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Quasiparticles in an interacting system of charge and monochromatic field

P. Mati*

ELI-ALPS, ELI-Hu NKft, Dugonics tér 13, Szeged 6720, Hungary
(Received 18 November 2016; published 22 May 2017)

The spectrum of an exactly solvable nonrelativistic system of a charged particle interacting with a quantized
electromagnetic mode is studied with various polarizations. Quasiparticle dispersion relations can be derived
from the diagonalized Hamiltonian which, in the case of a linearly polarized field, indicates a bulk plasmon
excitation, whereas in the elliptically and circularly polarized cases the dispersions exhibit a global minimum and
show a singular behavior as the wave number tends to zero. These types of dispersion relations lead to modified
plasma frequencies and reflectivities, as well as to negative group velocities. It is shown that the zero-point energy
of the system implies a repulsive force between two parallel plates, which vanishes when the charge is set to zero.
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I. INTRODUCTION

Achieving exact solutions of a problem related to an
interacting physical system is rather rare (e.g., [1–7]). These
systems are usually simplifications of more complicated situa-
tions and are analyzed in order to capture the entire physics and
mathematics of the problem under consideration. The physical
relevance of the simplified models are limited; however,
sometimes it is highly valuable to trade the range of answerable
questions for a nonapproximated insight on specific properties
of the given problem. In this paper, a nonrelativistic system
consisting of a charged particle and a quantized mode of radia-
tion field is studied. Considering this interaction with only one
mode could seem to be an oversimplification; however, there
are physical situations where indeed an approximation of the
radiation field with one monochromatic component is well jus-
tified, e.g., in lasers. In fact, the same approximations are used
in the two fundamental models of quantum optics: the Jaynes-
Cummings and the Dicke models [6,7]. In the work of Bergou
and Varró [1], the corresponding Hamiltonian is exactly
diagonalized, which provides the nonperturbative description
of its spectrum: It describes a free charged particle and
a quasiexcitation. The relativistic treatment of the same
problem can be found in Ref. [2]. Varró also studied the
entangled photon-electron states of this system in Refs. [3,4].

In the present work it is shown that the dispersion relation of
the quasiexcitations qualitatively depends on the polarization
of the field. For linear polarization (LP) it is described by
a bulk plasmon dispersion, whereas for circular polarization
(CP) and elliptic polarization (EP) the dispersion relation has
a global minimum but is singular for vanishing wave number.
The analysis of the dispersion relations shows that the plasma
frequency can be different for various polarizations and the
group velocities for non-LP cases can acquire negative values.
Associated to the minimum of the dispersion relations, the
zero-point energy of the system can be found, which implies
a repulsive force between two parallel plates.

II. THE MODEL

The Hamiltonian of the simple interacting system of the
charged particle with the quantized mode has the following
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form:

H = 1

2m

(
p − e

c
A
)2

+ h̄ω

(
1

2
+ a†a

)
, (1)

where p, m, and e are the momentum, the mass, and the
charge of the particle; ω is the angular frequency of the
electromagnetic (EM) mode; c is the speed of light; and A
is the vector potential. Likewise in Ref. [1], the polarization
of the electromagnetic field is treated as a parameter of the
Hamiltonian and thus two essentially different cases can be
distinguished:

Ac = α(εa + ε∗a†), Al = αε(a + a†), (2)

where Ac and Al correspond to the CP and LP cases, re-
spectively. The parameter α = c

√
2πh̄/V ω, with quantization

volume V and Planck constant h̄. In the case of CP, the
polarization vectors are complex valued with the criteria
εε = ε∗ε∗ = 0 and εε∗ = 1, whereas ε is a real-valued unit
vector for the LP field.

In addition to these two, a third case can be introduced
corresponding to the EP field:

Ae = α(E a + E∗ a†), (3)

where E must be parametrized so that in certain limits it gives
the polarization vectors of the CP and LP cases, i.e., E(ξ→1)=
ε and E(ξ → 0) = ε with some parameter ξ ∈ [0,1]. In par-
ticular, the parametrization E =

√
1/(1 + ξ 2)(Re u + iξ Im u)

with u = (1,i) gives the right limits and its norm EE∗ = 1,
independently of ξ . In the following, indices like those in (2)
and (3) are suppressed for the sake of clarity, and the EP
case is understood unless stated otherwise. Even though in
the definition of the vector potential in (2) and (3) a dipole
approximation is used, all the results about the dispersion
relations can be generalized to plane waves for specific
circumstances, as shown in Appendix B. However, it is only
important when the properties that are related to the wave
propagation are considered.

A displacement and a Bogoliubov transformation of the
creation and annihilation operators are used for the diagonal-
ization of the Hamiltonian in (1) in order to eliminate the linear
and the quadratic terms in a and a† [1,2]. In the following, only
the final result, i.e., the diagonalized Hamiltonian, is presented.
The details of the computation can be found in Appendix A.
The EP case is the most general and is the focus of all the results
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presented but both the CP and the LP results can be obtained
by taking the appropriate limits in ξ . The Hamiltonian after
the transformation reads

H = p2

2m
+ h̄�

(
b†b + 1

2
− σ †σ

)
, (4)

where � plays the key role in the differences between the
spectra for the differently polarized modes:

� =
√

ω2 + ω2
p

(
1 + ξ 2

(ξ 2 + 1)2

ω2
p

ω2

)
, (5)

where ω2
p = 4πe2/mV was introduced as “plasma fre-

quency” [1,8]. The plasma oscillation usually is considered
a collective phenomenon, where a number of N charged parti-
cles define the given plasma frequency with ω2

p = 4πe2ne/m,
where ne = N/V is the electron density [9]. However, in the
present case N = 1. The operators, b and b†, are obtained
through a Bogoliubov transformation (Cθ = exp{ 1

