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Quantum entanglement in strong-field ionization
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We investigate the time evolution of quantum entanglement between an electron, liberated by a strong few-cycle
laser pulse, and its parent ion core. Since the standard procedure is numerically prohibitive in this case, we
propose a method to quantify the quantum correlation in such a system: we use the reduced density matrices
of the directional subspaces along the polarization of the laser pulse and along the transverse directions as
building blocks for an approximate entanglement entropy. We present our results, based on accurate numerical
simulations, in terms of several of these entropies, for selected values of the peak electric-field strength and the
carrier-envelope phase difference of the laser pulse. The time evolution of the mutual entropy of the electron and
the ion-core motion along the direction of the laser polarization is similar to our earlier results based on a simple
one-dimensional model. However, taking into account also the dynamics perpendicular to the laser polarization
reveals a surprisingly different entanglement dynamics above the laser intensity range corresponding to pure
tunneling: the quantum entanglement decreases with time in the over-the-barrier ionization regime.
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I. INTRODUCTION

Although quantum entanglement between two particles’
spatial motion (i.e., their positions or momenta) dates back
to the early days of quantum mechanics [1,2], the features of
continuous variable quantum entanglement [3] are still much
less explored and utilized than those of discrete variables
systems [4]. The few-particle quantum systems studied in
connection with quantum entanglement usually need special
preparation procedures and they are typically very sensitive to
environmental circumstances. In contrast to this, the strong-
field ionization of an atom is a very well explored and
understood process, both theoretically and experimentally
[5–26]. However, despite the fact that it is widely used in
standard procedures to generate, e.g., high-order harmonic
radiation [27,28], it is very little known that this strong-field
ionization generates also quantum entanglement between the
liberated electron and its parent ion core. In our earlier
work [29,30], based on a simple one-dimensional model, we
have already shown that the time evolution of this quantum
entanglement shows interesting features. A straightforward
question is whether these are also present in the strong-field
ionization of a real atom. In the present paper, we report our
advanced results on this process: although we keep the single
active electron approximation, we do the investigation in three
spatial dimensions, using the true Coulomb potential.

Most of the papers on quantum entanglement in light
induced atomic processes study the correlations between the
emitted photon and the emitting atomic system [31–33].
Papers on entanglement between a charged particle and a
photon [34,35], entanglement in two particles’ collision [36–
41] and on the temporal change of the correlation potential
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during electron tunneling from a molecule [42] give valuable
insight into the quantum features of problems related to
our present paper. Entanglement between the fragments of
an atomic system due to a light-induced break-up process,
like photoionization and photodissociation, was studied by
Fedorov and co-workers [43,44] in the framework of Gaussian
states. However, this latter approach does not seem suitable
enough to deal with the problem of quantum entanglement
during the strong-field ionization of an atom, which motivated
us to perform an accurate numerical investigation of the
problem.

This paper is organized as follows: in Sec. II, we outline
the solution of the quantum-mechanical two-body Coulomb
problem under the influence of an external laser field. In
Sec. III, we present the details of our entanglement calculations
which is based on the directionally reduced dynamics. Among
others, we introduce the spatial entropy of the wave function
and the correlation entropies within the directional subspaces.
Using the corresponding directional entropies, we propose
an approximate formula to quantify the total electron-core
entanglement we actually seek. Based on this latter, we
also discuss the connection to the results based on one-
dimensional models. We present our numerical results on
the temporal evolution of quantum entanglement during the
strong-field ionization process in Sec. IV. We show how
the specific quantities, including several different entropies,
reflect the system’s behavior, and we investigate in detail their
dependence on the intensity and the carrier-envelope phase
difference (CEP) of the laser pulse. Finally, we discuss the
relevance of our main results in Sec. V. In the Appendix, we
summarize the necessary theoretical background for quantum
entanglement between two particles, and recall certain notions
(e.g., correlation types, quantum conditional entropy, quantum
mutual entropy) which are important for directionally reduced
subsystems.

We use atomic units throughout this article (i.e., h̄ = 1, e =
1, me = 1) unless stated otherwise.
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II. STRONG-FIELD IONIZATION

A. Two-body Hamiltonian

The quantum-mechanical description of a hydrogen atom,
or any other atom in the single active electron approximation,
driven by a strong laser pulse, is naturally carried out as a
two-body (or bipartite) problem consisting of the electron (e)–
ion-core (c) system. We consider their interaction with the laser
pulse in the dipole approximation, i.e., as an external time-
dependent electric field, because the relevant electromagnetic
field wavelengths exceed the size of the system by several
orders of magnitude. Using the length gauge [45] we have the
following Hamiltonian for this system:

Hec = P2
e

2me

+ P2
c

2mc

− 1

|re − rc| + E(t)(re − rc), (1)

where me(= 1) and mc are the electron and core masses,
respectively.

As it is well known, this problem can be simplified by
performing a coordinate transformation to the center of mass
(r0,P0) and relative coordinates (r,P) as

r0 = αere + αcrc, P0 = Pe + Pc,

r = re − rc, P = αcPe − αePc, (2)

where

αe = me/M, αc = mc/M, M = me + mc. (3)

Using also the reduced mass μ = memc/M , we obtain the
Hamiltonian

Hec = P2
0

2M
+ P2

2μ
− 1

|r| + E(t)r, (4)

which is separable in these coordinates; thus the solution can
be carried out in the two subsystems independently:

�ec(re,rc,t) = �(r,t)�0(r0,t), (5)

where the coordinates of the two sides are connected via the
transformation (2). This very step, however, while separating
the problem in the coordinates chosen, does still involve the
entanglement of the individual particles in �ec.

B. Subsystem: Center-of-mass motion

The center-of-mass part of the Hamiltonian describes a
free-particle propagation via the time-dependent Schrödinger
equation (TDSE)

i
∂

∂t
�0 = H0�0 with H0 = P2

0

2M
. (6)

We assume that �0 is initially a localized Gaussian wave packet
at rest in coordinate space, which yields the solution of (6) as

�0(r0,t) =
(

σ/
√

π

σ 2 + i t
M

)3/2

exp

(
− r2

0

2
(
σ 2 + i t

M

)
)

. (7)

We set the parameter σ = 1, i.e., a Bohr radius. This is the well-
known free wave packet with root-mean-square deviations of
the center-of-mass coordinates in each direction spreading as

�x0 = �y0 = �z0 =
√

σ 2 + t2/M2σ 2, (8)

which is to be evaluated for the time interval given by
the duration Tmax of the exciting pulse. The typical value
of the latter in strong-field experiments is Tmax = 300 a.u.
corresponding to a few femtoseconds, used also in our
simulations. Due to the large value of M ≈ 1837, the spreading
during the interaction is negligible: around 1.3% of the original
width, which will help us to make the effect of the laser pulse
on the quantum entropies more visible in Sec. IV.

C. Subsystem: Relative motion

We assume a linearly polarized laser field which is the
usual scenario in many strong-field processes. This suggests
to use cylindrical coordinates ρ =

√
x2 + y2, ϕ, and z, the

latter being the direction of the external electric-field strength.
We shall seek solutions that start from the ground state of
the Coulomb potential at t = 0. This does not depend on the
azimuthal angle ϕ and this remains valid for the solution at
any later time. Then the wave function of the relative motion
�(z,ρ,t) obeys the axially symmetric three-dimensional time-
dependent Schrödinger equation:

i
∂

∂t
�(z,ρ,t) = [Tz + Tρ + V (z,ρ,t)]�(z,ρ,t), (9)

where the two relevant terms of the kinetic-energy operator
are given by

Tz = − 1

2μ

∂2

∂z2
, Tρ = − 1

2μ

[
∂2

∂ρ2
+ 1

ρ

∂

∂ρ

]
, (10)

and V includes both the Coulomb and the time-dependent
external potential:

V (z,ρ,t) = − 1√
z2 + ρ2

+ zEz(t). (11)

