏), where the vector field

𝑔 = (𝑔𝑆 , 𝑔𝐼 , 𝑔𝑊 , 𝑔𝐽 )

is obtained by applying the substitutions for our bifurcation parameter 𝛽 → 𝑏+ 𝛽∗ with 𝛽∗ = 𝛾 +𝜇, corresponding to the critical case
0 = 1, and for the state variables (𝑆, 𝐼,𝑊 , 𝐽 ) → (𝑥𝑆 , 𝑥𝐼 , 𝑥𝑊 , 𝑥𝐽 ) + (1, 0, 0, 0) which are then written as

𝐱 = (𝑥𝑆 , 𝑥𝐼 , 𝑥𝑊 , 𝑥𝐽 ).

Then, 𝑀 ∶= 𝐷𝐱𝑔(𝟎, 0) equals to the Jacobian matrix of (4) at the DFE, namely to 𝐉|(1,0,0,0) with 𝛽 = 𝛽∗. Hence, 𝑀 has one simple
zero eigenvalue and three eigenvalues with negative real part as in (19). Now, we calculate the right and left eigenvectors 𝑤, 𝑣 of
𝑀 corresponding to the zero eigenvalue. The system 𝑀𝑤 = 0 is underdetermined, so we may fix 𝑤𝐼 = 1. Then,

𝑤𝑆 = −
𝑄1

(𝛼𝜅 + 𝜇)(𝜅𝜔 + 𝜇)(𝜌 + 𝜇)
, 𝑤𝐼 = 1, 𝑤𝑊 =

𝑄0
(𝛼𝜅 + 𝜇)(𝜅𝜔 + 𝜇)

, 𝑤𝐽 = 0.

Similarly, setting 𝑣𝐼 = 1 yields

𝑣𝑆 = 0, 𝑣𝐼 = 1, 𝑣𝑊 = 0, 𝑣𝐽 =
𝜉(𝛾 + 𝜇)
𝜌 + 𝜇

.

ow, we need to calculate the following quantities

𝑍1 =
∑

𝑘,𝑖,𝑗∈{𝑆,𝐼,𝑊 ,𝐽}
𝑣𝑘𝑤𝑖𝑤𝑗

𝜕2𝑔𝑘
𝜕𝑥𝑖𝜕𝑥𝑗

(𝟎, 0) and

𝑍2 =
∑

𝑘,𝑖∈{𝑆,𝐼,𝑊 ,𝐽}
𝑣𝑘𝑤𝑖

𝜕2𝑔𝑘
𝜕𝑥𝑖𝜕𝑏

(𝟎, 0).

ince 𝑣𝑆 = 𝑣𝑊 = 0, the partial derivatives of 𝑔𝑆 and 𝑔𝑊 have no influence on the above expressions. Also, as 𝑤𝐽 = 0, partial
derivatives with respect to 𝑥𝐽 can be omitted. Thus, we are left with the following relevant nonzero second order partial derivatives

𝜕2𝑔𝐼
𝜕𝑥𝑆𝜕𝑥𝐼

(𝟎, 0) = 𝛽∗,
𝜕2𝑔𝐽

𝜕𝑥𝐼𝜕𝑥𝑊
(𝟎, 0) = 𝜈𝛽∗,

𝜕2𝑔𝐼
𝜕𝑥𝐼𝜕𝛽

(𝟎, 0) = 1

leading to the simplified expressions

𝑍1 = 2𝑣𝐼𝑤𝑆𝑤𝐼
𝜕2𝑔𝐼 (𝟎, 0) + 2𝑣𝐽𝑤𝐼𝑤𝑊

𝜕2𝑔𝐽 (𝟎, 0)
630

𝜕𝑥𝑆𝜕𝑥𝐼 𝜕𝑥𝐼𝜕𝑥𝑊



Mathematics and Computers in Simulation 218 (2024) 624–643R. Opoku-Sarkodie et al.

d
𝜌

o
a

i
e

h
e

Fig. 2. Backward bifurcation (left) and forward bifurcation (right) at 0 = 1. Stable branches are marked with continuous and unstable branches with
ashed lines. Note that the depicted stability may be lost for 0 ≫ 1 as it will be discussed in later sections. The parameters used for both cases are
= 17, 𝜅 = 0.1, 𝛾 = 17, 𝜇 = 0.0125, 𝜈 = 3, 𝛼 = 2. The relative infectivity in the backward case is 𝜉 = 0.9 and in the forward case 𝜉 = 0.001.