2θ (a†a† +
aa)}), which is necessary in order to eliminate the quadratic
terms in a and a†:

b = C−1
θ bCθ = cosh θa + sinh θa†,

b† = C−1
θ b†Cθ = cosh θa† + sinh θa. (6)

The argument of the hyperbolic functions is defined through
the relation

tanh 2θ = e2α2

mc2

1

h̄ω + e2α2

mc2

1 − ξ 2

1 + ξ 2
. (7)

The transformation in (6) for the special case of the CP (ξ → 1)
coincides with the identity transformation. The transformation
Cθ is the squeeze operator that generates a squeezed state
from the vacuum (in the original Fock space) [10] which
will be the vacuum state in the transformed Fock space.
There is an additional shift to the Bogoliubov-transformed
number operator (b†b = n̂b) in (4), which consists of the
displacement transformation parameter (D−1

σ b(†)Dσ = b(†) +
σ (†)) that performs a shift on the raising and lowering operators:

σ = cosh 2θ

h̄ω + e2α2

mc2

αe

mc

p√
(1 + ξ 2)

[e−θ Re u − eθ iξ Im u]. (8)

The operator Dσ = exp(σb† − σ †b) generates a coherent state
from the vacuum |0〉b [1,11]. Acting with both of the operators
on the vacuum of the original Fock space will define a coherent
squeezed state.

In the following, the stationary Schrödinger equation is
considered because the spectrum is the focus of the present
study. It reads

H	p,n = Ep,n	p,n, (9)

with the energy levels

Ep,n = p2

2m
+ h̄�

(
nb + 1

2
− |σ |2

)
, (10)

and the eigenstates having the form of

	p,n = |p〉 ⊗ Dσ |n〉b, (11)

which is the direct product of the momentum eigenstate of the
free charge and the shifted and Bogoliubov-transformed Fock

state of the photons [1]. Any state vector of the transformed
Fock space can be described by a superposition of state
vectors from the original Fock space and thus the two spaces
can be considered to be equivalent. The solution of the
time-dependent Schrödinger equation can be found in Ref. [1].

III. QUASIPARTICLE EXCITATIONS

Quasiparticles are collective excitations of a given inter-
acting system [12]. Inside plasmas or metals, oscillation of
the electron density can produce plasma oscillations. The
quanta of such oscillations are called plasmons [9] and it
was shown that for a system of free electron gas, interacting
with a coherent LP electromagnetic field can produce such a
quasimode [13]. However, in the current case, only a single
charged particle is present; therefore, the charge density is
set as ne = 1/V . On the other hand, (1) can be modified so
that it describes an interaction of N point charges with the
electromagnetic field:

H = 1

2m

N∑
i=1

(
pi − e

c
A
)2

+ h̄ω

(
1

2
+ a†a

)
. (12)

Such a Hamiltonian describes a plasma where the electron-
electron interactions were neglected due to the Debye screen-
ing, and, further assuming low velocities for the electrons, the
effects of the electron-ion and electron-atom collisions are also
absent [13]. By using the same method as above, the Hamil-
tonian can be diagonalized with the following modifications
in (4): p(2) → ∑

i p(2)
i and e2 → Ne2. Apart from these differ-

ences, the shape of the Hamiltonian remains the same as in the
single-electron case and the eigenstates are the direct product
of N free-electron momentum eigenstates and the displaced
photon number state with the appropriate modifications in the
shift parameter, i.e., σ (p,e2) → σ (

∑
i pi ,Ne2). In this way,

ωp can be truly considered the plasma frequency with charge
density of ne = N/V . The remaining part of the Hamiltonian
describes a quantum oscillator with the quasimode �.

A. Dispersion relations

By taking the limit p → 0 the system is governed only by
the quantum oscillator with frequency �. In fact, this limit
can be thought of as a uniformly distributed charge in a cube
of volume V , due to the uncertainty principle in quantum
mechanics. In the case of N charges, all pi can be taken to
zero, which smears the net charge of Ne in the volume V .
Hence, in this limit the Hamiltonian represents the behavior
of EM waves in a plasma where the negative net charge is
uniformly distributed. The corresponding dispersion relation
can be obtained by using ω = ck, where k = |k| is the wave
number, i.e., the free photon case. The dispersion relation thus
reads

� =
√

c2k2 + ω2
p

(
1 + ξ 2

(ξ 2 + 1)2

ω2
p

c2k2

)
. (13)

This expression takes the form for CP and LP, respectively,

�c = ck

(
1 + 1

2

ω2
p

c2k2

)
and �l =

√
c2k2 + ω2

p. (14)
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FIG. 1. Dispersion relations of the quasimode � for various
polarizations (13). The frequency and the wave number are rescaled
by ωp and kp , respectively. The black dots represent the minimum of
the functions. The dispersion of the free photon is shown for reference.

It is clear that �l describes a bulk plasmon (or bulk plasmon
polariton) [9,13], with the plasma frequency limk→0 �l = ωp.
More precisely, �l is the dispersion of a transverse electro-
magnetic wave in a plasma, in contrast to the longitudinal
wave which has a constant dispersion ωp. However, for � in
general, i.e., for 0 < ξ � 1, the dispersion relation becomes
more structured, since besides the constant ωp, it contains a
singular term ∝ 1/(ck), too. It is not hard to see that � restores
the free photon dispersion at the V → ∞ limit, as ωp vanishes.
All the functions defined in (13) exhibit a global minimum at
k∗ = kp

√
ξ/(1 + ξ 2), where kp = ωp/c.