Because we are working in the nonperturbative regime,
an analytical solution of (9)–(11) is not possible, so we
have to resort to a numerical procedure. For the efficient
numerical solution of the above problem in real space, we
have developed the hybrid splitting method [46] which is
built on the combination of the fourth-order finite difference
approximation in the two-dimensional (2D) Crank-Nicolson
method and the (high-order) split-operator methods. The main
feature of the algorithm is that it incorporates the Coulomb
singularity and the singularity of Tρ directly using the required
Neumann and Robin boundary conditions,

lim
ρ→0

∂�

∂ρ

∣∣∣∣
z �=0

= 0, and

[
∂

∂ρ
+ μ

]
�

∣∣∣∣
r=0

= 0, (12)

at the grid points on the symmetry axis (ρ = 0). We can
achieve reasonable accuracy already at the uniform spatial
discretization step size �z = �ρ = 0.2, which may seem to
be rough at first sight, but it turns out to be sufficient [46] in
view of the large extension of the ionized part of the relative
wave function. For all the simulations presented in this paper,
the initial state is the 1s ground state with energy ε0 = −μ/2
and μ = 0.999 456, corresponding to the reduced mass of the
proton-electron system.
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D. Characterization of the ionization

Now we discuss the properties of the expected ionization
process and some general features of the dynamics of the
system. First, we assume an external field of the form

Ez(t) = Fg(t) cos (ωt), (13)

where F is the parameter of the amplitude of the external
electric field and g(t) gives the finite pulse shape which is
scaled so that its minima are 0 and its maxima are 1. We will
use the particular form of (58) later in this article. We assume
Ez(t) = 0 for t � 0.

Regarding the electric-field amplitude parameter F , there
is a specific value Ftu that separates two regimes, in
which the system has distinct behavior. In the tunneling
ionization regime F < Ftu there is always a potential barrier
V (Ftu,t) > ε0 in the vicinity of the atom, while in the over-the-
barrier ionization regime F > Ftu this barrier does vanish to
a varying extent both in space and time, determined by F and
by the shape of the laser pulse. By solving for z = z(ε0,Ftu) in

ε0 = −1

z
+ zFtu (14)

at cross section ρ = 0, a quick calculation reveals that this
critical value is Ftu = |ε0|2/4, i.e., Ftu ≈ 0.0624.

Since the external field affects only the dynamics of the
relative core-electron motion, we can use certain physical
quantities calculated only from the relative wave function to
describe its effects. From the several possibilities we picked
only two of them.

The first is the z component of the mean velocity, i.e., the
average of the relative probability current density, given by

vz(t) = Im〈�(t)|∂z�(t)〉/μ. (15)

This gives information about the kinematical properties of the
“classical” particle which behaves according to the Ehrenfest
theorems. (We note that there can be no mean displacement in
the transverse directions x, y because of the dipole approxi-
mation we use.)

The other descriptive time-dependent quantity we use is
based on the projection onto the initial state

f (t) = 1 − |〈�(0)|�(t)〉|2, (16)

which is actually the loss of the ground-state population. This
f (t) can also be interpreted as the probability of leaving
the vicinity of the center of mass (r0 = 0). We have found
that f (Tmax) is a good indicator of the fraction of ionization,
incorporated in a continuum wave packet, because even the
largest populations of the excited bound hydrogen states turn
out to be an order of magnitude smaller than the ground-state
population loss in this strong field process. This has been
verified numerically in our actual calculations, and this feature
of (16) was also utilized in other strong-field calculations like
the well-known Lewenstein model [11].

We will use these quantities for the analysis of the
entanglement dynamics, illustrating how much the atom was
ionized and approximately in which direction the particle
moves.

III. ENTANGLEMENT CALCULATION

According to the standard procedure of calculating the
entanglement (for more details see the Appendix) we need
first the density matrix of the composite system,

�ec(r′
e,re,r′

c,rc,t) = �∗
ec(r′

e,r
′
c,t)�ec(re,rc,t), (17)

and then the reduced single-particle density matrices that
are obtained by tracing over the other particle’s degrees of
freedom:

�c(r′
c,rc,t) = Tre[�̂ec] =

∫
�ec(re,re,r′

c,rc,t)dr3
e, (18)

�e(r′
e,re,t) = Trc[�̂ec] =

∫
�ec(r′

e,re,rc,rc,t)dr3
c . (19)

As it is known, a good measure of bipartite entanglement is
the Neumann entropy:

SN (t) = −Tr[�̂e(t) ln �̂e(t)] = −Tr[�̂c(t) ln �̂c(t)]. (20)

In our case �ec of Eq. (5) contains �0 as given analytically
by Eq. (7), while the relative part � is available only
numerically in cylindrical coordinates (z; ρ), i.e., it is a large
two-dimensional array of numbers.

A. Necessity of a different approach

Now, if we try to apply the machinery of Eqs. (17)–(20)
with the discrete function (5), we can quickly conclude that the
array size of the discretized density matrices involved will be
prohibitively high. If we try to perform the reduction (18) and
then to calculate (20), we face effectively an ∼N9 operations
count per one value of Neumann entropy, where N is the
characteristic number of grid points of a spatial coordinate.
Using a typical setup, we needed at least N = 103 grid points to
contain the ionized electron waves. So if we make an optimistic
guess that the execution takes about 1 s per 109 operations, then
obtain a runtime of 32 × 109 yr. This makes the computation
according to the standard approach of the Appendix practically
impossible, thus we have to find a viable approximation.

B. Directionally reduced dynamics

We propose to circumvent the prohibitively large numerical
load of the problem by restricting ourselves to only one
coordinate direction (at a time), i.e., to utilize the directionally
reduced dynamics. Since the system is axially symmetric
around the polarization direction of the laser field (the axis
ρ = 0 at all times), it seems to be plausible to assume that
the interesting physics happens in this direction. However,
we are also going to use the information contained in the
perpendicular directions.

The directionally reduced density matrices of the relative
part are the following:

�x(x ′,x) =
∫∫

�∗(x ′,y,z)�(x,y,z)dzdy, (21)

�z(z
′,z) = 2π

∫
�∗(z′,ρ)�(z,ρ)ρdρ, (22)

and because of the axial symmetry we have for the y direction

�x = �y. (23)
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The directionally reduced density matrix of the center-of-mass
part is

�0,z(z
′
0,z0) = 2π

∫
�∗

0 (z′
0,ρ0)�0(z0,ρ0)ρ0dρ0. (24)

Due to the assumed Gaussian form (7) it is a pure state density
matrix which can be calculated analytically. Again, because
of symmetry we have in the other directions

�0,z = �0,y = �0,x . (25)

In addition to this, only the density matrix of the relative part
must be evaluated numerically.

After we have completed these, we will utilize that the
separability is true in each direction:

�ec,x = �x ⊗ �0,x and �ec,z = �z ⊗ �0,z. (26)

Finally, we apply the necessary coordinate transformation (2)
to (26), then the x and z directional two-particle reduced
density matrices are given by

�ec,x(x ′
e,xe,x

′
c,xc) = �x(x ′

e − x ′
c,xe − xc)

× �0,x(αex
′
e + αcx

′
c,αexe + αcxc) (27)

�ec,z(z
′
e,ze,z

′
c,zc) = �z(z

′
e − z′

c,ze − zc)

× �0,z(αez
′
e + αcz

′
c,αeze + αczc). (28)

Then, we calculate the subsystem density matrices as in the
Appendix. Therefore, the one-dimensional reduced density
matrices of the core coordinates are

�c,x(x ′
c,xc) = Tre[�̂ec,x] =

∫
�ec,x(xe,xe,x

′
c,xc)dxe, (29)

�c,z(z
′
c,zc) = Tre[�̂ec,z] =

∫
�ec,z(ze,ze,z

′
c,zc)dze, (30)

and, similarly, we have for the electron coordinates

�e,x(x ′
e,xe) = Trc[�̂ec,x] =

∫
�ec,x(x ′

e,xe,xc,xc)dxc. (31)

�e,z(z
′
e,ze) = Trc[�̂ec,z] =

∫
�ec,z(z

′
e,ze,zc,zc)dzc. (32)

In this way we have the building blocks of the two-body
Coulomb system as six pieces of one-dimensional reduced
density matrices, which can already be computed in a reason-
able amount of time.

