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Extracting Phonetic Posterior-Based Features
for Detecting Multiple Sclerosis From Speech

Gábor Gosztolya , Veronika Svindt , Judit Bóna , and Ildikó Hoffmann

Abstract— Multiple sclerosis (MS) is a chronic inflam-
matory disease of the central nervous system which,
in addition to affecting motor and cognitive functions, may
also lead to specific changes in the speech of patients.
Speech production, comprehension, repetition and naming
tasks, as well as structural and content changes in nar-
ratives, might indicate a limitation of executive functions.
In this study we present a speech-based machine learning
technique to distinguish speakers with relapsing-remitting
subtype MS and healthy controls (HC). We exploit the fact
that MS might cause a motor speech disorder similar to
dysarthria, which, with our hypothesis, might affect the
phonetic posterior estimates supplied by a Deep Neural
Network acoustic model. From our experimental results, the
proposed posterior posteriorgram-based feature extraction
approach is useful for detecting MS: depending on the
actual speech task, we obtained Equal Error Rate values
as low as 13.3%, and AUC scores up to 0.891, indicating
a competitive and more consistent classification perfor-
mance compared to both the x-vector and the openSMILE
‘ComParE functionals’ attributes. Besides this discrimina-
tion performance, the interpretable nature of the phonetic
posterior features might also make our method suitable
for automatic MS screening or monitoring the progression
of the disease. Furthermore, by examining which specific
phonetic groups are the most useful for this feature extrac-
tion process, the potential utility of the proposed phonetic
features could also be utilized in the speech therapy of MS
patients.

Index Terms— Multiple sclerosis, deep neural networks,
DNN acoustic models, phonetic posteriors.

I. INTRODUCTION

MULTIPLE sclerosis (MS) is a chronic inflammatory
disease of the central nervous system [1]. Depending on
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the constant presence or temporal absence of symptoms, the
majority of the cases are grouped into three different clinical
courses: relapsing-remitting MS (RRMS), primary progressive
MS (PPMS), and secondary progressive MS (SPMS), which
develops from RRMS [2]. Impairments in motor skills are a
central diagnostic feature in MS. Any changes in the patient’s
gross and fine motor skills may suggest a deterioration in the
condition. Because language, cognitive, and motor skills are
arranged in an inseparable network in the brain, changes in
one factor can induce changes in all the others. Therefore,
monitoring the changes in the speech production could be
effective for detecting the onset of the progression in the MS
cases.

Among other symptoms, 60-70% of the MS patients
have different cognitive impairments (e.g. executive func-
tion deficits such as a working-memory limitation, decreased
information processing speed, or impaired cognitive flexi-
bility, disorders of orientation, chronic fatigue), most often
associated with a deteriorating quality of life. More than
a third of people with MS report temporary or persistent
speech disorders [3], [4]. The most frequent language and
speech symptoms are motor speech disorders (dysarthria, dys-
phonia), word finding difficulties, limited verbal fluency [5],
sentence repetition problems, limitations of the higher-level
language processes [6], [7], [8], and reduced inclination for
communication [9]. Although dysarthria is diagnosed only
in one-third of the patients, automatic speech analysis could
detect symptoms suggestive of mild motor speech disorder
prior to dysarthria [10]. With a well-structured methodology,
these mild symptoms could inform us about the onset of
cognitive decline.

In the speech technology community, many studies have
been published which focus on the automatic processing of
speech with a motor speech disorder or even dysarthria. The
goal of several studies is to adapt existing automatic speech
recognition (ASR) systems to best suit the transcription of
dysarthric speech [11], [12], [13]. Another significant research
topic is that of transforming the speech to make it more
understandable, by voice conversion techniques [14], [15],
while several studies deal with dysarthric speech intelligibility
assessment, where the goal is to measure the precise degree
of failure in the motor control of speech muscles (for example
by applying ASR to the speech utterances and counting the
number of misidentified words) [16], [17], [18]. In contrast
with these studies, we seek to develop an appropriate feature
extractor approach that might allow us to detect Multiple
Sclerosis (and, if possible, measure its severity), based on the
dysarthric speech properties of MS.
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Our study lies in the area of pathological speech processing,
where the goal is to identify the subjects who suffer from a
particular (cognitive of physical) disease based on their speech
samples, or to estimate the severity of the disease. Such sys-
tems would be ideal for screening purposes, or for monitoring
the progression of specific diseases in a cheap, automatic
and contact-free manner. Particularly in the last decade, sev-
eral studies had been published, focusing for example on
Alzheimer’s disease [19], [20], Parkinson’s Disease [21], [22],
aphasia [23] or depression [24], [25]. Regarding the case
of Multiple Sclerosis, besides calculating manual features
such as speech rate and pause duration [26] or various word
timing measures in fluency tasks [27], several studies found
statistically significant differences in standard attributes such
as jitter, shimmer, F0, F1 / F2, volume (or loudness variation)
and harmonics-to-noise ratio [28], [29], [30]. Looze et al. [31]
calculated temporal parameters manually as well as pitch,
speech tempo and pause duration (in a semi-automatic manner,
based on Praat). Surprisingly, all the studies listed above
employed only statistical analyses of the attributes, the only
exception being de Looze et al.: by employing automatic
classification (linear discriminant analysis), they were able to
identify MS patients with an AUC score of 0.70 [31].