=
2𝛽∗

(𝛼𝜅 + 𝜇)(𝜅𝜔 + 𝜇)(𝜌 + 𝜇)

[

𝜈𝜉(𝛾 + 𝜇)𝑄0 −𝑄1

]

=
2𝛽∗

(𝛼𝜅 + 𝜇)(𝜅𝜔 + 𝜇)(𝜌 + 𝜇)
⋅ 𝛩 and

𝑍2 = 𝑣𝐼𝑤𝐼
𝜕2𝑔𝐼
𝜕𝑥𝐼𝜕𝛽

(𝟎, 0) = 𝑣𝐼𝑤𝐼 = 1.

As 𝑍2 > 0 for all model parameters, only the sign of 𝑍1 decides upon the direction of the bifurcation. Therefore, if 𝛩 > 0 (< 0),
then a transcritical bifurcation of backward (forward) type occurs at 0 = 1. □

Let us summarize our epidemiologically feasible findings. Depending on the parameters in the system, there can be two types
f bifurcations at 0 = 1, forward (supercritical) or backward (subcritical), Fig. 2. In a forward bifurcation, a small positive
symptotically stable equilibrium appears and the disease free equilibrium loses its stability at 0 = 1. On the other hand, in a

backward bifurcation, a branch of unstable endemic equilibria emerges from the DFE.
This phenomenon was also observed for example in [9,10], where the qualitative properties of a simple two-stage contagion

model was investigated. The backward bifurcation case is of particular importance as it leads to a bistable situation and the potential
persistence of the disease in the population even for 0 < 1.

Moreover, when 𝛩 > 0, i.e., the backward bifurcation case, the system undergoes a saddle–node bifurcation at a certain
𝛽 ∈ (0, 𝛾 + 𝜇) the existence of which is established in Theorem 1. The saddle–node bifurcation point is marked with LP (limit
point) on the equilibria branch. The upper branch of LAS positive equilibria extends beyond 0 > 1 which corresponds to the
unique EE branch. In Section 3.5, we will analyze the local stability of the EE for 0 ≫ 1 and observe the possibility of both loosing
and regaining local stability depending on the boosting coefficient, the partitioning of the period of immune protection, and the
relative infectivity.

3.4. Case 𝜉 = 0

In the analysis so far, we assumed 𝜉 > 0. By considering a non-infectious 𝐽 compartment, i.e. 𝜉 = 0, the derivation of the formulae
is slightly different. We omit details of the entire calculation here and only share the results.

The expressions (6), (7), (8), (9), and (10) for the equilibria (other than the DFE) remain valid. The bound 𝑊 becomes infinity
ndicating that any root of the quadratic equation that is conforming the lower bound in (14) leads to an epidemiologically feasible
quilibrium. Moreover 𝛩 < 0, so it is guaranteed that a transcritical bifurcation of forward-type occurs at 0 = 1 and that no other

equilibrium of interest exists for 0 ≤ 1. For 0 > 1, it is easy to see that the lead coefficient of (9) is negative

𝐴|𝜉=0 = 𝜈𝛽2
[

(

𝛼𝜅(𝜌 + 𝜇) − 𝜂𝜅(𝜌 + 𝜇)
)

𝑄2
]

= −𝜈𝛽2𝜔𝜅(𝜌 + 𝜇)𝑄2 < 0,

ence, the parabola 𝑓 is downward with the positive 𝑦-intercept 𝐶. These ensure the existence and uniqueness of the endemic
quilibrium.

For an in-depth analysis, the reader is referred to our computer algebra codes [5].
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3.5. Stability of the endemic equilibrium for 0 > 1

The Jacobian evaluated at the endemic equilibrium is

𝐉 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−𝜇 − 𝛽(𝐼∗ + 𝜉𝐽 ∗) −𝛽𝑆∗ 𝜔𝜅 −𝜉𝛽𝑆∗

𝛽(𝐼∗ + 𝜉𝐽 ∗) 𝛽𝑆∗ − 𝛾 − 𝜇 0 𝜉𝛽𝑆∗

−𝛼𝜅 −𝛼𝜅 − 𝜈𝛽𝑊 ∗ −𝛼𝜅 − 𝜇 − 𝜔𝜅 −𝛼𝜅 − 𝛽𝜈𝜉𝑊 ∗

− 𝜈𝛽(𝐼∗ + 𝜉𝐽 ∗)
0 𝜈𝛽𝑊 ∗ 𝜈𝛽(𝐼∗ + 𝜉𝐽 ∗) 𝛽𝜈𝜉𝑊 ∗ − 𝜌 − 𝜇

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(20)

ielding the characteristic equation

det(𝐉 − 𝜆𝐼) = 𝜆4 + 𝑎1𝜆
3 + 𝑎2𝜆

2 + 𝑎3𝜆 + 𝑎4 = 0 (21)

ith 𝑎4 = det(𝐉).
In order to analyze the stability of the EE, we shall use the Routh–Hurwitz criterion [14,16] that gives information on the sign

f the real parts of the roots of (21) through inequalities formulated in terms of 𝑎𝑖.