C. Correlation quantification per direction

From these reduced density matrices we can calculate
several quantum entropies, and each has a specific interesting
aspect; we will list them in the following. For simplicity, we
use mainly formulas of the von Neumann entropy, and we
usually drop its subscript N .

Spatial entropy. this can be calculated from the reduced
density matrix of the relative part as

Sz(t) = SN (�z(t)) = −
∑

k

λ
(z)
k (t) ln λ

(z)
k (t), (33)

where λ
(z)
k (t) are the eigenvalues of �z(t). We shall call (33)

a “spatial entanglement” measure, because it quantifies the

entanglement between the coordinates z, ρ (or the nonsepara-
bility of the numerical solution) according to the theory of pure
bipartite systems. It is also the entropy of the two-dimensional
subspace,

Sec,z(t) = SN (�z(t) ⊗ �0,z(t)) = Sz(t), (34)

since SN (�0,z(t)) = 0. We also note that using

Sx(t) = SN (�x(t)) = −
∑

k

λ
(x)
k (t) ln λ

(x)
k (t), (35)

where λ
(x)
k (t) are the eigenvalues of �x(t), is also an option as

a spatial entanglement measure. However, since the laser po-
larization coincides with the z axis, it is the most interesting to
know the nonseparability between the z and x ⊗ y subspaces,
therefore, we will prefer the use of Sz(t).

Average mutual entropy per direction. As introduced by
the formula (A23), the (average) quantum mutual entropy is a
true nonseparability and correlation measure generally, which
can be used between the single coordinate subsystems of the
electron and the ion core in a given direction. They are written
along the x and z direction as

S(xe : xc,t) = 1
2 [Se,x(t) + Sc,x(t) − Sx(t)], (36)

S(ze : zc,t) = 1
2 [Se,z(t) + Sc,z(t) − Sz(t)]. (37)

To remind, these are exact formulas for pure bipartite states.
However, these measures combine classical and entanglement
related correlations otherwise, and in order to apply them as
entanglement measures (per direction), we need to look at all of
their constituent parts. It is also interesting how the conditional
entropies behave.

Core entropies per direction. As we will show below, the
quantum entropies

Sc,x(t) = SN (�c,x(t)) = −
∑

k

λ
(c,x)
k (t) ln λ

(c,x)
k (t), (38)

Sc,z(t) = SN (�c,z(t)) = −
∑

k

λ
(c,z)
k (t) ln λ

(c,z)
k (t), (39)

where λ
(c,x)
k (t), λ(c,z)

k (t) are the eigenvalues of �c,x(t) and
�c,z(t) respectively, measure approximately the particle-
particle correlation directionwise. The reason is the following:
Because of the orders of magnitude of mass difference present
in the coordinate transformation (28), the reduced density
matrix �c,z will be close to �0,z. This causes only a tiny fraction
(me/M) of the entropy Sz(t) of ze ⊗ zc to be transferred to
subsystem zc, because the mass difference suppresses the
eigenvalues and eigenvectors of �z. Knowing that �0,z is a
pure state density matrix with zero entropy, we conclude
that additional surplus values in entropy Sc,z(t) quantify a
particle-particle correlation along the z direction. In other
words, it is the nonseparability between zc and ze which is
yet to be called entanglement. The same considerations also
apply to the x direction. Because these Neumann entropies are
actually correlation entropies in this case, we expect them to
look really similar to the respective quantum mutual entropies.
For the sake of completeness, we note that the entropies
(38) and (39) are also entanglement entropies of two special
bipartitions of the six coordinate quantum system, namely xc
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against all the other coordinates and zc against all the other
coordinates, respectively.

Electron entropies per direction. These are also of impor-
tance related to the conditional entropies, and the distinction
of quantum versus classical correlations. Similarly, they are
also special entanglement entropies of two bipartitions of the
six coordinate quantum system in a similar manner as the core
entropies per direction. They are calculated as

Se,x(t) = SN (�e,x(t)) = −
∑

k

λ
(e,x)
k (t) ln λ

(e,x)
k (t), (40)

Se,z(t) = SN (�e,z(t)) = −
∑

k

λ
(e,z)
k (t) ln λ

(e,z)
k (t), (41)

where λ
(e,x)
k (t), λ(e,z)

k (t) are the eigenvalues of �e,x(t) and
�e,z(t) respectively. We note that although �e and �c must
have the same eigenvalues, this won’t be true for the reduced
density matrices �e,z and �c,z in direction z if the values of Sz(t)
are not negligible. (The same goes for the x direction.) Then
the coordinate transformation (28) causes the major fraction
(mc/M) of the entropy Sz(t) of ze ⊗ zc to be transferred
to subsystem ze, because the reduced density matrix �e,z

will be close to �z. Based on the quantum information
theoretic properties of the Neumann entropies, this spurious
eigenvalue contribution can be extracted, but not completely.
This “eigenvalue extraction” we refer to can be realized by
the Se,z(t) − Sz(t) entropy subtraction; these are the single
direction negative quantum conditional entropies of the core
x and core z reduced density matrices:

−S(xc|xe,t) = Se,x(t) − Sx(t), (42)

−S(zc|ze,t) = Se,z(t) − Sz(t). (43)

Since they are related to the correlation one way or the
other, from the above reasoning it follows that −S(xc|xe,t)
and −S(zc|ze,t) should be similar to Sc,x(t) and Sc,z(t) and
therefore also to their mutual entropy, respectively. Based
on this reasoning we will see that the subsystems xe ⊗ xc

and ze ⊗ zc are mainly subject to quantum entanglement
[in accordance with (A15)], not classical correlation (also
present), which we show in Sec. IV.

Upper bound of the core entropy. using the strong subad-
ditivity of the Neumann entropy, an upper bound can be given
for the true 3D electron-core entanglement as

Se(t) = Sc(t) � Sc,z(t) + 2Sc,x(t) = Sbound(t), (44)

where the one-dimensional core entropies were substituted
into (A10), because they tend to be smaller than those of the
electrons and because of the physical reasons outlined above.
Equation (44) serves also as a good analytical criterion that we
should fulfill with an approximate formula for electron-core
entanglement.

D. Approximation of the entanglement

Now we introduce our approximate entanglement measure,
which is one of the main purposes of this paper.

We approximate the pure state of our six-dimensional
quantum system by replacing it with

�(sep)
ec (t) = �ec,x(t) ⊗ �ec,y(t) ⊗ �ec,z(t), (45)

which is separable directionwise but it includes the
�ec,x(x

′
e,xe,x

′
c,xc), �ec,y(y

′
e,ye,y

′
c,yc), �ec,z(z

′
e,ze,z

′
c,zc) two-

dimensional reduced density matrices, which contain all
the pair correlations between the coordinates xe−xc, ye−yc,
ze−zc, respectively. [Because of the symmetry, the physics in
the subspaces x and y are identical, so (23) is true.] Then
we obtain the entropy of �

(sep)
ec from the additivity of the

Neumann entropy (valid for separable systems), and using that
Sec,j (t) = Sj (t) + S0,j (t), �ec,j = �j ⊗ �0,j , j = x,y,z as

S(sep)
ec (t) = Sx(t) + Sy(t) + Sz(t). (46)

The single-particle core and electron reduced density matrices
read

�(sep)
e (t) = �e,x(t) ⊗ �e,y(t) ⊗ �e,z(t), (47)

�(sep)
c (t) = �c,x(t) ⊗ �c,y(t) ⊗ �c,z(t), (48)

with the standard definitions (j = x,y,z):

�e,j (t) = Trc[�ec,j (t)] and �c,j (t) = Tre[�ec,j (t)]. (49)

For the entropies of these, the following hold:

Se(t) = Se,x(t) + Se,y(t) + Se,z(t), (50)

Sc(t) = Sc,x(t) + Sc,y(t) + Sc,z(t). (51)

We propose to quantify the total entanglement between e and
c based on the average mutual entropy (A23) as

Sec(e : c,t) = 1
2S(e : c,t) = 1

2 [Se(t) + Sc(t) − Sec(t)]. (52)

After rearranging the terms and using symmetry relations (23)
and (25) we obtain

Sec(e : c,t) = 1
2 [2S(xe : xc,t) + S(ze : zc,t)] (53)

as the final form of our approximate formula for the total
entanglement.