In this study, we construct a completely automatic workflow
for MS detection from the speech of the subjects. Using a
standard classification technique (Support Vector Machines),
we apply a neural network-based feature extraction method,
exploiting the fact that deficiencies in the motor control of
speech muscles (and therefore, MS-caused such deficiencies as
well) affect the pronunciation of specific phonemes. With our
hypothesis, similarly to the case of Parkinson’s disease [32],
these changes are reflected in the tendency of the phonetic
posteriors of a standard deep neural network (DNN) acoustic
model. As the pronunciation of (specific) phonemes becomes
less precise, the corresponding posterior estimates can be
expected to drop, and / or their variance can be expected to
increase. A further advantage of a phonetic feature extraction
method is the interpretable nature of the attributes: since they
are directly linked to specific phones of the given language,
they might have a straightforward application in the speech
therapy of the subjects.

The basis of our approach is to calculate the so-called
phonetic posteriorgrams for the actual speech response of the
subjects. Phonetic posteriorgrams store the probability vectors
for each phonetic label or state for short time segments [33],
[34], [35]. Since they are local vectors, tied to a short time
segment of a larger speech recording, they are not suitable for
directly representing a complete speech utterance, or used as
features for subject (or subject category) discrimination. This
noted, they are frequently utilized for voice conversion [36],
[37] and rating articulation quality (e.g. dysarthria) [38], [39].
They have also been employed for improving speech recogni-
tion performance under noisy conditions [40], voice disorder
severity estimation [41] and query-by-example spoken term
detection [33]. Arias-Vergara et al. [42] built a classification
workflow to evaluate the read speech of cochlear implant
users. By relying on the manual transcript of the recordings

TABLE I
THE DEMOGRAPHIC ATTRIBUTES OF THE

SUBJECTS INVOLVED IN OURSTUDY

and obtaining a phonetic categorical time alignment by forced
alignment, they achieved average F1 values between 0.36 and
0.65 with an SVM.

Regarding pathological speech processing applications,
Černak et al. [43] calculated phonetic-categorical posterior-
grams and analyzed the distributions of the posterior estimates
for Parkinsonian speakers and healthy controls by statistical
tests. Klumpp et al. [32] also employed statistical tests to
compare the posterior estimates along with the activations of
the acoustic neural network for Parkinsonian and HC subjects.

The main contributions of our study are the following:
(i) we calculate an utterance-level statistical feature vector
from the phonetic posteriorgrams, (ii) we utilize these vectors
as features in a machine learning step, predicting the subject
category (whether the given subject suffers from MS or is a
healthy control), (iii) we retain only specific phonetic categori-
cal features to study their effect on classification performance.
To the best of our knowledge, no study employed the first two
items together (that is, constructing a completely automatic
workflow of phonetic feature extraction and subject classifica-
tion by machine learning) in pathological speech processing
in general, nor for Multiple Sclerosis subjects in particular.
Furthermore, the phonetic feature extraction method proposed
does not require the presence of the time-aligned ground truth
phonetic labels, therefore its application is not limited to read
speech, but it can be used for free-form spontaneous speech as
well. This, and the fact that the features can be broken down
into phonetically interpretable subsets (i.e. contribution (iii))
might allow the feature extraction approach to be applied in
the speech therapy of MS subjects in a straightforward way.

II. THE RECORDINGS USED

The tests were carried out at the Neurology Department
of Uzsoki Hospital, Budapest, Hungary, and at the Research
Center for Linguistics of the Eötvös Loránd Research Net-
work, Budapest, Hungary. The study was approved by the
Ethics Committee of the Uzsoki Hospital, and it was con-
ducted in accordance with the Declaration of Helsinki. In the
current study we use the recordings of 23 MS subjects and
22 healthy controls. All 23 MS subjects belonged to the
relapsed-remitting MS subtype (RRMS).

All the speakers involved in the study were native Hungarian
speakers; and, mirroring the ethnic composition of Hungary,
all of them were Caucasians. None of them had any hear-
ing impairment, depression or any other known psychiatric
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Fig. 1. The general workflow of the proposed, phonetic posterior-based feature extraction process.

condition. The demographic attributes (age in years, gender
(male / female) and years of education) of the two subject
groups can be seen in Table I. We used one-way ANOVA
for the age and years of education attributes, and χ2 test for
gender; clearly, the MS and HC groups display no statistically
significant difference (p > 0.05) in either of these attributes.