The dispersion relations are shown in Fig. 1. The only
function from the dispersion relations that has the minimum
at k∗ = 0 is for LP and �l(0) = ωp. In general, �(k∗) =
�∗ = ωp (1 + ξ )/

√
1 + ξ 2 at the minimum. ωp is the quantity

that determines the frequency below which light waves are
fully reflected in the case of plasmas or metals [9]. Indeed,
considering �l and expressing k, the condition of the solutions
for k � 0 is �l � ωp. Otherwise the wave number takes
imaginary values which cannot be associated to any traveling
wave. A similar analysis can also be performed for the other
polarizations. In general, expressing the wave number from
the dispersion relation reads

k± = 1√
2c

√√√√
�2 − ω2

p ±
√(

�2 − ω2
p

)2 − 4ξ 2ω4
p

(ξ 2 + 1)2
. (15)

Except for the LP, where this relation reduces to k=1/c
√

�2−ω2
p,

two distinct branches define the wave number, denoted by k+
and k−. Strictly speaking, (15) with an overall negative sign
also gives the right dispersion in (13); however, it would define
negative wave numbers, which is physically meaningless. In
order to discuss properties that are related to wave propagation
the dipole approximation of the vector potential might not
be satisfactory. However, as mentioned earlier, the same
dispersion relation can be derived for the plane-wave vector
potential in the p → 0 limit (see Appendix B), in a similar
manner as was done in Ref. [2]. Thus, by considering a plane
wave, the positivity of the real part of the wave number

indicates a propagating wave in the medium. However, as
soon as the imaginary part develops a nonzero value, a
damping of the oscillatory wave occurs, corresponding to a
finite penetration depth. The real and the imaginary parts
of the wave number for various polarizations are shown in
Figs. 2(a) and 2(b), respectively. It is clear from the figures
that the above statement about the total reflection is only
true for the LP case (dashed red line): For � < �∗ = ωp

the real part of the wave number vanishes and the imaginary
part becomes finite. For all the other cases the real part
remains finite even for values � < �∗, and it only disappears
at a distinguished value �̃ = ωp (1 − ξ )/

√
ξ 2 + 1, where,

from (15), k±(�̃) = kp

√
−ξ/(ξ 2 + 1). Thus, for frequencies

� < �̃ the wave number becomes imaginary just like for
the LP, and hence a complete reflection of EM waves is
present. Therefore, �̃ can be considered a modified plasma
frequency for polarizations different from LP. In other words,
the propagation of EM waves in a plasma highly depends on
its polarization. The following statement can be formulated:
An EM wave in a plasma is (i) a traveling wave for frequencies
� � �∗, (ii) a decaying traveling wave for �̃ < � < �∗,
and (iii) a decaying standing wave for � � �̃ (evanescent
wave).

Figure 2(a) shows that for Im k besides the two branches
that develop for � < �∗, the k− branch has a jump disconti-
nuity at � = �̃ from Im k− = −kp

√
ξ/(1 + ξ 2) to Im k− =

kp

√
ξ/(1 + ξ 2), whereas the k+ branch has a cusp. The

two branches then bifurcate again at this point and they
terminate at � = 0, where k+(0) = kpξ/

√
1 + ξ 2 and k−(0) =

kp/
√

1 + ξ 2. The CP case behaves somewhat differently. The
frequency where the imaginary part develops a finite value is at
�∗

c = √
2ωp, and that where the real part vanishes is at �̃c = 0.

This means that for CP there is never a total reflection of the
EM waves; however, a damping still occurs as the imaginary
part of the wave number is nonzero for frequencies below√

2ωp. For the CP case there is only one bifurcation of the
imaginary part of the wave number: The two branches depart
from � = √

2ωp and continue all the way to � = 0, where
lim�→0 Im k± = ±kp/

√
2.

In order to give a more detailed insight in the reflectivity
property of such a system, the dielectric function (or relative
permittivity) must be given:

ζ± = 1

2

⎡
⎢⎣1 ± ω2

p

�2

⎛
⎜⎝
√√√√(

1 − �2

ω2
p

)2

− 4ξ 2

(ξ 2 + 1)2
∓ 1

⎞
⎟⎠
⎤
⎥⎦.

(16)

The “±” sign corresponds to the two branches in Eq. (15).
By taking ξ → 0 (LP) the well-known result for the plasma
dielectric function is obtained: ζ+ = 1 − ω2

p/�2 for � � ωp

and ζ− = 1 − ω2
p/�2 for � < ωp, hence ζl = ζ+ ∪ ζ− =

1 − ω2
p/�2 [9]. The refractive index is η = √

ζ , which can
be used to compute the normal incidence reflectivity:

R =
∣∣∣∣η − 1

η + 1

∣∣∣∣
2

. (17)
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FIG. 2. The (a) real and (b) imaginary parts of the wave number k for various polarizations. In both panels the k+ and k− branches are
shown from Eq. (15). The black dots indicate the value where the wave number develops an imaginary part (at � = �∗). The black triangles
show where the real part of the wave number vanishes and hence k becomes purely imaginary (at � = �̃).

This function is shown in Fig. 3 for various polarizations. The
LP case (dashed red line) shows the reflectivity associated to
the well-known plasma relative permittivity: For frequencies
� � ωp the EM waves are reflected completely, i.e., R = 1.
This is in accordance with what Eq. (15) predicts for the
LP case. On the other hand, for all the other polarizations
(0 < ξ � 1) the reflectivity function behaves differently: As it
could be extracted from Eq. (15), transmission of the EM
wave still occurs below ωp and only at �̃ does it reflect
completely. Another interesting behavior can be identified
at �∗: For frequencies � > �∗ the reflectivity function
bifurcates similarly to Fig. 2(a). In fact, this clearly occurs
as a consequence of the degeneracy of the frequency � in the
wave number. It is apparent that the waves corresponding to
the k− branch have a higher reflectivity, and as � → ∞ they
reflect completely, whereas the reflectivity of the k+ waves
falls off rapidly and tends to zero as � → ∞.