heorem 3 (Routh–Hurwitz). Let 0 > 1, EE as given by (6), (7), (8), (16) and 𝐉 the Jacobian evaluated there as in (20).
Then, EE is locally asymptotically stable if and only if the coefficients of the characteristic polynomial (21) satisfy

(i) 𝑎𝑖 > 0 for 𝑖 = 1, 2, 3, 4,
(ii) 𝑎1𝑎2 > 𝑎3, and
(iii) 𝑎1𝑎2𝑎3 > 𝑎21𝑎4 + 𝑎23.

First, note that (ii) can be derived from the other two conditions. Then, let us turn our attention to the positivity of the coefficients
hat is to condition (i).

Using that

𝐼∗ + 𝜉𝐽 ∗ =
𝐼∗(𝜌 + 𝜇)

𝜌 + 𝜇 − 𝛽𝜈𝜉𝑊 ∗

by (8) and the formula (6), we obtain

𝐉 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−𝜇 − 𝐼∗𝛽(𝜌+𝜇)
𝜌+𝜇−𝛽𝜈𝜉𝑊 ∗ − (𝛾+𝜇)(𝜌+𝜇−𝛽𝜈𝜉𝑊 ∗)

𝜌+𝜇 𝜔𝜅 − 𝜉(𝛾+𝜇)(𝜌+𝜇−𝛽𝜈𝜉𝑊 ∗)
𝜌+𝜇

𝐼∗𝛽(𝜌+𝜇)
𝜌+𝜇−𝛽𝜈𝜉𝑊 ∗

𝛽𝜈𝜉𝑊 ∗(𝛾+𝜇)
𝜌+𝜇 0 𝜉(𝛾+𝜇)(𝜌+𝜇−𝛽𝜈𝜉𝑊 ∗)

𝜌+𝜇

−𝛼𝜅 −𝛼𝜅 − 𝜈𝛽𝑊 ∗ −𝛼𝜅 − 𝜇 − 𝜔𝜅 −𝛼𝜅 − 𝛽𝜈𝜉𝑊 ∗

− 𝐼∗𝜈𝛽(𝜌+𝜇)
𝜌+𝜇−𝛽𝜈𝜉𝑊 ∗

0 𝜈𝛽𝑊 ∗ 𝐼∗𝜈𝛽(𝜌+𝜇)
𝜌+𝜇−𝛽𝜈𝜉𝑊 ∗ −𝜌 − 𝜇 + 𝛽𝜈𝜉𝑊 ∗

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

When expanding det(𝐉− 𝜆𝐼), terms appear with positive and negative signs in each expression. We employed a series of operations
grouping all negative ones with some of the positive terms leading to simplified residual expressions. For the technical details, we
refer to the supplementary computer algebra codes [5]. As not all positive terms were used, these residuals may serve as lower
bounds on 𝑎𝑖 and are listed below

𝑎1 = 𝜂𝜅 + 2𝜇 +
𝛾 + 𝜇
𝜌 + 𝜇

𝛽𝜈𝜉𝑊 ∗ +
(

𝜌 + 𝜇 − 𝛽𝜈𝜉𝑊 ∗
)

+
𝛽𝐼∗(𝜈 + 1)(𝜌 + 𝜇)
𝜌 + 𝜇 − 𝛽𝜈𝜉𝑊 ∗ , (22a)

𝑎2 > 𝛽𝐼∗(𝜌 + 𝜇) + 𝜌
𝜂𝜅 + 2𝜇
𝜌 + 𝜇

(

𝜌 + 𝜇 − 𝛽𝜈𝜉𝑊 ∗
)

, (22b)

𝑎3 > 𝛽𝐼∗(𝜌 + 𝜇)
(

𝜂𝜅 + 𝛾 + 2𝜇
)

+
(

𝜌 + 𝜇 − 𝛽𝜈𝜉𝑊 ∗
)

𝜌
𝜂𝜅(𝜅 + 𝜇) + 𝜇2

𝜌 + 𝜇
, (22c)

𝑎4 > −𝛽𝐼∗𝛩. (22d)

learly, the positivity of 𝑎𝑖 for 𝑖 = 1, 2, 3 is established by (22a), (22b), (22c) as 𝜌 + 𝜇 − 𝛽𝜈𝜉𝑊 ∗ > 0 must hold by (8) and by the
ositivity of the components of the EE. In addition, we see that assuming 𝛩 ≤ 0 (i.e. the case of forward transcritical bifurcation)
eadily implies the positivity of 𝑎4 in (22d).