The introduction of the factor 1/2 in the above definition is
useful in the case when each of the two-dimensional subsys-
tems are in a pure state, i.e., Sec,x(t) = Sec,y(t) = Sec,z(t) = 0.
Then, the bipartite Schmidt theorem holds in these subspaces
as Se,j (t) = Sc,j (t) (with j = x,y,z), and we obtain

S
(pure,sep)
ec (t) = Sc,x(t) + Sc,y(t) + Sc,z(t), (54)

which is by definition the exact entanglement measure.

E. Connection to a one-dimensional approximation

To ensure the comparability of our results with our earlier
one-dimensional simulations [30], we briefly discuss those
now in relation to the previous section. Let us assume that
the potential of the relative coordinate quantum system can be
approximated as

V (x,y,z,t) = Vz(z,t) + Vx(x) + Vy(y), (55)

i.e., the 3D Coulomb potential is replaced by some one-
dimensional model potentials and the electric dipole term is
contained in Vz(z,t) only. Certain simple 3D models can be
treated with this approach also analytically: an example of
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these is the Moshinsky atom [47–50] with a single electron in
an external laser field using dipole approximation.

Starting the numerical simulations with a potential of the
form (55) from the separable ground state of the relative
system, the system will stay separable along the x, y, z

directions with the relative wave function of form

�(x,y,z,t) = ψx(x)ψy(y)ψz(z,t)e
−i(ε0,x+ε0,y )t , (56)

thus its density matrix will have the time-dependent form

�(t) = �x ⊗ �y ⊗ �z(t). (57)

From (57) and (26) it follows that (52) is an exact entanglement
measure, as it yields (54) as mentioned before. Then the
complete entanglement dynamics induced by the laser field
is restricted to the zc ⊗ ze subspace, described by Sc,z(t).
Due to the large mass ratio in (7), the entanglement of the
perpendicular directions changes order of magnitudes slower
than Sc,z(t) does, thus it can be regarded as a constant shift.

IV. RESULTS

A. External electric field

In our simulations, we expose the hydrogen atom to a
few cycle laser pulse with a sin-squared envelope function.
The corresponding time-dependent electric field has nonzero
values only in the interval 0 � t � 3T according to the
formula

Ez(t) = F × sin2

(
πt

6T

)
cos

(
2πt

T
+ CEP × π

)
, (58)

where T is the period of carrier wave, F is the strength of
the electric field, CEP × π is the carrier envelope phase. We
keep the wavelength of the laser field through the parameter
T the same in all of the simulations: we set T = 100 which
corresponds to a ∼725 nm near-infrared carrier wave. Varying
the parameter F and separately the parameter CEP, we
investigate the dynamics of the system with the emphasis on
quantum entanglement.

B. Simulation procedure

The simulation of the time evolution starts from the ground
state of the relative Hamiltonian which was found by imaginary
time propagation having the energy ε0 ≈ −0.499 72. Other
parameters used in the numerical simulations of the relative
wave function are (i) discretization parameters �z = �ρ =
0.2, and �t = 0.01 for the fourth-order splitting formula of
[46], (ii) the total simulated time is 330 atomic time units, (iii)
absorbing imaginary potentials are not used, (iv) the simulation
box size is varied with parameter F . The dimensions of the
latter are zmin = −500, zmax = 500, ρmax = 300 for F = 0.1.
For the evaluation of the partial derivatives z,ρ we use fourth-
order finite differences, and for the evaluation of the integrals
we also use a discrete sum approximation, both of which can
be found in [46]. After this, we perform the reduced density-
matrix based calculations at each atomic time unit.

C. Dynamics

We begin our analysis discussing the time dependence of
the ground-state population loss (16) of the relative wave
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FIG. 1. Time dependence of the ground-state population loss
f (t), defined in Eq. (16), for the indicated values of the parameter
F , with CEP = 0. The f (t) is linked to the probability of ionization.
For pure tunnel ionization, i.e., for F < 0.0624, the ionization is very
small. For higher values of F , the f (t) rises suddenly around the
peaks of the laser pulse.

function, which is shown in Fig. 1 for several values of F .
We can see sudden increases of the ground-state population
loss that are happening at the local extrema of the electric
field, more and more clearly as F increases. As we have
already discussed in Sec. II, we make a distinction between the
tunneling ionization regime and the over-the-barrier ionization
regime, regarding the dynamics dependent on F : starting from
the former, we see from Fig. 1 that even for F = 0.06 (just
below the over-the-barrier threshold), the total ground-state
population loss is small (0.02) which implies a small amount
of ionization in the tunneling regime. At F = 0.10 we have
already had a significant total ground-state population loss
(0.33) with prominent over-the-barrier ionization. At the
highest F shown (F = 0.12), the electric field increasingly
dominates the Coulomb force, and it almost doubles the total
ground-state population loss (0.61) and ionization.

From Fig. 2, we can inspect how the results translate
to an averaged classical motion, using the mean velocity
component vz(t) from the formula (15). In the tunneling range
(with F = 0.06 or below), vz(t) only slightly changes with
time and has an oscillating component, which implies that
the relative wave function is oscillating near the origin. For
amplitudes sufficiently above the over-the-barrier ionization
threshold (F = 0.1), the velocity somewhat correlates with
the quiver motion of the classical free electron moving under
the influence of the oscillating electric field (58). For example,
vz(t) has local extrema near the zero crossings of the electric
field like within this classical picture. With increasing F , the
correlation of vz(t) and this “free” classical motion becomes
more clear, signaling the increase of importance of the ionized
waves. After the laser pulse ends, the ground-state population
loss stops as expected, and vz(t) appears to oscillate near a
constant mean value which is more remarkable with higher
F . (This latter value can be nonzero, which contradicts the
mentioned classical picture and the three step model.)
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FIG. 2. Time dependence of the mean velocity of the relative
wave function vz(t), defined in Eq. (15), for the indicated values of the
parameter F , with CEP = 0. For F = 0.12, this velocity somewhat
correlates with the quiver motion of the classical free electron moving
under the influence of the same uniform dipole electric field (58). The
vertical dashed lines denote the zero crossings of the electric field.
(They have the same meaning in all of the figures.)

D. Time-dependence of the quantum entropies

Now we start to analyze the time-dependent dynamics of
the quantum entanglement of these ionization processes.

We begin the discussion of the various quantum entropies
in the direction parallel to the laser polarization axis (z), then
in the direction transverse to this polarization axis (x or y),
and in the last paragraphs in this subsection, we conclude
with the discussion of the total electron-core entanglement
approximated by our method. For this task, we set the electric-
field parameter to be F = 0.1 which means an intermediate,
over-the-barrier ionization range, and we choose the carrier
envelope phase to be CEP = 0.

First, we discuss the linear entropies of the reduced
density matrices �z, �c,z, and �e,z. We use the notation
SL,z(t), SL,c,z(t), SL,e,z(t) and we plot them in Fig. 3 to provide
them as a comparison to the Neumann entropies Sz(t), Sc,z(t),
Se,z(t), which are shown in Fig. 4, with the same parameters.
Although these linear entropies compare fairly well to the
respective Neumann entropies, the orange line in Fig. 3 shows
that the quantity SL,e,z(t) − SL,z(t) gives false prediction,
therefore we use only the Neumann entropies, as we have
already stated earlier.