EP, R +

EP, R −

CP, R +

CP, R −

LP

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

1.0

/ p

R

FIG. 3. Reflectivity of EM waves in plasma. The well-known
curve is obtained for the LP case. For all the other polarizations the
complete reflection is at �̃ and the curves bifurcate at �∗, likewise
in Fig. 2(a).

B. Phase and group velocities

It is instructive to study the phase and group velocities of the
corresponding quasimode. The former is obtained by dividing
the dispersion by the wave number:

vph = �

k
= c

√
1 + k2

p

k2
+ ξ 2

(ξ 2 + 1)2

k4
p

k4
. (18)

It is apparent that the phase velocity is always greater than
the speed of light since c has a factor which is greater than
1 independently of k and ξ . In particular, at the minimum,
vc

ph(k∗) = 2c (for CP) and vl
ph(k∗) = ∞ (for LP). The latter

is characteristic of the longitudinal plasma oscillation. The
group velocity is defined as the wave-number derivative of the
dispersion relation:

vg = ∂�

∂k
= c

1 − ξ 2

(ξ 2+1)2

k4
p

k4√
1 + k2

p

k2 + ξ 2

(ξ 2+1)2

k4
p

k4

. (19)

At the minimum of the dispersion relation the group
velocity clearly vanishes, i.e., vg(k∗) = 0, describing a lo-
calized oscillation for all polarizations. A more interesting
observation can be made for non-LP cases below their k∗ =
kp

√
ξ/(1 + ξ 2) minimum: As the dispersion relation is a

decreasing function of the wave number in this region, the
group velocity exhibits negative values. Moreover, its value
even can exceed the speed of light in absolute value. Note that
in this situation both the group and the phase velocities are
larger than the light speed, but their orientation is opposite. In
particular for the CP, this threshold is k = kp/2, and for EP it
is k = kp ξ 2/3

√
−ξ 2/3 + ξ 4/3 + 1/(ξ 2 + 1). Even though this

seems to violate causality, in fact, the group velocity cannot
be identified with the propagation speed of the information
when the dispersion is anomalous [14,15]. Experimental
observations of “fast” and backward-propagating light pulses
are reported in Ref. [16]. For the LP no negative group velocity
is observed, since the numerator in (19) cannot be negative for
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FIG. 4. The phase and group velocities above and below light
speed (solid black line), respectively. The EP cases are in the shaded
area, and likewise for the gray line for which ξ = 0.2, bounded by
the CP and LP velocities.

ξ = 0. The phase and group velocities as a function of the
wave number for various polarizations are shown in Fig. 4.

IV. ENERGY SPECTRA AND REPULSIVE FORCE

In the following, only the energy spectrum of the CP and
LP cases are analyzed in full detail. Evaluating (10) for these
two separate cases,

Ec = 2p2ω2 + p2
zω

2
p

2m
(
2ω2 + ω2

p

) + h̄ω

(
1 + ω2

p

2ω2

)(
1

2
+ na

)
,

El = p2

2m

(
1 − ω2

p cos2(φ)

ω2 + ω2
p

)
+ h̄

√
ω2 + ω2

p

(
1

2
+ nb

)
, (20)

where φ in El is the angle between the momentum p and
the polarization vector ε. Like the dispersion relation �c, the
energy spectrum Ec also diverges as ω → 0—a characteristic
for all non-LP cases. For every fixed p and na value a minimum
of the energy can be found with respect to ω which for

p → 0 with na = 0 gives E∗
c = h̄�∗

c/2 = h̄ωp/
√

2. This can
be considered the lowest value of the zero-point energy of
the system. In general E∗ = h̄ωp(1 + ξ )/2

√
1 + ξ 2, which of

course reduces to E∗
l = h̄ωp/2 in the case of the LP light.

Looking at El in (20), an interesting case can be observed
when p is parallel with the polarization vector ε. Considering
this situation with ω → 0 the first term of El yields zero. This
means that independently of the momentum p, the energy of
the system is E∗

l = h̄ωp/2. The energy spectrum as a function
of the momentum p = |p| and ω for the CP and LP cases
are shown in Fig. 5. In both panels the excitation number
na(b) = 0; however, the character of the plot would have the
same features for finite na(b) values, too. For the non-LP cases,
besides the singular nature, the degeneracy is also transferred
to the energy spectrum from the dispersion relation, meaning
that two distinct frequencies ω±(= ck±) are associated to a
particular energy level above the corresponding minimum.

The presence of the zero-point energy is the most significant
difference between the quantized system presented above
and its classical equivalent—where the operators become
c-numbers and hence the Hamiltonian becomes classical.
The zero-point energy minimum can be rewritten as E∗ =
κh̄e

√
π/mV , with κ ≡ (1 + ξ )/

√
1 + ξ 2. From this form it

is clear that the finite E∗ is a consequence of the finite
quantization volume; i.e., it vanishes in the V → ∞ limit,
and the zero-point energy becomes the usual expression
of the free quantum harmonic oscillator, i.e., E = h̄ω/2.
There is another well-known finite-volume phenomenon, the
Casimir effect, that deals with the zero-point energy [17–
19]. In contradistinction to the current monochromatic case,
however, in order to obtain the Casimir effect, all the modes
of the EM field must be summed, resulting in a divergent
series ECas = ∑

k h̄ωk/2, which can be evaluated by using
appropriate regularization schemes (see, e.g., Ref. [19]). In this
case the zero-point energy implies an attractive force between
two parallel perfectly conductive plates with a surface area A.
The result was derived first by Casimir [17]; he obtained the
force per unit area FCas ≡ FCas/A = −h̄cπ2/240 d4, where d

is the distance between the plates. The same lines of thought
can be applied to the present model, where the finite-volume
dependence is carried by the plasma frequency ωp(V ), and