The linguistic protocol for collecting the speech samples
from the subjects was quite extensive; in this study we use six
utterances from each subject. These were, in the order they
were recorded (which was the same for all subjects):

1) Everyday: First, the subjects were asked to talk about
their everyday life (in a spontaneous manner), such as
their work and how Multiple Sclerosis affects their life.

2) Previous Day: In this task, the subjects were asked to
talk about the events of their previous day in detail.

3) Opinion: Next, the subjects were asked to share their
opinions about vegetarianism.

4) Narrative Recall: Afterwards, the subjects listened to a
two-minute-long historical anecdote which was unknown
to them beforehand. The task of the subjects was to
summarize the story heard as accurately as possible.

5) Hobby: Next, the subjects were asked to talk about their
hobbies. This was a fairly similar task to Everyday.

6) Phonetics: In the last task, the subjects were asked to read
aloud several non-words (consonant-vowel-consonant-
vowel (CVCV) sequences, in which the first CVs con-
tained a voiceless plosive [p, t, k] and one of the vowels
[i:, a:, u:]).

Our aim was to have tasks which differed in the activated
cognitive processes and the rate of the cognitive load required
for speech production. In the two spontaneous speech tasks
(everyday and hobby), speakers created personal narratives.
The production quality of these two types of narratives
might be useful for assessing some neurodenegerative dis-
eases [44]. Speaking about our previous day activates the
episodic memory, and requires temporal organization. This
type of task proved beneficial for measuring subtle cognitive
difficulties in other neurodegenerative conditions, such as
mild cognitive impairment and Alzheimer disease [45], [46].
An argumentation or opinion task requires the building of
complex narratives, activating social knowledge and personal
experiences, and inferencing, respectively. The narrative recall
task is one of the most difficult spontaneous speech tasks:
it requires a set of cognitive processes, such as focused
attention, working memory, temporal orientation, organization

and sequencing [47]. In the phonetic task, we used voiceless
consonants that are sensitive even to mild motor speech
problems [48].

The recording was performed with a Sony PCM-A10 digital
dictaphone through a tie clip microphone with a sampling rate
of 48 kHz; later the recordings were converted to 16 kHz mono
with a 16 bit resolution.

III. PHONETIC POSTERIOR-BASED
FEATURE EXTRACTION

Our assumption was that, since motor control deficiencies
of the speech muscles are characterized by a poor phonetic
articulation, they can also be expected to affect the accuracy
of a machine learning speech recognition system. In particular,
we decided to focus on the phonetic posterior estimates
provided by a DNN acoustic model; the DNN component of
a HMM/DNN hybrid model, being a standard technique for
automatic speech recognition [49].

Next, we will briefly describe the general concept of this
deep learning acoustic model. A schematic workflow of the
proposed feature extraction process is given in Fig. 1. In the
following, we will use the standard term “utterance” in the
sense of “a speech clip processed at once”, which, in our case,
is the whole audio clip (i.e. the response of the subject).

A. Frame-Level Feature Extraction for Audio
First, we perform some standard preprocessing steps of

the audio recording, which are standard in automatic speech
recognition [49]. First the spectral representation of the speech
signal is calculated, which practically gives the intensity of a
given frequency at a given time in the input audio signal.
To summarize this information, this spectrogram is processed
with a Mel-scale filter, which models human hearing as
it focuses on the lower frequency range, representing this
part of the spectrum in more detail. Besides processing the
frequency axis, the energies are also summarized over the
time axis with a sliding window with a length of typically
25ms and a step size of 10ms; this results in the concept of
frames [49]. After this processing step, we obtain the local
energies of each frequency band in 10ms steps, which gives
100 frames for each second of audio. Besides these raw filter
bank energies (“FBANK”), it is also common to transform the
values using a Discrete Cosine Transform (DCT) to obtain the
Mel-Frequency Cepstral Coefficients or MFCCs [49]. In our
actual experiments, we chose to utilize filter bank energies
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Fig. 2. The schematic diagram of the feature extraction process applied from the frame-level state posterior estimates, shown for a context-
independent acoustic model. The vertical bars represent the monophone (but tri-state) posterior vectors for frame ti , belonging to each possible
phoneme phj . The circled region is used to calculate the means and standard deviations.

(see Section IV-A for more details), since, according to the
literature, they allow a higher speech recognition perfor-
mance [50]. However, we do not regard the choice of the
frame-level feature set as a part of the proposed approach,
as other sets could also be utilized as the input for the DNN
acoustic model.