To fully analyze this final coefficient, let us recall that 𝑎4 = det(𝐉). In order to obtain an alternative bound, we carry out a series
f transformations on 𝐉 in (20), all of which are preserving the sign of the determinant with the intermediate goal of obtaining a
ractable row-echelon form. These transformations fall into four categories:

1. multiplication from left or right by a matrix with positive determinant:

– scaling of a row/column by a positive number;
632

– multiple row and column changes given by permutation matrices with det = 1;
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– carrying out row/column elimination towards the echelon form;

2. adding the zero matrix:

– use (5) to hop back-and-forth between transmissional and transitional terms;

3. substitution of (6), (7), and (8);
4. algebraic manipulation of expressions.

Again, the exact steps of this procedure are documented in the supplementary computer algebra codes [5]. Here, we just present
the final form obtained from the reduction that is the matrix �̃� such that sign(𝑎4) = sign(det(𝐉)) = sign(det(�̃�)):

�̃� =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 𝛽𝜈𝜉
(

𝜇
𝜌+𝜇𝑄1 + 𝜂𝜅2𝛾

)

0 1 − 1
𝐹1

−
(

𝐹1 −
𝜇(𝛽−𝛾−𝜇)

𝛽𝑊 ∗

)

𝑄0

0 0 1 𝐹2

(

𝜇
𝜌+𝜇𝑄1 + 𝜂𝜅2𝛾

)

0 0 0 𝐹 2
1𝑄0 − 𝐹2

(

𝜇
𝜌+𝜇𝑄1 + 𝜂𝜅2𝛾

)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

here

𝐹1 =
(

(𝛾 + 𝜇) + (𝛽 − 𝛾 − 𝜇)
𝜌 + 𝜇
𝛽𝜈𝜉𝑊 ∗

)

𝜇𝜈𝜉
𝜇 + 𝜌

+ 𝜔𝜅 and 𝐹2 = 𝛽
𝜇𝜈𝜉
𝜇 + 𝜌

+ 𝜔𝜅.

Clearly 𝐹1 > 𝐹2 > 0 by 0 > 1, (8) and 𝐼∗, 𝐽 ∗,𝑊 ∗ > 0, hence, it suffices to show that

𝐹2𝑄0 −
( 𝜇
𝜌 + 𝜇

𝑄1 + 𝜂𝜅2𝛾
)

is positive. Note that

𝐹2𝑄0 =
𝜇

𝜌 + 𝜇
𝛽𝜈𝜉𝑄0 + 𝜂𝜅2𝛾

eads to analyzing the sign of

𝛽𝜈𝜉𝑄0 −𝑄1.

hen, as 𝛽𝜈𝜉𝑄0 −𝑄1 > 𝛩 when 0 > 1, we obtain the positivity of 𝑎4 for 𝛩 > 0. Hence, using the implications of (22d) when 𝛩 ≤ 0,
e established that 𝑎4 > 0 is satisfied that is condition (i) of Theorem 3 holds.

Therefore, by defining

𝑦𝜈 (𝛼, 𝜉) = 𝑎1𝑎2𝑎3 − (𝑎21𝑎4 + 𝑎23), (23)

ll conditions of Theorem 3 are satisfied if and only if 𝑦𝜈 (𝛼, 𝜉) > 0. When 𝜉 is fixed, we use the notation 𝑦𝜈 (𝛼). In the following,
ondition (23) is referred to as the Routh–Hurwitz criterion. The sign of (23) will be studied using numerical techniques in the next
ection.

. Exploring bifurcations using numerics

In this section, we investigate numerically how the asymmetric partition of the immunity period, the boosting rate, and the
elative infectivity influence the stability changes of the EE. Of particular interest are the formation of bistability regions influenced
y the relative infectivity 𝜉.

For our numerical investigations, we set the parameters as

𝛾 = 17,

𝜅 = 1∕10,

𝜇 = 1∕80,

𝛽 = 260,

𝜌 = 17,

(24)

nd 𝜉 ∈ (0, 1), taken from [11,18], where authors studied natural immune boosting in pertussis dynamics.
In a former work [15], a similar epidemic model (SIRWS) was investigated where the 𝐽 compartment was absent and boosting

esulted in immediate immunity, namely, a return to 𝑅 from 𝑊 . The current system reconstructs the same dynamics in the limit
hat is for 𝜉 = 0 and 𝜌 → ∞. As a starting point, we briefly review the structure of the aforementioned scenario via Fig. 3.