The time dependence of Neumann entropies corresponding
to the direction z are shown in Fig. 4. We see that Sz(t) and
Se,z(t) share the main features but Sc,z(t) has a different be-
havior. First, let us say some words about the time dependence
of the Neumann entropy Sz(t) (plotted with red line). Overall,
this spatial entropy of the “spatial entanglement” between z

and ρ has a major increase during the process due to the
ionization: it starts from a rather small value of 0.07 and
and has a large permanent increase during the process (to
the value 1.11). This entropy also continues to grow slowly
but steadily after the laser pulse ended, i.e., due to the mixing
effect of the Coulomb potential only. It has sudden increases
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FIG. 3. Comparison of the time dependence of various linear
entropies in direction z, based on our reduced density matrix
formalism, using F = 0.1, CEP = 0. Although the linear entropies
of SL,z(t), SL,c,z(t), SL,e,z(t) compare fairly well to the respective
Neumann entropies in Fig. 4, the negative linear conditional entropy
SL,e,z(t) − SL,z(t) gives a false prediction.

in time near the peaks of the laser pulse, however, with
about ten atomic time units of delays, with the biggest jump
occurring near the central peak. If we compare this plot with
the corresponding curve of Fig. 2 we clearly see that the timing
of these increases synchronizes with the increases of |v̄z(t)|.
Regarding the small starting value of Sz(t), the initial state
of exp(−μr) is almost separable in z and ρ, in accordance
with the low value of this entropy: particularly, the dominating
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FIG. 4. Comparison of the time dependence of various Neumann
entropies in direction z, based on our reduced density matrix
formalism, using F = 0.1, CEP = 0. The synchronous changes in
Sc,z(t), in Se,z(t) − Sz(t), and in S(ze : zc,t) signal that they are related
to a common source of correlation, which is primarily the quantum
entanglement between ze and zc, as evidenced by the high value of
the negative conditional entropy Se,z(t) − Sz(t).
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eigenvalue of �z at t = 0 is λ
(z)
1 = 0.9872. This clearly shows

that the Neumann entropies, in general, take into account
the other much smaller eigenvalues in a more pronounced
way.

In Fig. 4 we show the Neumann entropies Se,z(t) and Sc,z(t),
and the negative conditional entropy Se,z(t) − Sz(t), with blue,
green, and orange lines, respectively, in order to attempt to
answer the question of how the core-electron correlation works
in the directional z subsystem. We stated in Sec. III that
the coordinate transformation (28) creates a special type of
correlation. Therefore, we should be able to acquire (at least
partially) the correlation information contained in Sc,z(t) from
the Neumann entropy Se,z(t). As it is clearly shown by Fig. 4,
the majority of the time-dependent features of Se,z(t) seem to
be inherited from the Neumann entropy of the reduced density
matrix �z(t) (for example, the sudden increases related to the
ionization); they are only shifted to higher values. However,
if we carefully inspect the curve of Se,z(t) − Sz(t) in Fig. 4
(in orange) we can easily observe that its main features (like
its correlation with the laser pulse) are very similar to those
of Sc,z(t). Because these quantities are close to each other, it
means that in this subsystem the major correlation is quantum
entanglement, as we stated earlier. Therefore, S(zc : ze,t),
defined in (A23), can be used as an approximate entanglement
measure. We also make the observation that Sz(t) is always
upper bounded by Se,z(t), and the respective z coordinate of
the lighter electron contains more entropy than that of the
heavier ion core, as expected.

Next, we discuss the time dependence of the resulting
mutual entropy S(zc : ze,t), which is plotted in Fig. 4 as a
purple curve. This quantity inherits its features from Sc,z(t) and
Se,z(t) − Sz(t) by construction: it starts from an intermediate
value (0.23), rises and falls several times during the process,
contrary to Sz(t). It stays almost constant after the laser pulse,
around a value (0.25) that is only slightly higher than the initial
value. The time dependence of S(zc : ze,t) correlates better
with the shape of the laser pulse, and also has much smaller
peak value in the time window, than the aforementioned
spatial entropy. Interestingly, the rapid changes in ionization
probability during the process are not reflected by this
particle-particle entanglement of the z directional subspace.
The changes of this mutual entropy are more correlated with
the average velocity vz(t), which we expand more in the next
subsection.

The curves of Fig. 4 clearly show that the classical
correlations also change under the effect of the laser pulse:
the gap between Sc,z(t) and Se,z(t) − Sz(t) is dynamically
increasing and decreasing, synchronously with the electric
field. Even though the respective mutual entropy includes these
classical effects, the also synchronous changes in Sc,z(t) and in
Se,z(t) − Sz(t) signal that the quantum entanglement behaves
the same way, and the high value of the negative conditional
entropy causes it to be the major correlation.

Here we ought to note that the actual related values of
Sc,z(t), S(zc : ze,t), Se,z(t) − Sz(t) are also influenced by �0,
that is by the adjustable parameter σ 2. According to our sim-
ulations, the change of σ 2 does not affect the aforementioned
observations of the time-dependent characteristics of these
entropies. The major difference between different values of
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FIG. 5. The time evolution of the various Neumann entropies
based on the reduced density matrices in direction x, using the
parameters F = 0.1, CEP = 0. We can see that the S(xe : xc,t) shares
time-dependent features with S(ze : zc,t), for example, its maxima
are near the zero crossings of the laser pulse. The major correlation
between xe and xc is quantum entanglement.

σ 2 is that it results in a shift of the values S(zc : ze,t) and it
affects the already slow dispersion rate of �0.

The time dependence of the same of quantum entropies
which characterize the reduced dynamics along the x axis
(same along y) can be seen in Fig. 5. However, we limited
the range of the time axis (to 280 atomic time units) in
this case, since one of these entropy calculations is done
about O(N4) steps instead of O(N3), and it also involves
that much interpolation in order to do integration in Cartesian
coordinates.

From Fig. 5, we can see a familiar shape related to the
spatial entropy in the form of Sx(t), because the values of
the Neumann entropy Sx(t) mirrors that of Sz(t), but they
are not the same. However, they are actually identical at
t = 0 due to the spherical symmetry of 1s Coulomb state,
i.e., (a single index) tripartite Schmidt decomposition [51] of
the initial relative wave function exists. Then the laser pulse
causes this wave function to slowly depart from this tripartite
Schmidt state as Sx(t) and Sz(t) differ more. However, both
Sx(t) and Sz(t) depict the time dependence of spatial entropy
adequately.

Now we turn our attention to the particle-particle correlation
of the xe and xc coordinates. First, this correlation is quantum
entanglement because Sc,x(t) and its negative conditional
entropy, i.e., Se,x(t) − Sx(t), stay really close to each other
which is only possible if xe and xc are entangled, therefore
S(xe : xc,t) is a good entanglement measure. Now, we can also
see that the S(xe : xc,t) shares some time-dependent features
with S(ze : zc,t), for example, its maxima are near the zero
crossings of the laser pulse. Note, however, that the changes in
S(xe : xc,t) are considerably smaller than those in S(ze : zc,t).
It is somewhat surprising that there is an overall entanglement
decrease in direction x, which we discuss in the next subsection
in more detail. This decrease could be an evidence of the

043412-8



QUANTUM ENTANGLEMENT IN STRONG-FIELD IONIZATION PHYSICAL REVIEW A 96, 043412 (2017)

Sbound Sec e:c 2S xe:xc S ze:zc

0 50 100 150 200 250
0.2

0.4

0.6

0.8

1.0

t [a.u.]

N
eu

m
an

n 
en

tro
pi

es

FIG. 6. The time evolution of our electron-core entanglement en-
tropy Sec(e : c,t) and the upper bound of the analytic entanglement en-
tropy Sbound(t), along with time evolution of the directional entropies
2S(xe : xc,t) and S(ze : zc,t) with parameters F = 0.1, CEP = 0. The
time dependence of Sbound(t) and Sec(e : c,t) follow each other with
a substantial and slightly increasing gap which indicates the actual
importance of these curves. The total entanglement entropy reaches
a net decrease by the end of the laser pulse. Important features of
Sec(e : c,t) are shared with S(ze : zc,t) (like the correlation with the
external electric field, and the definite positions of the maxima near
the zero crossings of the laser field) which suggests that the relevant
physics happens along the polarization axis.

purification between the two subsystems xe and xc, as these
coordinates become more uncorrelated during the physical
process.