B. HMM/DNN Hybrid Models
In the next step, we employ a Deep Neural Network (DNN)

to obtain the frame-level estimates of the P(ck |xt ) conditional
probabilities, where xt is the frame-level feature vector of
the t th frame, and ck is the kth phonetic class. In this step
we practically obtain local (that is, frame-level) probability
estimates of which phoneme was uttered at the given time,
but for the sake of more efficient phonetic modelling, each
phoneme is modelled by several phonetic classes (i.e. states,
see Section III-C). Relying on these frame-level likelihoods,
in ASR (when employing a HMM/DNN hybrid model) a Hid-
den Markov Model (i.e. HMM) calculates the most probable
state sequence for the complete utterance; that is, for each
frame it supplies the most probable class ck (i.e. phonetic
state), taking the whole utterance into account. This sequence
is used to obtain the (word-level) transcript of the speech
utterance with its time alignment (i.e. for each word its starting
and ending time points within the utterance are also provided).
In this study, however, we focus only on the phonetic posterior
estimates, so this search step (i.e. the application of the Hidden
Markov Model) is omitted.

We are aware that in the last decade, HMM/DNN hybrids
have been superseded by other deep learning-based approaches
in ASR as state-of-the-art. For example, one might uti-
lize recurrent neural architectures (applying units such as
Long-short term memory (LSTM, [51]) and Gated Recurrent
Units (GRUs, [52]) as building blocks), or end-to-end models
which have become quite popular in the past couple of
years [53], [54]. Still, there are several reasons for employing
the HMM/DNN model instead of applying one of these
more sophisticated approaches. These include easier training,
and (in the case of limited training data) a competitive or

even superior performance [55], [56]. Furthermore, traditional
HMM/DNN hybrids have a lower computational complexity
and a smaller memory footprint, which is desirable for a patho-
logical screening application. This is even more important
when we seek to use only the acoustic model of the ASR
system for feature extraction. Lastly, we would like to point out
that these more sophisticated models are usually trained with
a Connectionist Temporal Classification (CTC, [57]) loss. Due
to this, the trained models tend to produce sparse and arbitrary
posterior strike timings [58], [59], which are clearly not as
straightforward to post-process either for model combination
or for feature extraction as those provided by standard HMM
acoustic models [59].

C. Phonetic States
The states of a HMM system are related to the phonetic

set of the given language, but usually there is no direct
one-to-one correspondence, as the states typically represent a
finer resolution. First, one might decide to also model several
acoustic phenomena like filled pauses, noises, breathing, gasps
and coughs by assigning special models to them, although
these vocalizations do not correspond to phones in the strict
sense. Second, the phones are traditionally divided into three
production states, as it is known to improve recognition
performance [49]. Third, instead of working with such simple,
context-independent (CI) phone labels, even better speech
recognition results can be achieved by context-dependent (CD)
modelling [50], where the phonetic labeling also takes the (left
and right) neighbors of the actual phone into consideration.
As in this HMM/DNN hybrid model, the role of the DNN
acoustic model is to estimate the local (i.e. frame-level)
posteriors of the HMM states, the number of the DNN outputs
being the same as the number of HMM states. In this study
we decided to employ context-dependent phonetic modelling,
since it allows more precise phonetic posterior estimations.

D. Phonetic Posterior Aggregation
The DNN acoustic model supplies the class-conditional

likelihood P(ck |xt ) values for the ck phonetic classes
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(1 ≤ k ≤ K ) and the xt frame-level feature vectors (e.g.
FBANKs, MFCCs), where 1 ≤ t ≤ T , T being the duration
of the actual utterance in frames. In our feature extraction
approach, next we merge the probability estimates for each
phone. That is, let phi denote the i th phone in the given
phonetic set (1 ≤ i ≤ N ) and let Si denote the set of phonetic
classes corresponding to phi . Then we can calculate

P(phi |xt ) =

∑
ck∈Si

P(ck |xt ) (1)

for each phone, i.e. for 1 ≤ i ≤ N . These P(phi |xt )

values form the phonetic posteriorgrams [33], storing the local
(frame-level) posterior estimates for each phone in the given
language. Unfortunately, these cannot be directly employed as
utterance-level features in a classification workflow, since the
number of these P(phi |xt ) aggregated estimates still depends
on the duration of the utterance (i.e. T ). To eliminate this
dependency, next we take their mean and standard deviation
values. That is,

µi =
1
T

T∑
t=1

P(phi |xt ) (2)

and

σi =

√√√√ 1
T

T∑
t=1

(
P(phi |xt ) − µi

)2
(3)

are calculated. These values can then be readily used as
utterance-level features to classify the subjects as either those
having MS or as healthy controls. The scheme of this feature
extraction step can be seen in Figure 2 (where, for the sake
of simplicity, context-independent states are shown).