First, we recall that at 0 = 1 the transcritical bifurcation was shown to be solely of forward type. At the baseline parametrization
0 ≈ 15.28 and the endemic equilibrium is LAS but for the compact set  marked by blue. Note the symmetric presence of endemic
ouble bubbles around the baseline partitioning 𝛼 = 𝜔 = 2 at boosting 𝜈 ≈ 2.06362 and the stability switches at 𝜈 ≈ 2.06362, as
ighlighted in the insets of Fig. 3(a). The corresponding bifurcation diagrams are given in Fig. 4. By an endemic bubble, we mean
633

he structure in the bifurcation diagram which is formed when an endemic equilibrium is losing its stability via a Hopf bifurcation,
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Fig. 3. Baseline dynamics: 𝜉 = 0, 𝜌 → ∞. Heatmap of the Routh–Hurwitz stability criterion and bistability region. Purple curve represents 𝑦𝜈 (𝛼) = 0. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Baseline dynamics: 𝜉 = 0, 𝜌 → ∞. Bifurcation diagram w.r.t 𝛼, with 𝜈 = 2.06362 (left) and 𝜈 = 13.7 (right). The depicted two bubbles of instability appear
and disappear simultaneously. The later phenomenon is referred to as symmetric presence of bubbles.

but increasing further this parameter the stability of the endemic equilibrium is regained and the limit cycle disappears. For the
origin of the concept of an endemic bubble, see [13]. The figure shows that such stability switches can occur twice with respect to
the same parameter, hence the name endemic double bubble.

For slightly larger boosting 𝜈 ≈ 14, a bistable region  was observed where the EE is LAS together with a stable periodic orbit.
The appearance of this bistable region is characterized by two generalized Hopf points 𝐺𝐻1 and 𝐺𝐻2 with identical 𝜈 coordinates.

Now, focusing on the current model and parametrization, first, we briefly study the direction of the transcritical bifurcation that
is determined by the sign of 𝛩 in Section 4.1, second, we analyze the stability of the EE through sign analysis of the Routh–Hurwitz
criterion in Section 4.2. Then, we carry out numerical analysis of the bifurcations of the equilibrium branch and study how the
bistable region is affected by the relative infectivity 𝜉 in Section 4.3.
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Fig. 5. 𝛩 = 0 contour on the (𝛼, 𝜈𝜉) plain using the parametrization (24).

.1. Direction of the transcritical bifurcation

Substituting the baseline parametrization (24) into (18), we have that 𝛩 > 0 is equivalent to

𝜈𝜉 > 1.00662𝛼
𝛼 − 1

+ 0.125092
𝛼

=∶ 𝐛(𝛼)

with the corresponding zero contour displayed in Fig. 5.
Clearly lim𝛼→1+ 𝐛(𝛼) = ∞ and lim𝛼→∞ 𝐛(𝛼) = 1.0062, moreover, 𝐛(𝛼) is decreasing function of 𝛼. Consequently, the faster the

transition from 𝑊 to 𝑅, the smaller boosting coefficient 𝜈 is sufficient to activate backward transcritical bifurcation at 0 = 1 that
is at 𝛽 = 𝛾 +𝜇 = 17+1∕80 while keeping the relative infectivity 𝜉 fixed, or vice versa, smaller 𝜉 is required with keeping 𝜈 fixed. For
xample, assuming a moderate boosting coefficient, i.e. 𝜈 < 3, and a relative infectivity 𝜉 ∼ 𝑂(1) may very well result in a backward

bifurcation for 𝛼 ≥ 1.5.

.2. Stability switches of the EE

We constructed similar heatmaps to study the sign of 𝑦𝛼(𝜈, 𝜉), given by (23), for various values of relative infectivity 𝜉 ≥ 0. Recall
hat 𝜌 = 𝛾 = 17 in our setting, thus, for 𝜉 = 0 we readily experience changes in the dynamics with respect to Fig. 3. The instability
et, marked as 𝜉 to emphasize its dependence of 𝜉, is somewhat similar but the regular shape resulting in simultaneous appearance
f double-bubbles of instability is lost, see Fig. 6. Note that in all figures that follow, 𝜉 =  for fixed 𝜉. Now, the region around
≈ 2.06 displays much simpler behavior. Additionally, for 𝜈 ≈ 13.5, we still see bubbles, though without the symmetry they possess

n the limit 𝜌 → ∞.
By increasing 𝜉 ∈ (0, 1), we observe the following two phenomena. First, the shape of the 𝑦𝛼(𝜈, 𝜉) = 0 curve that bounds the set

𝜉 changes, therefore it influences the number of stability switches of the EE in the (𝛼, 𝜈) plane. Second, the region 𝜉 is shrinking
nd then disappearing, hence it results in the increase of local asymptotic stability region of the EE.

ynamics of stability switches. For small 𝜉, the Routh–Hurwitz criterion changes sign multiple times for boosting rates around 13.5
s 𝛼 is varied, suggesting the continued presence of multiple stability switches that is the aforementioned bubbles, see again Figs. 6.
s 𝜉 grows, the curve 𝑦𝜈 (𝛼, 𝜉) = 0 is deforming so that these double-bubbles disappear, as in Fig. 7.