FIG. 5. The energy spectrum of (a) the CP and (b) the LP case in a (p,ω) plot, with the oscillator excitation number set to na(b) = 0. The
momentum is chosen so that in Eq. (20) (a) pz = 0 in Ec and (b) p is parallel to ε and hence φ = 0 in El . The most apparent difference between
the two plot is in the ω → 0 limit: (a) exhibiting a singular behavior and (b) having a finite value El = h̄ωp/2. The axes have been rescaled
appropriately for clarity.
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the volume of the box (in which a total number of e charge
is smeared uniformly) is defined with the parameters of the
two-plate layout (V = A d), likewise in the Casimir effect
experiment. The force between the two plates is defined as the
derivative of the negative energy with respect to their distance,
i.e., F = −∂E/∂d. Unlike in the case of the Casimir effect,
the current force is frequency dependent due to the lack of
mode summation. However, the minimum of the zero-point
energy can be considered as a distinguished point and hence
the force for this special case is presented here. The general
case with frequency dependence, as well its derivation, can be
found in Appendix C. The force implied by the minimum of
the zero-point energy reads

F ∗ = κ

2

√
πRB

A
e2

d3/2
, F∗ = κ

2

√
πRB

A3/2

e2

d3/2
, (21)

where RB = h̄2/me2 was introduced as the Bohr radius and
κ ∈ [1,

√
2]. F ∗ represents a repulsive force, scaling with

the distance as ∝ d−3/2. Moreover, the force per unit area
F∗, unlike FCas, is not independent of the surface area: The
repulsion of the plates increases as the surfaces decrease.
Tuning the characteristic length scale of the system to the order
of the Bohr radius, i.e., d ∼ √

A ∼ RB , the force behaves as
F ∗ ∝ e2/R2

B .
Alternatively, it is possible to express the force by using the

plasma frequency:

F ∗ = F∗A = κ

4

h̄ ωp(d,A)

d
≈ κ

4

h̄ ωp

d
. (22)

However, when using this representation, it must be borne in
mind that the plasma frequency itself depends on the distance
and the surface area, which is indicated in the argument
ωp(d,A). The simplified scaling of F ∗ ∝ d−1 is valid only
when the �d change in the distance makes a negligible
correction to the plasma frequency, i.e., ωp(d + �d) ≈ ωp.
It is apparent that the implied force depends on the charge,
too. In fact, no such repulsive force would be present if the
charge vanished, since E∗ → 0 as e → 0. On the other hand,
the Casimir force seemingly does not depend on the charge
at all. However, Jaffe showed the contrary in Ref. [20]: In
his argument the Casimir force originates from the interaction
between the EM modes and the conducting plates; thus, it can
be shown that it also vanishes as e → 0. In that sense, this
property agrees with the findings about the present repulsive
force. By replacing the vacuum with appropriate dielectric
materials, Lifshitz et al. [21] showed that a repulsive type of
Casimir force can be achieved. This effect was experimentally
verified by Munday et al. [22].

The above results equally hold the for Ne charges and n

(quasi)photons (i.e., nonvacuum states) that could enhance the
magnitude of the force:

F ∗ = κ

√
πRB

A
Ne2

d3/2

(
1

2
+ n

)
. (23)

It could be of interest to measure such a force in an appropriate
experimental setup.

V. CONCLUSION

In summary, a nonrelativistic quantum-mechanical model
has been considered consisting of a charged particle interacting
with one electromagnetic radiation mode. The diagonalization
of the Hamiltonian leads to plasmonlike quasiparticle excita-
tions from which modified plasma frequencies (�̃ � ωp) can
be found for the non-LP cases. The reflectivity function also
shows a strong dependence on the polarization of the EM wave:
total reflection can only be found for frequencies � < �̃. For
instance, in the case of CP, there is no complete reflection of
the wave at any finite frequency since �̃c = 0. The phase and
group velocities are also determined for different polarizations.
It is found that the phase velocity of the quasimodes always
exceeds the light speed, independently of the polarization. The
group velocities vanish at the position of the minimum of the
dispersions which for the LP coincides with zero wave number.
For non-LP cases, the group velocities can take negative values
and even exceed light speed in absolute value. The zero-point
energy of the system is derived which implies a repulsive force
between two parallel plates. The force scales as ∝ 1/d with
the distance between the plates when the change in the plasma
frequency, due to the volume increase, is negligible. If the
change in the plasma frequency is considerable with respect
to the volume growth, the force, at the minimum of zero-point
energy, scales as ∝ d−3/2.
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APPENDIX A: DIAGONALIZATION OF THE
HAMILTONIAN FOR VARIOUS POLARIZATIONS

In the following the details of the diagonalization of the
Hamiltonian

H = 1

2m

(
p − e

c
A
)2

+ h̄ω

(
1

2
+ a†a

)
(A1)

are presented for an elliptically polarized field along the lines
applied in Ref. [1] for the circularly polarized and linearly
polarized cases. Here

Ae = α(E a + E∗ a†), (A2)

where E must be parametrized so that in certain limits it gives
the polarization vectors of the CP and LP cases, i.e., E(ξ→1)=
ε and E(ξ → 0) = ε with some parameter ξ ∈ [0,1].
In particular, the parametrization E =