IV. EXPERIMENTAL SETUP

A. DNN Hybrid Acoustic Model

Our Deep Neural Network acoustic models were trained
on a subset of the BEA Hungarian corpus [60]; we trained
the DNN on the speech of 165 subjects (60 hours of record-
ings). We used 40 Mel-frequency filter banks along with the
raw energy as frame-level features along with 1 and 11.
To improve model accuracy, we evaluated our model on a
sliding window with a width of 15 frames (1845 frame-level
features overall). Following this, we utilized 5 hidden layers,
each consisting of 1024 ReLU neurons. Lastly, we included
a softmax layer that had as many neurons as the number of
states. We chose to employ the context-dependent approach
for phonetic modelling [61], by which we obtained K = 911
phonetic states. These belonged to N = 57 phones, including
silence, filled pauses and breathing noises. When evaluating
this acoustic HMM model using a phone-level recognition
(with a simple phone bigram, without any word-level infor-
mation) on a test set withheld from training from the BEA
corpus (roughly 3 hours and 24 minutes from 10 speakers),
we measured a phonetic error rate of 25.8%.

B. Classification
In pathological speech processing tasks it is quite common

to have a limited number of subjects, which correspond to
the examples in the classification tasks. Under these circum-
stances, the Support Vector Machine (SVM) classification
algorithm proved to be quite robust, so it is quite popular in
this area. We employed SVMs with a linear kernel, using the
libSVM implementation [62]. We utilized a cross-validation
technique, where each fold consisted of 1 MS and 1 HC
subject (with the exception of one fold, which consisted
of 1 MS subject only) to retain the original class distribution
as accurately as possible; this led to 23 folds overall. Hence,
each classifier model was trained on the speech of 43 subjects
(i.e. on 22 folds), and it was evaluated on the speaker(s) of
the remaining fold. The C complexity parameter was set in
the range 10−5, 10−4, . . . , 102.

The complexity C meta-parameter of the SVM was set
by a technique called nested cross-validation [63]. That is,
each time we trained on the data of 22 folds, we performed
another (22-fold) cross-validation session, looking for the
C meta-parameter value that led to the highest AUC score
within these speakers. Afterwards, we trained an SVM model
with the selected meta-parameters on the data of all speakers
belonging to these 22 folds, and this model was evaluated
on the remaining speaker. This way we avoided any form of
peeking, which would have created a bias in our scores, had
we used standard cross-validation.

C. Evaluation Metrics
We applied evaluation metrics which are commonly used

in biomedical studies (e.g. [64], [65]). First, we utilized
Equal Error Rate (EER), i.e. the decision threshold between
the posterior estimates of the two classes (provided by the
SVM classifier) was set so as to minimize the difference
between sensitivity and specificity (i.e. the recalls for the two
speaker categories). Since this practice in a balanced class
distribution leads to quite similar accuracy, precision, recall
and F-measure scores, among these we report only EER (i.e.
100%− Accuracy) along with the area under the ROC curve
(AUC). As we have only two speaker categories, the AUC
value of the two appears to be the same.

D. X-Vectors Baseline
As a competitive baseline, first we used the so-called

x-vector features [66]. Originally developed for speaker recog-
nition, x-vectors were later employed as features in a wide
variety of speech analysis tasks ranging from emotion recog-
nition [67] through sleepiness detection [68] to various patho-
logical speech processing tasks [22], [69].

x-vector features are extracted from the speech recordings
by special-structure neural networks, with two distinct parts.
The lower layers operate at the frame level: the input of the
first hidden layer are actually the frame-level feature vectors
of the speech recording. After these frame-level layers, there
is a special statistics pooling layer, which aggregates the
activations of the last frame-level hidden layer for all frames
of the utterance by taking their mean and standard deviation.
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These values are then used as input for the next, segment-level
layers. The last layer is the softmax output layer [66]. This
special neural network is trained to detect speakers; therefore,
it has the same number of neurons in its output layer as
the number of speakers in the training dataset. During the
evaluation, the activations of some segment-level layers are
taken. These activations (or embeddings) capture information
from the speakers over the whole audio-signal, and they are
called the x-vectors [66], [69].

In our case, this x-vector network was trained on the very
same 60-hour subset of the BEA Hungarian Database as our
DNN acoustic model was. Although it is standard practice
during x-vector training to add noise and reverberation both to
increase training data size and to improve the noise robustness
of the model, in our preliminary tests we found this procedure
to be counterproductive. (This is probably because our MS
recordings are of good acoustic quality.) Similar to the DNN
acoustic model, we used 40 Mel-frequency filter bank energies
(“FBANK”) as frame-level features. We employed the Kaldi
toolkit both for the x-vector model training and evaluation (i.e.
feature extraction) [70].

E. The ComParE Functionals Baseline
Another common attribute set was applied as a baseline:

we also utilized the 6373-sized ‘ComParE functionals’ fea-
ture set [71], extracted by the openSMILE tool [72]. The
feature set includes energy, spectral, cepstral (MFCC) and
voicing related frame-level attributes, which serve as the basis
of utterance-level aggregation by specific functionals (like
the mean, standard deviation, 1st and 99th percentiles, peak
statistics, etc.). This method was utilized in dozens of speech
processing tasks such as estimating the degree of native-
ness [73] and sleepiness [74], and detecting stuttering [75].