Finally, in Fig. 6, we plot the result of our approximate
formula Sec(e : c,t) of the physical core-electron entanglement
using (53) with its analytic upper bound Sbound(t) via (44).
There, we also plot the function S(xe : xc,t) + S(ye : yc,t) =
2S(xe : xc,t) and S(ze : zc,t) for the z subsystem. We see that
our approximate quantification formula Sec(e : c,t) is clearly
below Sbound(t), with substantial, and slightly increasing gap.
Also the time dependence of these follow each other, which
indicates the actual importance of Sec(e : c,t). It seems to
be surprising that the total entanglement entropy shows a
net decrease by the end of the laser pulse, which we will
revisit in the next subsection. This is especially interesting
when we take into account that other important features of
the entropy Sec(e : c,t) mimic those of the mutual entropy
S(ze : zc,t). In this sense we could say that the part of the
relevant physics happens along the polarization axis (like the
correlation with the external electric field, and the definite
positions of the maxima near the zero crossings of the laser
field) but the perpendicular degrees of freedom change the
overall dynamics of the entanglement from increasing to
decreasing.

We will further explore the dynamics of all types of
entanglement presented so far in the following subsections,
while also giving more insight into the physics, by changing
the external field that governs the process.
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FIG. 7. The time evolution of the Neumann entropy Sz(t) for the
indicated values of the parameter F , with CEP = 0. Below the value
F = 0.04, we have only a negligible increase in Sz(t), i.e., the relative
wave function stays nearly separable in z, ρ during the process. This
separability quickly breaks down with increasing F . The fast rises of
Sz(t) are related to the sudden changes of ionization probability; see
Fig. 1.

E. Parameter dependence of the quantum entropies:
Electric-field strength

In this section we discuss the dependence of the important
entanglement entropies of Sec. III on the parameter F , i.e., on
the strength of the external electric field.

In Fig. 7 we plot the spatial entropy Sz(t) for the relevant
values of F . Comparing these curves with the ground-state
population loss of Fig. 1 it is easy to correlate the time evolution
of Sz(t) to the probability of ionization.

Note that below the value F = 0.04, we have only a
marginal increase in Sz(t), i.e., the relative wave function
stays nearly separable in z, ρ during the process. This
separability quickly breaks down with increasing F , which
is an important information regarding the applicability of
the time-dependent multiconfigurational Hatree approaches
[52] for the simulations of strong-field processes. It is also
interesting that we have not found any specific mark of the
tunneling or the over-the-barrier ionization regimes. Between
F = 0.12 and F = 0.14, the entropy increase already slows
down as a function of F , and one can extrapolate that the spatial
nonseparability has a saturation point near F = 0.14. We
verified the existence of this maximum value with additional
computations. Therefore, there is a limiting maximal value for
Sz(t) in the given time window, which already corresponds
also to nearly complete ionization. The Sz(t) is not only the
measure of “spatial entanglement,” but it is also the total
entropy of the z subsystem, which has consequences regarding
the interpretation of the directional mutual entropies.

In Fig. 8 we plot the average mutual entropy in the
directional z subsystem, S(ze : zc,t), for the relevant range
of F . It is easy to see that the correlation of this entropy with
the shape of the laser pulse becomes more clear as we increase
F . The values of the first minima decrease as F increases,
but this is reversed for the other local minima. Regarding the
local maxima, they all increase with increasing F , the largest
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FIG. 8. The time evolution of the mutual entropy S(ze : zc,t) for
the indicated values of the parameter F , with CEP = 0. By comparing
to Fig. 2, we can easily recognize that the mean relative velocities
vz(t) are tied to the quantum entanglement in direction z. These curves
are very similar to the exact quantum entanglement entropy curves
in Fig. 1 of our former 1D model simulation [30]. The local maxima
increase with increasing F , the largest change occurring at the main
maximum (t = 175). Positions of the local maxima almost coincide
with the zero crossings of the laser’s electric field.

change occurring at the main maximum (t = 175). Positions
of the local maxima are independent of F . We can observe a
tunneling regime feature: the value of this entropy returns to
the baseline at the end of the laser pulse. As the over-the-barrier
ionization takes over (above F = 0.08) the final value of the
entanglement between ze and zc rises with increasing F .

Comparing Fig. 8 and Fig. 2, it is easy to recognize that the
mean relative velocities vz(t) (or alternatively, momenta) play
a particularly important role regarding quantum entanglement
in this direction. During one half cycle of the laser pulse, as the
core and the electron are moving apart, the entanglement of
their respective coordinates ze and zc increases proportionally
to the magnitudes of their relative velocities. The value of their
entanglement decreases when deceleration occurs, and reaches
its minimum value when the particles’ relative motion stops.
The final value of entanglement is also related to this velocity.

The results presented in Fig. 8 are even more interesting if
we compare them to the exact quantum entanglement entropy
curves in Fig. 1 of our former 1D model simulation [30].
Despite that the average mutual entropy S(ze : zc,t) includes
an increasing “background” (since the composite system is
always in a mixed state in the 3D model), the main features
of the temporal dependence in Fig. 8 and in Fig. 1 of [30]
exhibit a very good qualitative agreement: the position of
the local maxima coincides with the zeros of the laser pulse,
the main maximum of the entropy is roughly the double of
its initial value, and the asymptotic value at the end of the
simulation time scales roughly the same way as the corre-
sponding maximum values. This agreement strongly supports
our opinion that the average mutual entropy S(ze : zc,t) is a
useful measure of quantum entanglement for the degrees of
freedom along the direction of the laser polarization in the 3D
case. The agreement also justifies the use of the delta potential
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FIG. 9. The time evolution of the mutual entropy S(xe : xc,t)
for the indicated values of the parameter F , with CEP = 0. This
figure shows more clearly the striking feature that was already
present in Fig. 5: the average mutual entropy in the direction x

decreases surprisingly strongly with increasing F in the over-the-
barrier ionization regime.

in the 1D simulation, because the resulting exact core-electron
quantum entanglement quantitatively correctly describes the
corresponding entanglement dynamics of the 3D case.

Regarding the transverse direction x, first we note that the
time dependence of Sx(t) is very similar to that of Sz(t) and it
scales with F also in an analogous way, therefore we do not plot
Sx(t). We plot S(xe : xc,t) in Fig. 9 in analogy to Fig. 8. This
figure shows more clearly the striking feature that was already
present in Fig. 5: the average mutual entropy in the transverse
direction decreases surprisingly strongly with increasing F

in the over-the-barrier ionization regime. This unexpected
behavior is of purely quantum-mechanical nature, contrary to
direction z: since vx(t) = 0, there is no “classical” explanation
based on the Ehrenfest kinematics. However, the positions of
the local maxima S(xe : xc,t) are still tied to the zero crossings
of the laser field. There is an importance of the tunneling
regime (F = 0.0624 and below), where the average mutual
entropies S(xe : xc,t) and S(ze : zc,t) have almost the same
overall behavior and show an entropy increase.

Finally, in Fig. 10, we plot the approximate core-electron
entanglement Sec(e : c,t), defined in Eq. (53). Due to its
construction, it inherits its features from S(ze : zc,t) and S(xe :
xc,t) in the following way: if the value of F ensures pure tunnel
ionization, then Sec(e : c,t) gains a net increase by the end
of the laser pulse, otherwise the core-electron entanglement
decreases with increasing F , which is a rather surprising
result. Other important features of S(ze : zc,t) are preserved
also for Sec(e : c,t): the presence of the local maxima at the
zero crossings of the laser field, the general nature of the
correlations, and its link to the mean velocity.

F. Parameter dependence of the quantum entropies:
Carrier envelope phase

In this section we investigate the effects of the carrier
envelope phase (CEP) on the process.
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FIG. 10. The time evolution of the approximate core-electron
entropy Sec(e : c,t) for the indicated values of the parameter F ,
with CEP = 0. Due to its construction, it inherits its features from
S(ze : zc,t) and S(xe : xc,t). Surprisingly, the entropy decrease of
the transverse directions dominate the entropy increase in direction
z, therefore this approximate core-electron entanglement decreases
with increasing F in the over-the-barrier ionization regime.