We localize the threshold value 𝜉∗1 , at which the relevant change in the qualitative behavior of the curve 𝑦𝜈 (𝛼, 𝜉) = 0 occurs, as
ollows. In the region of interest (1 < 𝛼 < 6 and 13 < 𝜈), the level curve 𝛼 ↦ 𝜈 ∶ 𝑦𝜈 (𝛼) = 0, originally (when 𝜉 = 0), has two local
axima and one local minimum. As 𝜉 gets larger, the right maximum and the minimum collide, then disappear. Thus, the threshold

cenario may be found by looking for (𝜈, 𝛼, 𝜉) such that

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑦𝜈 (𝛼, 𝜉)

𝜕
𝜕𝛼 𝑦𝜈 (𝛼, 𝜉)

𝜕2

𝜕𝛼2
𝑦𝜈 (𝛼, 𝜉)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0

0

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

ielding 𝜉∗1 ≈ 4.0098 × 10−5. Fig. 8 visualizes the transition in the qualitative behavior of the curve 𝑦𝜈 (𝛼, 𝜉) = 0 highlighting the one
orresponding to the threshold value in black.
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Fig. 6. Heatmap of the Routh–Hurwitz criterion (23) for 𝜉 = 0. Purple curve represents 𝑦𝜈 (𝛼) = 0. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 7. Heatmap of the Routh–Hurwitz criterion (23) for 𝜉 = 10−4. Purple curve represents 𝑦𝜈 (𝛼) = 0. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Shrinking of 𝜉 . The second phenomenon we analyze is how the compact region of instability 𝜉 shrinks and disappears as we
increase 𝜉, see Fig. 9.

At the critical value 𝜉∗2 , the region 𝜉 has shrunk to a single point. Clearly, this is a zero of the Routh–Hurwitz criterion, moreover,
it is a local minimum both with respect to 𝛼 and 𝜈. Hence, we look for (𝜈, 𝛼, 𝜉) solving

⎡

⎢

⎢

⎢

⎣

𝑦𝜈 (𝛼, 𝜉)
𝜕
𝜕𝛼 𝑦𝜈 (𝛼, 𝜉)
𝜕
𝜕𝜈 𝑦𝜈 (𝛼, 𝜉)

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

0

0

0

⎤

⎥

⎥

⎥

⎦

,

leading to 𝜉∗2 ≈ 9.19845 × 10−3. For larger relative infectivity, i.e. 𝜉 > 𝜉∗2 , there is no region of instability, thus 𝜉 = ∅, that is, the EE
is LAS for all (𝛼, 𝜈). The localized transition is visualized in Fig. 10.
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Fig. 8. Level curves 𝑦𝜈 (𝛼, 𝜉) = 0 for 𝜉 ∈ [𝜉∗1 − 3 × 10−5 , 𝜉∗1 + 3 × 10−5]. The black curve corresponds to the threshold value 𝜉∗1 . (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Heatmap of the Routh–Hurwitz criterion (23).

Fig. 10. Level curves 𝑦𝜈 (𝛼, 𝜉) = 0 for 𝜉 ∈ [𝜉∗2 − 8 × 10−5 , 𝜉∗2 + 8 × 10−5]. The curves cease to exist for 𝜉 > 𝜉∗2 , hence, no red is drawn. The black dot corresponds to
the shrinking of 𝜉 to a single point at the threshold value 𝜉∗2 .
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Fig. 11. Two-parameter bifurcation diagram in the (𝛼, 𝜈)-plane, with 𝜉 = 10−5.

Table 2
Approximate critical boosting values (𝜈∗𝑘 ) using the parametrization (24) and fixing 𝜉 = 10−5 as in Fig. 12.

𝜈∗1 𝜈∗𝐺𝐻2
𝜈∗𝐺𝐻1

𝜈∗2 𝜈∗3 𝜈∗4 𝜈∗5
2.0248 11.9494 12.3922 13.42 13.48 13.6785 14.7675

Note that we did not investigate the dependence of these phenomena, and of the corresponding threshold values, on the other
arameters fixed in (24).