V. RESULTS

Table II shows the metric scores obtained for all six speech
tasks investigated. For the two baseline approaches, perhaps
the most obvious observation is that the scores significantly
vary with the speech task: the recordings obtained from
‘Previous Day’ were by far the most suboptimal ones (at
least, from an automatic MS-HC discrimination perspective),
leading to EER scores of 40% (meaning that only 60% of
the subjects were actually categorized correctly) and 35.6%,
x-vector and ComParE functionals, respectively. The AUC
scores of 0.725 and 0.713 (measured for the same case) are
not that high either. In contrast, using the x-vector features
for the ‘Opinion’ task led to a low (13.3%) EER score, and
we measured high AUC scores (i.e. 0.879 or over) for the
tasks ‘Opinion’ and ‘Hobby’, and for ‘Narrative Recall’ and
‘Phonetics’, x-vectors and ComParE functionals, respectively.
For the other speech tasks, the metric scores were in between
these extreme values, with EER values between 22% and 27%
and AUC scores between 0.775 and 0.850.

Regarding the EER and AUC values achieved by the
proposed, phonetic posterior-based features, we highlighted
in bold those cases where our method outperformed both
x-vectors and ComParE functionals (i.e. it obtained a lower

TABLE II
THE EQUAL ERROR RATE (EER) AND AUC SCORES OBTAINED WITH

THEPROPOSED PHONETIC-BASED FEATURES

EER or a higher AUC score). This was the case in roughly
half of the cases: out of the six speech tasks, a lower EER was
obtained in two cases, while a higher AUC score was produced
for three speech tasks. Notably, scores in the worst cases were
better than either for x-vectors and for ComParE functionals:
we obtained an EER score of 31.1% and an AUC value of
0.739 (both for the ‘Previous Day’ task), while these values
were 35.6% and 40% (EER), and 0.725 and 0.713 (AUC) for
the two baseline feature sets.

Overall, the proposed, phonetic posterior-based features led
to a more balanced, more robust performance across the six
speech tasks: while with x-vectors, the EER values lay in
the range [13.3%, 40.0%] and the AUC scores also lay in a
large interval (i.e. [0.725, 0.883]), these ranges being notably
smaller with the proposed approach (EER scores in the range
[13.3%, 31.1%] and AUC values in the range [0.739, 0.891]).
This is reflected in the mean, median and standard deviation
values as well (see Table III): the phonetic posterior-based
features led to a higher mean EER and to lower mean and
median AUC scores, while the standard deviations were lower
for both metrics. This means that, although the actual speech
task affects the MS classification performance to some extent,
the phonetic posterior-based features proved to be more robust
in this aspect than the x-vector and the ComParE functionals
features. This finding, along with the (slightly) better mean
and median values, the more compact feature vector and the
interpretable nature of our attributes confirm the feasibility of
the proposed feature extraction approach for detecting Multiple
Sclerosis.

VI. INVESTIGATING THE PHONETIC SUBSETS

Besides performing machine learning experiments, we also
wanted to investigate the potential improvement of speech
therapy of MS patients. Therefore, we sought to determine
the actual phones which prove to be useful as the basis for
useful features. This is why, besides using all the phones
in our phonemic set, next we investigate the usefulness of
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Fig. 3. The Equal Error Rate (left) and Area Under Curve (right) values for the six speech tasks for four phonetic categories (vowels, voiced
consonants, unvoiced consonants, and all phones).

TABLE III
MEAN, MEDIAN AND STANDARD DEVIATION VALUES OF

THE EqualERROR RATE (EER) AND AUC SCORES,
AGGREGATED FOR THE SIX SPEECHTASKS

specific phonetic groups. This practically means that, after the
phonetic posterior aggregation step of our feature extraction
workflow (see Section III-D), we keep only the attributes
(i.e. mean and standard deviation values) corresponding to
specific phonemes in our feature vectors. The rest of our
machine learning steps (e.g. nested cross-validation classifi-
cation, SVM hyperparameter selection, evaluation) is carried
out exactly as before, i.e. like that described in Section IV.
This also means that the EER and AUC values obtained are
directly comparable to those reported so far (i.e. those in
Table II); as a matter of fact, we will use them as reference
values.

To construct our phonetic groups, we followed the phonetic
categories based on the work of Megyesi [76]. See Table IV
for the broader categories of Hungarian consonants in SAMPA
notation. First, we used the following categories:

1) Vowels This category consisted of the phones [O, a:, E,
e:, i, o, 2, u, y],

2) Voiced consonants This category consisted of the phones
[b, d, d’, g, dz, j’, v, z, z’, h, m, n, n’, l, r, j],

3) Unvoiced consonants This category consisted of the
phones [p, t, t’, k, ts, c’, f, s, s’].