In the upper panel of Fig. 11 we plot the electric field of
the laser pulse for our selected CEP values, with the strength
of the electric-field parameter set to F = 0.1. For the sake of
better comparability, we apply the following CEP dependent
transformation in time: we shift backwards the time domains in
the case of nonzero CEP values such that the zero crossings of
the various laser pulses coincide, as shown in the lower panel
of Fig. 11. We plot the time dependence of some selected
quantities in the following figures with this shift applied.

We plot the CEP dependence of the mean velocity vz(t) in
Fig. 12 and the ground-state population loss in Fig. 13 using
the above-mentioned transformation. For each CEP value, the
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FIG. 11. Plots of the laser pulses’ electric fields Ez(t) vs time
with four selected values of the parameter CEP, where the thick blue
curves indicate the case of CEP = 0. The vertical axes range from
−F to F and represent the strength of the electric field. Plots in the
upper panel are according to the formula (58) then we applied a CEP
dependent shift in time to make the zero crossings coincide (lower
panel). We plot the time dependence of some selected quantities in
Figs. 12–16 with this shift applied.
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FIG. 12. Plots of the mean velocity vz(t) of the relative wave
function vs time for the indicated CEP parameters, with F = 0.1.

dynamical properties of the system stay synchronized to the
local minima, maxima, and zero crossings of the laser pulses.
The values of the ground-state population loss at the end of
the laser pulse are nearly unaffected by the parameter CEP.
The corresponding values of vz(t) are only slightly affected by
the CEP change.

The entanglement properties of the system inherit the
above CEP related features. To show this, we plot the CEP
dependence of the entropy of the “spatial entanglement” in
Fig. 14, the entropy of nonseparability in direction z in
Fig. 15, and our approximated core-electron entanglement
entropy in Fig. 16 including already the CEP dependence
in direction x. In the latter two figures, we can see that the
local maxima still coincide with the zeros of the electric fields,
independently of the CEP values, and the CEP has barely
any effect on the final values. However, the actual values
of the ionization, the velocities, and all the entropies change
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FIG. 13. Plots of the ground-state population loss of the relative
wave function vs time for the indicated CEP parameters, with
F = 0.1.
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FIG. 14. Plots of the Neumann entropy Sz(t) vs time for the
indicated CEP parameters, with F = 0.1.

considerably with respect to each other between subsequent
half cycles, depending on the value of the CEP parameter.
For example, in Fig. 14 the peak at t = 175 shrinks as CEP
increases and the peak value at t = 225 grows synchronously.
We have found it interesting that the latter entropy acquires its
largest value near CEP = 0.75 and not CEP = 0.0, where we
have the largest value of Ez(t). Thus, although the parameter
CEP changes the subcycle dynamics of both these entropies
considerably, its value does not affect our main observations
about the overall time-dependent entropy dynamics.

V. SUMMARY

In this paper, we applied the theory of quantum entangle-
ment and the concepts of quantum information theory to de-
scribe the time-dependent correlation properties of an electron
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FIG. 15. The plot of the mutual entropy S(ze : zc,t) for the
indicated CEP parameters, with F = 0.1. Note that the peak at
t = 175 shrinks as the CEP increases while the peak at t = 225
increases.
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FIG. 16. The plot of the electron-core entropy Sec(e : c,t) for the
indicated CEP parameters, with F = 0.1.

and its parent ion core under the influence of an external laser
pulse which is strong enough to liberate the electron by tunnel
or by over-the-barrier ionization. The computation of the
standard entanglement measure, i.e., the Neumann entropy of
either the electron or the core density matrix, for this problem
is numerically prohibitive in its full dimensionality, therefore
we choose to partition the interacting system along the spatial
directions parallel and perpendicular to the laser polarization
axis, denoted by z and x, respectively. These directionwise
reduced dynamics still retain all pair correlations in x and
z. To analyze the corresponding pair correlations between
the electron and the ion-core coordinates, we used several
kinds of Neumann entropies that can be calculated from the
one-dimensional density matrices of the system. Based on the
concepts of quantum conditional entropy and quantum mutual
entropy, we introduced average mutual entropies between the
electron’s and the ion-core’s spatial position along the x and
z directions as suitable and useful correlation measures. We
constructed an approximate formula, Eq. (53), to quantify the
total particle-particle entanglement between the electron and
the ion core, based on the directionwise mutual entropies.

We analyzed the nature of the correlations in each direction
and we found that they are based on the same fundamental
features of this system. For example in direction z, the
ion-core entropy Sc,z(t) behaves like a correlation entropy,
because the ion-core density matrix is close to that of the
center of mass which has zero entropy. The spatial entropy
Sz(t) is concentrated in the directionwise electron entropy
Se,z(t), which also incorporates a correlation part. The resulting
Se,z(t) − Sz(t), which is the negative conditional entropy of
the ion core, becomes positive and has many features in
common with Sc,z(t). In most of the simulations, these two
stay really close to each other, which means that the state as
the function of the ze and zc coordinates shows dominantly
quantum entanglement. The same is true with respect to the xe

and xc coordinates. This behavior is very different from pure
state entanglement, because these directional subsystems are
in mixed states.
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We analyzed the correlation entropy relations in each
direction and we found that the zero crossings of the electric
field almost coincide with their local maxima. These results
in direction z are also in a good agreement with our earlier
one-dimensional simulations. The correlations along the x and
z directions are very similar to each other if the process stays in
the tunnel ionization regime. In the over-the-barrier ionization
regime, we found entropy increase along z but a surprising
entropy decrease in the transverse directions which makes
also the total core-electron entanglement entropy decrease,
contrary to what we expected.

We investigated the dependence of these proposed measures
of entanglement dynamics on the strength and the carrier-
envelope phase of the driving laser pulse. We found many
features of quantum entropies that do not depend on these
parameters, like the electron-core entanglement has local
maxima always near the zero crossings of the laser pulse. We
found that while the intensity of the field governs the dynamics
as a whole, the carrier envelope phase changes the subcycle
dynamics of the strong-field ionization.

Based on our simulations, we also calculated some relevant
quantities that contribute to the physical picture of strong-field
ionization. We found that the ground state of the simulated
relative wave function is almost separable, and it remains so
if the field is weak. The loss of the ground-state population is
a good measure of ionization, and the net effect of the ionized
waves results in a mean velocity vz(t) which is more and more
similar to the corresponding motion of a classical electron
as the laser intensity increases, apart from the nonzero final
velocity.

We think that our results will be useful regarding the
interpretation of quantum measurements, especially in con-
nection with strong-field processes, using, e.g., COLTRIMS
or other reaction microscopes [53,54]. An obvious but not
trivial extension of our present work could be the calculation
of electron entanglement in double ionization [55]. We also
hope to inspire further developments in quantum information
theory.
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APPENDIX: QUANTIFICATION OF BIPARTITE
QUANTUM ENTANGLEMENT

1. Schmidt decomposition and entanglement

In this Appendix we recall the standard theory of quantum
entanglement for bipartite systems emphasizing the features
specific to states described by square integrable coordinate
wave functions of infinite-dimensional Hilbert spaces. In our
problem the two parts, e and c, are two distinguishable
particles, the electron and its parent ion core. The composite

system ec is assumed to be a closed quantum system in a pure
state represented by the wave function �ec(re,rc,t). The two
subsystems are entangled if �ec is not separable with respect
to the coordinates of these subsystems:

�ec(re,rc,t) �= �e(re,t)�c(rc,t). (A1)

It is well known then that the result of the measurement of
subsystem e affects the outcome of measurements on subsys-
tem c and vice versa. That is, performing the measurement on
either particle changes the other particle’s quantum state in a
nonlocal manner.