√
1/(1 + ξ 2)( Re u +

iξ Im u) with u = (1,i) gives the right limits and its norm
EE∗ = 1, independently of ξ . The Hamiltonian will have the
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following form after substituting (A2):

H = p2

2m
+ h̄ω

(
1

2
+ a†a

)
− eα

mc
p(Ea + E∗a†) + e2α2

2mc2
(Ea + E∗a†)2

= p2

2m
− eα

mc
p(Ea + E∗a†) +

[
h̄ω + e2α2

mc2

](
1

2
+ a†a

)
+ e2α2

2mc2

1 − ξ 2

1 + ξ 2
[a2 + (a†)2]. (A3)

The p-independent part of the Hamiltonian can be rewritten in terms of the operators b and b† obtained by Bogoliubov
transformation:

b = cosh θa + sinh θa†, b† = cosh θa† + sinh θa. (A4)

The Hamiltonian reads

H = p2

2m
− eα

mc
p(Ea + E∗a†) +

[
h̄ω + e2α2

mc2

][
− sinh 2θ

2
(b2 + (b†)2) + cosh 2θb†b + sinh2 θ + 1

2

]

+ e2α2

2mc2

1 − ξ 2

1 + ξ 2
[cosh 2θ (b2 + (b†)2) − sinh 2θ (2b†b + 1)]. (A5)

In order to eliminate the quadratic terms in b(†) the following
definition for θ is required:

tanh 2θ = e2α2

mc2

1 − ξ 2

1 + ξ 2

1

h̄ω + e2α2

mc2

. (A6)

Concerning the CP and LP the following expressions for θ can
be found:

tanh 2θ
∣∣
ξ=1 = 0, tanh 2θ

∣∣
ξ=0 = e2α2

mc2

1

h̄ω + e2α2

mc2

. (A7)

For the CP case [the first equation in (A7)], it also means
that the Bogoliubov transformation is trivial, i.e., b(†) = a(†).
Thus, what remained from the Hamiltonian is the following
expression:

H = p2

2m
− eα

mc
p(Ea + E∗a†)

+
[
h̄ω + e2α2

mc2

][
cosh 2θb†b + sinh2 θ + 1

2

]

+ e2α2

2mc2

1 − ξ 2

1 + ξ 2
[− sinh 2θ (2b†b + 1)]. (A8)

After some algebra and using the hyperbolic function identi-
ties,

H = p2

2m
− eα

mc
p(Ea + E∗a†)

+ e2α2

mc2

1 − ξ 2

1 + ξ 2

1

sinh 2θ

[
b†b + 1

2

]
. (A9)

As the quadratic terms have been eliminated, the focus can be
shifted to the linear terms, which also contain the momentum
dependence.

The second term in the Hamiltonian that consists of
linear terms in the creation and annihilation operators can

be rewritten in terms of b and b†, giving

αe

mc

p√
(1 + ξ 2)

[(Re u + iξ Im u)a + (Re u − iξ Im u)a†]

= αe

mc

p√
(1 + ξ 2)

[e−θ (b + b†) Re u + eθ (b − b†)iξ Im u].

(A10)

After this transformation the Hamiltonian reads

H = p2

2m
− αe

mc

p√
(1 + ξ 2)

× [e−θ (b + b†) Re u + eθ (b − b†)iξ Im u]

+ e2α2

mc2

1 − ξ 2

1 + ξ 2

1

sinh 2θ

[
b†b + 1

2

]
. (A11)

For the elimination of the linear terms the displacement
operator is used:

Dσ = exp(σb† − σ †b), (A12)

with σ being arbitrary at this point, but requiring

[σ,σ (†)] = [σ,b(†)] = [σ,p] = 0. (A13)

Acting on b and b† adds a shift to the operator,

D−1
σ b(†)Dσ = b(†) + σ (†). (A14)

The transformation must also be unitary:

D−1
σ = D†

σ , (A15)

hence

D−1
σ b†bDσ = b†b + σ †b + b†σ + σ †σ. (A16)
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Applying the transformation to the Hamiltonian yields

H = p2

2m
+ e2α2

mc2

1−ξ 2

1+ξ 2

sinh 2θ

[
b†b + 1

2
+ σ †σ

]
+ e2α2

mc2

1−ξ 2

1+ξ 2

sinh 2θ
σ †b + e2α2

mc2

1−ξ 2

1+ξ 2

sinh 2θ
b†σ

− αe

mc

p√
(1 + ξ 2)

[e−θ Re u + eθ iξ Im u](b + σ ) − αe

mc

p√
(1 + ξ 2)

[e−θ Re u − eθ iξ Im u](b† + σ †). (A17)

At this point, the parameter σ must be defined so that the linear
terms cancel out. Therefore, the following relationship must
hold:

e2α2

mc2

1−ξ 2

1+ξ 2

sinh 2θ
σ = αe

mc

p√
(1 + ξ 2)

[e−θ Re u − eθ iξ Im u].