The results obtained with these phonetic categories can be
seen in Figure 3. For reference, we also included the values
corresponding to using all phonetic posterior-based features
(the ‘All phones’ case), i.e. those reported in the bottom part
of Table II. Relying on the vowel-based features led to a very

low discrimination performance: the Equal Error Rate values
were as high as 64.5%, while the AUC scores turned out to be
lower than 0.500. The sole exception to this was the ‘Narrative
Recall’ speech task, but even in this case, the metric scores
were the worst among those measured.

Regarding the cases of using only the voiced or only
the unvoiced consonants, the results were actually much
better (and more consistent as well): we obtained EER
scores between 17.8% and 35.6%, and AUC scores between
0.700 and 0.866. The values, in some cases, even exceeded
the reference values (i.e. those measured with using all the
phones), but the difference is probably not statistically signif-
icant. This, in our view, indicates that even a subset of the
(already compact) phonetic posterior-based features allows an
efficient discrimination of the MS and HC subjects, and there
are useful attributes that correspond both to voiced and to
unvoiced phones.

Next, we shall investigate another categorization of the
(Hungarian) phones; i.e., we will use the following categories:

1) Nasals This category consisted of the phones [m, n, n’],
2) Fricatives This category consisted of the phones [f, s, s’,

v, z, z’, h],
3) Plosives This category consisted of the phones [p, t, t’,

k, b, d, d’, g],
4) Affricates This category consisted of the phones [ts, c’,

dz, j’].

Notice that all the categories include both voiced and unvoiced
phones. The results obtained with the phonetic features derived
from these phonetic categories can be seen in Figure 4.
Relying on the attributes derived from the ‘Fricatives’ phonetic
category led to the least effective discrimination performance:
for two speech tasks (‘Everyday’ and ‘Narrative Recall’), the
EER and AUC values obtained actually fell below the level
attainable by random guessing. These attributes were also
clearly worse than most of the other phonetic categories or
the ‘All phones’ case used for reference (speech tasks ‘Opin-
ion’ and ‘Hobby’). Surprisingly, though, for the ‘Phonetics’
speech task we obtained an EER value matching the ‘All
phones’ case (22.2%) and the third-best AUC value of all
the investigated phonetic groups in this experiment (AUC =
0.870). This might be due to the fixed content of this speech
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TABLE IV
THE PHONETIC CATEGORIES OF THE HUNGARIAN CONSONANTS,FOLLOWING THE WORK OF MEGYESI [76]

Fig. 4. The Equal Error Rate (left) and Area Under Curve (right) values for the six speech tasks with five phonetic categories (nasals, fricatives,
plosives, affricates and all phones).

TABLE V
MEAN, MEDIAN AND STANDARD DEVIATION VALUES OF THE EqualERROR RATE (EER) AND AUC SCORES, AGGREGATED FOR THE

SIX SPEECH TASKS(LEFT), AND FOR THE FIVE SPONTANEOUS SPEECH TASKS (RIGHT)

task because, unlike the other five speech tasks (which were
spontaneous ones), this one consisted of reading the same fixed
text.

From the other phonetic groups, nasals led to mediocre
accuracy scores, as we obtained EER scores between 22.2%
and 48.9%, and AUC values between 0.546 and 0.800 with
the corresponding attributes. Still, this performance was much
more uniform than it was in the ‘Fricatives’ case, especially
for the five spontaneous speech tasks. This also holds for
plosives and affricates: leaving the ‘Phonetics’ speech task
aside, we obtained EER values between 13.3% and 31.1%,
and between 26.7% and 35.6%, plosives and affricates, respec-
tively. Similarly, the AUC scores fell between 0.715 and
0.887, and between 0.709 and 0.818, plosives and affricates,
respectively. Among the two, plosives yielded better scores for
five speech tasks out of six, making it the best phonetic group

tested: this led to the best metric values as well (EER = 13.3%
and AUC = 0.887 for the ‘Hobby’ speech task).

A. Robustness Across the Speech Tasks
The left hand side of Table V shows the mean, median

and standard deviation values of the two metrics for all the
phonetic groups examined. These values support our previous
findings: while relying on the vowels led to an unacceptable
classification performance, voiced consonants and unvoiced
consonants proved to be more (and equally) useful. Although
the mean and median values for these two phonetic categories
both fell a bit below those obtained using all the phones
(an absolute EER difference of 4.4% − 5.9% and an AUC
difference of 0.023 − 0.043), these still led to a relatively
good classification performance. The standard deviation of
the scores (calculated over the six speech tasks) was also
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remarkably similar, indicating that the proposed features are
quite robust as well.