To quantify the entanglement, we need the relevant concept
of density matrices. The composite system is described by the
two-particle pure state density matrix:

�ec(r′
e,re,r′

c,rc,t) = �∗
ec(r′

e,r
′
c,t)�ec(re,rc,t), (A2)

and the single-particle density matrices are obtained by tracing
over the other particle’s degrees of freedom. The reduced
single-particle core density matrix is

�c(r′
c,rc,t) = Tre[�̂ec] =

∫
�ec(re,re,r′

c,rc,t)dr3
e (A3)

and the reduced single-particle electron density matrix is

�e(r′
e,re,t) = Trc[�̂ec] =

∫
�ec(r′

e,re,rc,rc,t)dr3
c . (A4)

These quantities contain every quantum information about
the respective single-particle properties, and they are directly
related to the entanglement information we need. To show this,
we refer to the Schmidt theorem [56,57], which states that there
exists a unique decomposition of the entangled wave function
�ec of the bipartite system ec into a sum of the following form:

�ec(re,rc,t) =
∑

k

√
λk(t)φk(rc,t)ψk(re,t), (A5)

where φk(rc,t) and ψk(re,t) are orthonormal basis functions in
the respective spaces. They are acquired after the diagonaliza-
tion of the single-particle reduced density matrices (A3) and
(A4) as

�e(r′
e,re,t) =

∑
k

λk(t)ψ∗
k (r′

e,t)ψk(re,t), (A6)

�c(r′
c,rc,t) =

∑
k

λk(t)φ∗
k (r′

c,t)φk(rc,t), (A7)

i.e., the formula (A5) contains the eigenvectors φk, ψk as the
Schmidt basis functions, and the countably many common
eigenvalues λk(t) of �e and �c density matrices respectively.
We note that in this continuous variable case the diagonal-
ization of (A3) or (A4) actually involves the solution of a
homogeneous Fredholm integral equation of the second kind.
In addition—contrary to discrete variable systems—these
density matrices are usually highly singular, due to the trace
condition Tr�e = Tr�c = 1 they contain infinitely many zero
or close to zero eigenvalues. Therefore, it is necessary to
introduce an ordering of the eigenvalues λ1 � λ2 � λ3 � . . .

and then to use only a finite number of them which is greater
than an adequately small threshold number ε.

The eigenvalues λk(t) allow one to quantify the entangle-
ment of the particles (subsystems) e and c by introducing
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quantum entropies [58,59]. Most frequently we use here the
von Neumann entropy

SN (t) = −Tr[�̂c(t) ln �̂c(t)] = −
∑

k

λk(t) ln λk(t), (A8)

and in certain cases the linear entropy

SL(t) = 1 − Tr
[
�̂2

c (t)
] = 1 −

∑
k

λ2
k(t). (A9)

The von Neumann entropy obeys some natural requirements,
and it also has a quantum information theoretic appeal [60]
while the linear entropy (A9) is easier to calculate, since
diagonalization is not necessary. However, both of these
entropies generally tend to behave the same way in this simple
bipartite configuration: if a subsystem is in a pure state they
assume the value 0, and they increase as the “mixedness”
of the subsystem’s state increases. It is important that this
quantification does not straightforwardly generalize to the case
where the composite system is divided into more than two
subsystems [61].

For independent systems the total density operator is the
tensorial product of those of the subsystems and then the
Neumann entropy of the composite system is exactly the sum
of the Neumann entropies of the subsystems. In our case,
however, when by the very nature of the problem e and c are
not independent, only strong subadditivity holds [62], which
gives an upper bound of the composite system’s entropy as

SN (�ec) � SN (�e) + SN (�c). (A10)

A useful lower bound is given by the Araki-Lieb inequality as

|SN (�e) − SN (�c)| � SN (�ec). (A11)

2. Correlation types and quantum information

In general, �ec involves both classical and quantum corre-
lations. Then it is crucial to recognize the features of these,
and to do that, we recall their meaning first. If a bipartite
system contains only classical correlations between the two
subsystems, then it has a density matrix of the following form:

�(cl)
ec =

∑
k

wk�
(k)
e ⊗ �(k)

c , (A12)

where wk satisfy
∑

k wk = 1 and wk � 0. We are dealing
with some form of quantum entanglement only if the density
matrix of the system does not satisfy (A12). We denote the
corresponding class of nonclassical density matrices generally
as �

(quant)
ec . A special case of this is the entangled pure state

density matrix �
(pure)
ec defined in (A2) which will serve as an

important analytic example for quantum entanglement.
In the following, we recall relevant entropic quantities of

quantum information theory that suit the task of determination
and quantification of entanglement. We will denote the
composite system by EC, and its subsystems by E and C.
We also simplify the notation of the entropies as S(EC) =
SN (�ec), S(E) = SN (�e), S(C) = SN (�c).

3. Quantum conditional entropy

The quantum conditional entropy corresponding to a
subsystem can be introduced based on the conditional density

or amplitude operator [63,64], but we consider the following
formula for the definition:

S(E|C) = S(EC) − S(C), (A13)

for the quantum conditional entropy of subsystem E, and
S(C|E) is the quantum conditional entropy of subsystem
C. This characterizes the remaining entropy or information
of E after C has been measured completely. Both quantum
conditional entropies can generally be interpreted the same
way as the classical ones, but they can have negative values.
They behave exactly the same way for classical correlations
as their classical counterparts: they are non-negative,

�(cl)
ec =⇒ S(E|C) � 0 and S(C|E) � 0. (A14)

However, when either of them is negative,

S(E|C) � 0 or S(C|E) � 0 =⇒ �(quant)
ec , (A15)

then the composite system is entangled, which leads, e.g., to
a violation of the Bell inequalities. Note that the converses
of (A14) and (A15) are not true and also S(E) − S(EC) is
positive in the case of quantum entanglement. For example, in
the case of pure composite systems we have

�(pure)
ec =⇒ S(E|C) = −S(C) = −S(E), (A16)

and S(C) = S(E) is positive. Because of this, quantum entan-
glement is sometimes called “supercorrelation” and introduces
virtual information which describes that the measurement
changes the quantum state of the other subsystem.

4. Quantum mutual entropy

Quantum mutual entropy is the shared entropy or shared
information between subsystems E and C. It can be defined
using a mutual density or amplitude operator [63], but we use
the definition

S(E : C) = S(E) + S(C) − S(EC). (A17)

It can be also interpreted as the decrease of entropy of
subsystem E due to the knowledge of C (and vice versa).
Because of this, we note that the conditional entropy and
mutual entropy are related in the respective subsystems as

S(E : C) = S(E) − S(E|C). (A18)

The quantum mutual entropy is by construction symmetric and
its values are always non-negative. For classical correlations,

�(cl)
ec =⇒ S(E : C) � min [S(E),S(C)]. (A19)

If the values of S(E : C) extend above this classical limit then
there is quantum entanglement between E and C:

min [S(E),S(C)] � S(E : C) =⇒ �(quant)
ec . (A20)

Unfortunately again, it is not true that below the classical limit
(A19) there could not be quantum effects between the two
subsystems. The upper limit of the quantum mutual entropy is

S(E : C) � 2 min [S(E),S(C)], (A21)

which can be derived from the Araki-Lieb inequality (A11).
It is instructive to observe that for pure state com-

posite systems, like EPR pairs, S(E : C) is at the upper
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limit:

�(pure)
ec =⇒ S(E : C) = S(E) + S(C) = 2S(E). (A22)

Based on this and using the exactness of (A22), a unified
entanglement or quantum nonseparability measure can be
defined which we denote as the average mutual entropy:

S(E : C) = 1
2S(E : C), (A23)

which is the same as (A8) in pure bipartite quantum systems.
We can also use this to deduce whether we are dealing
with entanglement: if we are near the limit (A21), i.e., S

is close to min [S(E),S(C)], then entanglement is the major
correlation. The formulas (A17), (A13), (A23) can be used for
the analysis of the entanglement dynamics of the directional
bipartite subsystems of (A2). But we have to be careful because
(A23) is a general measure of correlations and entanglement,
e.g., nonseparability, and does not imply entanglement under
general conditions.
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