(A18)

This sets σ to

σ = c

eα

sinh 2θ

1−ξ 2

1+ξ 2

p√
(1 + ξ 2)

[e−θ Re u − eθ iξ Im u], (A19)

or equivalently

σ = cosh 2θ

h̄ω + e2α2

mc2

αe

mc

p√
(1 + ξ 2)

[e−θ Re u−eθ iξ Im u]. (A20)

The parameter σ for the CP and LP cases can be obtained by
taking the limits ξ → 1 and ξ → 0, respectively:

lim
ξ→1

σ = αe

mc
pε∗ 1

h̄�c

= σc,

lim
ξ→0

σ = αe

mc
pee−θ 1

h̄�l

= σl. (A21)

Here, the effective frequencies are defined for the two separate
cases:

�c = ω

(
1 + 1

2

ω2
p

ω2

)
, �l =

√
ω2 + ω2

p, (A22)

and the polarization vectors are ε = Re u, ε = Re u + i Im u,
and ω2

p = 4πe2/mV . The Hamiltonian now approaches its
final form:

H = p2

2m
+ e2α2

mc2

1−ξ 2

1+ξ 2

sinh 2θ

[
b†b + 1

2
+ σ †σ

]

− αe

mc

p√
(1 + ξ 2)

[e−θ Re u + eθ iξ Im u]σ

− αe

mc

p√
(1 + ξ 2)

[e−θ Re u − eθ iξ Im u]σ †. (A23)

The third and fourth terms can be rewritten by using the
definition of σ in (A19),

H = p2

2m
+ e2α2

mc2

1−ξ 2

1+ξ 2

sinh 2θ

[
b†b + 1

2
+ σ †σ

]

− 2
e2α2

mc2

1−ξ 2

1+ξ 2

sinh 2θ
σ †σ

= p2

2m
+ e2α2

mc2

1−ξ 2

1+ξ 2

sinh 2θ

[
b†b + 1

2
− σ †σ

]
, (A24)

or equivalently, by using the relation in (A6),

H = p2

2m
+ h̄ω + e2α2

mc2

cosh 2θ

[
b†b + 1

2
− σ †σ

]
. (A25)

After some algebra the following expression for the effective
angular frequency can be found:

�(ξ ) =
√

ω2 + ω2
p

(
1 + ξ 2

(ξ 2 + 1)2

ω2
p

ω2

)
, (A26)

where ω2
p = 4πe2/mV . Hence the Hamiltonian reads

H = p2

2m
+ h̄�(ξ )

[
b†b + 1

2
− σ †σ

]
. (A27)

(Here H is used for the final form of the transformed
Hamiltonian in order to distinguish it from the original H .)
Taking the limits ξ → 1 and ξ → 0, the Hamiltonians for the
CP and LP cases are obtained, with �c and �l , respectively.
These coincide with the results in [1].

APPENDIX B: EXTENSION TO PLANE WAVES

In the following, it is shown that by using an appropriate
unitary transformation, as applied in Ref. [2], the Hamiltonian
with a plane-wave vector potential becomes equivalent to the
one with a dipole approximation up to a term of order O(h̄2)
when the limit p → 0 is taken. The vector potential is defined
as

Ae = α(E aei(kr−ωt) + E∗ a†e−i(kr−ωt)). (B1)

In this case the Hamiltonian in (1) becomes

Hpw = p2

2m
− eα

mc
p(Eaei(kr−ωt) + E∗a†e−i(kr−ωt))

+
[
h̄ω + e2α2

mc2

](
1

2
+ a†a

)

+ e2α2

2mc2

1 − ξ 2

1 + ξ 2
[a2e2 i(kr−ωt) + (a†)2e−2 i(kr−ωt)].

(B2)

In order to eliminate the exponential position dependence, the
following unitary transformation is used:

U = ei(kr−ωt)(a†a+ 1
2 ). (B3)

Acting with the transformation U on H results in

UHpwU † =U
p2

2m
U † − eα

mc
Up(EaU †ei(kr−ωt)

+E∗a†U †e−i(kr−ωt)) +
[
h̄ω+ e2α2

mc2

](
1

2
+a†a

)
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+ e2α2

2mc2

1 − ξ 2

1 + ξ 2
[Ua2U †e2 i(kr−ωt)

+U (a†)2U †e−2 i(kr−ωt)]. (B4)

The term containing the number operator a†a transforms
trivially. All the other terms are considered separately in
the following. In order to compute the action of U the
Baker-Hausdorff-Campbell identity is used, i.e.,

eXYe−X = Y + [X,Y ] + 1
2 [X,[X,Y ]] + · · · , (B5)

where X and Y are operators. Applying the lemma first to the
kinetic term gives

Up2U † = p2 + ik
(

a†a + 1

2

)
[r,p2]

+ (ik)2

2

(
a†a + 1

2

)2

[r,[r,p2]] + · · · . (B6)

The commutators give [r,p2] = 2ih̄p and [r[r,p2]] = (ih̄)2.
The higher-order terms are identically zeros since the second
commutator results in a c-number. Thus,

U
p2

2m
U † =

[
p2

2m
− h̄kp

m

(
a†a + 1

2

)
+ h̄2k2

2m

(
a†a + 1

2

)2
]

= 1

2m

[
p − h̄k

(
a†a + 1

2

)]2

. (B7)

The term proportional to UpEaU † can be rewritten as
UpU †EUaU †; hence, the transformation for p and a can be
considered separately:

UpU † = p + ik
(
a†a + 1

2

)
[r,p] = p − h̄k

(
a†a + 1

2

)
. (B8)

Higher-order terms vanish identically since [r,p] gives already
a c-number. In fact the product with the polarization is

UpU †E = pE, (B9)

since the wave-number vector is orthogonal to the polarization,
i.e., kE = 0. Hence UpEaU † = pEUaU †.

The remaining terms contain a(†) in linear and quadratic
order. Their transformation is discussed in the following.

The transformation of a reads

UaU † = a + i(kr − ωt)[a†a,a]

+ [i(kr − ωt)]2

2
[a†a,[a†a,a]] + · · · . (B10)

Since [a†a,a] = −a, by using induction it is not hard to see
that the nth term is (−1)na. Thus, the expression in (B10)
collapses to

UaU † = a

{
1 + [−i(kr − ωt)] + [−i(kr − ωt)]2

2
+ · · ·

}

= ae−i(kr−ωt). (B11)

The two exponential factors in (B11) and (B4) cancel out each
other, leaving only the operator a behind. Using the same
procedure for a† gives

Ua†U † = a† + i(kr − ωt)[a†a,a†]

+ [i(kr − ωt)]2

2
[a†a,[a†a,a†]] + · · ·

= a†ei(kr−ωt). (B12)

The commutator in this case was [a†a,a†] = a†, and for the
nth term a†. Again, the exponential factors in (B12) and (B4)
cancel out each other.