Regarding the other four phonetic categories, these values
reinforce our findings that the fricatives did not allow an
efficient MS discrimination performance: the mean and median
EER values were quite close to 50%, while the AUC scores lay
close to 0.500. This was also accompanied by quite high stan-
dard deviation values, indicating a lack of robustness. Using
nasals or affricates turned out to be much better, but clearly
plosives gave the best performance. However, the robustness of
these attribute subgroups was notably below the ‘All phones’
case: while the latter led to standard deviation values of 5.9%
and 0.060, EER and AUC, respectively, with the latter four
phonetic groups we measured standard deviations between
7.1% and 9.9%, and around 0.09. This indicates that the utility
of these phonetic groups varied more with the speech tasks
than with all the phonetic posterior-derived features.

B. Robustness Across the Spontaneous Speech Tasks
When inspecting Figure 4, we found that the spontaneous

speech tasks led to quite similar performance scores. Owing
to this, next we calculated the mean, median and standard
deviation scores for the five spontaneous speech tasks (i.e.
‘Everyday’, ‘Previous Day’, ‘Opinion’, ‘Narrative Recall’ and
‘Hobby’) (see the right hand side of Table V; better values
are shown as bold). When using all the phones, the values
did not differ significantly from the case of relying on all six
speech tasks. Relying on the vowels or the fricatives also led
to a similar performance for all six speech tasks: while having
an unusable MS discrimination performance, the standard
deviation values even rose a bit. For the voiced and unvoiced
consonant categories, however, the mean and median metric
scores improved, while standard deviation values fell for both
metrics. Indeed, from Fig. 3 we can see that the ‘Phonetics’
speech task (the only one which was not a spontaneous one)
led to the highest (or, for the voiced consonants, to the
second-highest) EER and the lowest AUC scores for these
two phonetic categories.

Similarly, for nasals, plosives and affricates we measured
lower mean and median EER scores, higher AUC values, and
significantly lower standard deviations for the spontaneous
speech tasks alone. Specifically, for plosives, the (mean and
median) EER values were the same or only 1.8% higher,
while the AUC scores were only about 0.02 lower than in the
reference case, with practically the same standard deviations.
This, in our opinion, means that they give a more robust
performance on the spontaneous speech tasks than when other
types of speech tasks (in our case, a special reading task) are
also included.

VII. CONCLUSION AND LIMITATIONS

In this study, we investigated the automatic processing of
the speech of Multiple Sclerosis subjects and healthy controls.
To automatically distinguish the two speaker groups, we devel-
oped a feature extraction method based on the phonetic
posterior estimates of the acoustic part of a Hidden Markov
Model / Deep Neural Network (HMM/DNN) hybrid model

(phonetic posteriorgrams). We performed our experiments on
the recordings of 45 subjects, and our recording protocol
involved six different speech tasks. Based on our experimen-
tal results, the proposed method leads to a slightly better
classification performance than with x-vectors or ComParE
functionals (applied as competitive baselines), and it is more
robust: the classification performance turned out to be less
sensitive to the actual speech task. Besides this, although
the size of the feature vector extracted from each utterance
depends on the phonetic set of the given language, it is
still extremely compact: in our case we worked with only
82 features for each recording.

In the next part of our study we exploited the interpretable
nature of the proposed, phonetic posterior-based features.
Since all the attributes are directly linked to a phone of the
phonetic set, we examined the utility of specific phonetic
subsets by discarding the attributes corresponding to other
phones. By repeating this experiment for several phonetic
subsets, we found that the ‘Plosives’ category led to a subject
classification performance close to using all phones, which
increased further when we only retained the spontaneous
speech tasks. This also means that, by focusing on the pos-
terior estimates of the plosive phones, our proposed method
might be applicable in the speech therapy of MS patients as
well.

Regarding the limitations of our study, having around
50 subjects as samples is quite a small dataset from a machine
learning point of view, but it is fairly common and accepted
in pathological speech processing studies. Another concern
might be the special nature of the speech tasks, but since
we obtained similar classification performance scores for the
five spontaneous speech tasks, the proposed method appears
to be quite insensitive to the actual instructions. It is also
unclear whether using more sophisticated phonetic posterior
estimation methods such as LSTMs or GRUs would improve
the performance of the subsequent MS identification step,
or just the other way around: even simpler context-independent
phonetic states could prove to be adequate. We plan to
investigate this in the near future.

Another possible limitation might come from the strong
connection between the proposed features and the phonetic
set of the given language, in the case where we apply the
proposed feature extraction approach to subjects speaking in
another language such as English, Spanish or Chinese. This
would probably require repeating the phonetic subset selection
experiments for the phonetic groups of the target language,
or using some multilingual phonetic set when calculating
the phonetic posterior estimates [35], [77]. This said, in our
opinion, the competitive MS discrimination performance, the
robustness to speech tasks, the compact size of the feature
set, and the interpretable nature of the attributes (allowing a
potential application in speech therapy) all demonstrate the
utility of the proposed feature extraction method.
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