.3. Numerical bifurcation examples

In this section, we present numerical examples of one parameter (𝛼) and two parameter (𝛼, 𝜈) bifurcations of the endemic
quilibria branch using MatCont [7]. An identical analysis we carried out in [15] for an SIRWS system, therefore here we show
ome interesting examples to highlight the dynamics in the presence of the 𝐽 compartment.

We briefly summarize the dynamics on the two parameter (𝛼, 𝜈) bifurcation diagram when 𝜉 = 10−5 < 𝜉∗1 , see Fig. 11. The
nstability region  ( = 𝜉 for fixed 𝜉) is enclosed by the purple-colored Hopf curve, which is continuous when supercritical (called
−) and dashed when subcritical (called 𝐻+).

The two generalized Hopf points GH1 and GH2, mark the parameter values where the Hopf bifurcation changes from supercritical
o subcritical. Note that these points now possess different 𝜈 coordinates as opposed to the limiting case in Fig. 3. The branch of
he limit points of periodic cycles appears in green, which together with the dashed purple curve 𝐻+ enclose a bistability region ,
here there exists a stable periodic solution alongside the LAS endemic equilibrium.

Let us now examine the bifurcation diagram in more detail over regions, characterized by various levels of boosting rate 𝜈, where
he dynamics is similar, see Fig. 12 for such partition and Table 2 for the critical boosting values.

In all bifurcation plots that follow, the endemic equilibria branch (particularly the 𝐼 and 𝐽 components) is marked with black
urve, solid when LAS and dashed when unstable. Red and blue curves represent branches of stable and unstable limit cycles,
espectively, and Hopf bifurcation points are marked with purple dots. For interpretation of the references to color, the reader is
eferred to the web version of this article.

Below we describe the situation for various ranges of 𝜈.

oosting: 𝜈 < 𝜈∗1 . The system has a stable point attractor for all 𝛼 > 1.

oosting: 𝜈∗1 < 𝜈 < 𝜈∗𝐺𝐻2
. There are two supercritical Hopf bifurcation points on the endemic equilibria branch, see the lower inset

n Fig. 7(a). Continuation of limit cycles with respect to 𝛼 starting from two Hopf bifurcation points, H1 and H2, forms an endemic
ubble, where the two branches of stable limit cycles coincide, see Fig. 13.

oosting: 𝜈∗𝐺𝐻2
< 𝜈 < 𝜈∗𝐺𝐻1

. As 𝜈 continues to grow in the two-parameter plane in Fig. 12 the generalized Hopf point GH2 appears,
hich separates branches of sub- and supercritical Hopf bifurcations. The stable limit cycles survive when we enter the region .
rossing the subcritical Hopf boundary 𝐻+ leads to an additional unstable cycle inside the first one, while the equilibrium regains
638

ts stability. Two cycles of opposite stability exist inside the bistable region  and disappear at the green curve.
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Fig. 12. Two-parameter bifurcation diagram in the (𝛼, 𝜈)-plane, with 𝜉 = 10−5 and critical 𝜈 values.

Fig. 13. One-parameter bifurcation diagram with 𝜉 = 10−5 and 𝜈 = 2.07, (a) primary and (b) secondary infections.

Let us fix 𝜈 in this boosting region. Then Fig. 14 shows a typical bifurcation with respect to 𝛼. Observe here the small 𝛼-parameter
range of bistability where the EE and the larger amplitude periodic solution are both stable. The points marked with green circle
are limit points of periodic orbits. The stable and unstable cycles collide and disappear on the green curve in Fig. 12, corresponding
to a fold bifurcation of cycles.

Boosting: 𝜈∗𝐺𝐻1
< 𝜈 < 𝜈∗2 . In this boosting range, as we passed GH1, the Hopf curve changed to subcritical. Fig. 15 confirms the

appearance of two subcritical Hopf bifurcations on the equilibria branch, then again a fold bifurcation of cycles occurs (marked
with green circles), resulting in two small 𝛼-parameter intervals of bistability.

Boosting: 𝜈∗2 < 𝜈 < 𝜈∗3 . In this region, we can observe how the shape of the Hopf curve 𝐻+ that bounds the set 𝜉 influences the
number of stability switches of the EE. In Fig. 16, the bifurcation diagram shows the existence of four subcritical Hopf bifurcation
points. Here, a small bubble appears inside the region of stable oscillations, which leads to an additional bistable region compared
to the previous case. When we increase the boosting parameter but still being in this region, then the Hopf points H1 and H2 as well
as H and H move closer to each other, resulting in larger bistability regions, see also Fig. 12.
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Fig. 14. One-parameter bifurcation diagram with 𝜉 = 10−5 and 𝜈 = 12.05, (a) primary and (b) secondary infections.

Fig. 15. One-parameter bifurcation diagram with 𝜉 = 10−5 and 𝜈 = 13, (a) primary and (b) secondary infections.

Boosting: 𝜈∗3 < 𝜈 < 𝜈∗4 . Here, the two Hopf points H3 and H4 seen in the region before collided and disappeared, see Fig. 17. The
dynamics is similar to Fig. 15 but the boosting values in this range lead to much larger bistability regions.

Boosting: 𝜈∗4 < 𝜈 < 𝜈∗5 . Although, we are in the bistability region in the two-parameter bifurcation plot, we do not cross any Hopf
curve, hence the numerical continuation method finds a stable equilibrium branch, see Fig. 18.

Boosting: 𝜈∗5 < 𝜈. The system has a stable point attractor for all 𝛼 > 1.

Shrinking of the bistability region. In Section 4.2 we analyzed the shrinking of the instability region 𝜉 as 𝜉 increases. As a
consequence, the bistability region  becomes smaller, the generalized Hopf points move towards each other, then collide and
disappear as illustrated in Fig. 19. We did not localize further the threshold value 𝜉∗ ∈ (8.3, 8.4)×10−3 at which this region disappears.

5. Conclusion

In this paper, we carried out combined analytical and numerical investigations of the 𝑆𝐼𝑅𝑊 𝐽𝑆 system with the presence of
secondary infections and potentially asymmetric partitioning of the immune boosting period. As the model population is assumed to
be constant, the system is inherently four dimensional resulting in rather complicated formulae describing the equilibria and their
stability. The analysis presented in this manuscript is giving us novel insights into this complexity and a better understanding of the
dynamics. We concluded an exact condition in the form of 𝛩 determining the direction of the bifurcation at  = 1, and showed
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Fig. 16. One-parameter bifurcation diagram with 𝜉 = 10−5 and 𝜈 = 13.45, (a) primary and (b) secondary infections.

Fig. 17. One-parameter bifurcation diagram with 𝜉 = 10−5 and 𝜈 = 13.6, (a) primary and (b) secondary infections.

Fig. 18. One-parameter bifurcation diagram with 𝜉 = 10−5 and 𝜈 = 13.8, (a) primary and (b) secondary infections.
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Fig. 19. Bistability region () on the two-parameter bifurcation diagram. The region is shrinking as demonstrated by figures (a)–(g) and has completely
disappeared in figure (h).

that backward bifurcation is possible. This means that the disease can still persist despite the reproduction number being below
one. This scenario makes the control of an established disease more difficult.

For 0 > 1, we derived a numerically tractable Routh–Hurwitz stability criterion and carried out its sign analysis together with
numerical continuation techniques. We observed rich and interesting dynamics in the (𝜈, 𝛼, 𝜉)-space that is varying the immune
oosting rate, the partitioning of the boosting period, and the relative infectivity of secondary infections, where other disease
arameters were set according to pertussis parameter values taken from the literature. Our numerical investigations show that,
n these boosting regions, bifurcations w.r.t. 𝛼 lead to the emergence of (double) bubbles. This means that as 𝛼 is varied, the EE
an lose its stability at a critical point through a Hopf bifurcation. Then, we observe periodic oscillations only in an intermediate
-interval, and finally, the endemic equilibrium always regains its stability through a second Hopf bifurcation. Naturally, converging
o a stable periodic oscillation or a stable endemic equilibrium poses different challenges and burden in disease management. For
xample, one has to be very careful when evaluating the impact of a mitigation measure when the epidemiological dynamics is
nherently oscillatory. Nevertheless, we note that most of the mathematically appealing phenomena occur for rather large boosting
ate (𝜈) and small relative infectivity (𝜉). But in this case our results show, that the parameter 𝛼, which was ignored in previous
tudies, in fact has a crucial role in determining the dynamics of the disease in the population.

Our results highlight the challenges in the prediction of the long term dynamics of diseases whenever waning and boosting of
mmunity is relevant, such as COVID-19 or pertussis, due to the potential complexities generated by the combination of these factors,
n particular the asymmetry in partitioning the immune period into high level of immunity and waning immunity that can be boosted.
hat, in contrast with the simplified modeling approach of symmetric partitioning commonly used in the literature [6,12,18], is more
ealistic. As the disease dynamics can vastly differ in the asymmetric setup, devising mitigation efforts may benefit from estimates
f the relative lengths of these immune periods.
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