Regarding the quadratic terms in a(†), in these cases the
exponential factors of e±2i(kr−ωt) must be eliminated:

Ua2U † = a2 + i(kr − ωt)[a†a,a2]

+ [i(kr − ωt)]2

2
[a†a,[a†a,a2]] + · · ·

U (a†)2U † = (a†)2 + i(kr − ωt)[a†a,(a†)2]

+ [i(kr − ωt)]2

2
[a†a,[a†a,(a†)2]] + · · · .

(B13)

And the commutators are

[a†a,a2] = ([a†,a]a + a[a†,a])a = −2a2,

[a†a,(a†)2] = a†(a†[a,a†] + [a,a†]a†) = 2(a†)2. (B14)

It is not hard to see that the nth term gives (−2)na2 and 2n(a†)
2
,

respectively. Substituting these findings back to the sum gives

Ua2U † = a2

{
1 + [−2i(kr − ωt)] + [−2i(kr − ωt)]2

2
+ · · ·

}
= a2e−2i(kr−ωt),

U (a†)2U † = (a†)2

{
1 + [2i(kr − ωt)] + [2i(kr − ωt)]2

2
+ · · ·

}
= (a†)2e2i(kr−ωt). (B15)

The exponential factors in (B15) and (B4), like for the linear terms, cancel out each other.
Hence, collecting all the terms together, the transformed Hamiltonian reads

UHpwU † = 1

2m

[
p − h̄k

(
a†a + 1

2

)]2

− eα

mc
p(Ea + E∗a†) +

[
h̄ω + e2α2

mc2

](
1

2
+ a†a

)
+ e2α2

2mc2

1 − ξ 2

1 + ξ 2
[a2 + (a†)2]. (B16)
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It is clear that the transformation canceled all the exponentials; however, the kinetic term of the charge has been modified,
too. It is possible to rearrange the Hamiltonian in the following way (n̂ = a†a):

UHpwU † = p2

2m
− eα

mc
p(Ea + E∗a†) +

[
h̄ω + e2α2

mc2
− h̄kp

m
+ h̄2k2

2m

(
n̂ + 1

2

)](
n̂ + 1

2

)
+ e2α2

2mc2

1 − ξ 2

1 + ξ 2
[a2 + (a†)2]. (B17)

Comparing (B17) to (A3), two new terms appear in the
coefficient of (n̂ + 1/2) in (B17), namely,

− h̄kp
m

and
h̄2k2

2m

(
n̂ + 1

2

)
. (B18)

These two terms clearly modify the dispersion relation that was
found in (13). However, the detailed analysis of this modified
dispersion is beyond the scope of the present paper. On the
other hand, there are circumstances where (13) remains valid.
The term ∝ kp vanishes if k is perpendicular to p or when the
p → 0 limit is taken. The latter scenario describes a system
where the EM mode interacts with a charge that is uniformly
distributed in the volume V . This limit is the subject of the
analysis performed in Sec. III. The remaining Hamiltonian
reads

lim
p→0

UHpwU † =
[
h̄ω + e2α2

mc2
+ h̄2k2

2m

(
n̂ + 1

2

)](
n̂ + 1

2

)

+ e2α2

2mc2

1 − ξ 2

1 + ξ 2
[a2 + (a†)2]. (B19)

The second new term is of O(h̄2); hence this can be considered
negligible compared to the O(h̄) terms for not very large wave
number and photon number, for which it could dominate.
Altogether the Hamiltonian is

lim
p→0

UHpwU † =
[
h̄ω + e2α2

mc2
+ O(h̄2)

](
n̂ + 1

2

)

+ e2α2

2mc2

1 − ξ 2

1 + ξ 2
[a2 + (a†)2], (B20)

which reproduces limp→0 H in (A3) up to a negligible term
of O(h̄2). This shows that all the conclusions drawn for
the dispersion relation obtained from the Hamiltonian with
dipole approximation remains valid for the plane-wave vector
potential, too, under the condition that p → 0 and for not too
large wave number and photon number. It is interesting to note
that the zero-momentum limit and the action of U are not
interchangeable:

U lim
p→0

HpwU † = lim
p→0

H,

lim
p→0

UHpwU † = lim
p→0

H + O(h̄2) ≈ lim
p→0

H. (B21)

In the first case the equality is exact, whereas in the second
case it is only approximate.

APPENDIX C: DERIVATION OF THE REPULSIVE FORCE
BETWEEN TWO PARALLEL PLATES

The vacuum energy for the general EP case reads as

E = 1

2
h̄

√
ω2 + ω2

p

(
1 + ξ 2

(ξ 2 + 1)2

ω2
p

ω2

)
, (C1)

which simplifies to the second term in Ec(na = 0) and
El(nb = 0) in (20) when taking the limits ξ →1 and ξ →0,
respectively. The plasma frequency ωp encapsulates the finite-
volume dependence

ωp = 2
√

πe√
mA d

, (C2)

where A is the surface area of the two parallel plates and d

is their distance from each other. The force between the two
plates is computed as

F = −∂E

∂d
. (C3)

The only term that depends on the distance is the plasma
frequency. Its derivative reads

∂ ωp

∂ d
= − 2

√
πe√

mA
1

d3/2
= −1

2

ωp

d
. (C4)

Thus, the force by using (C3) is

F = −
h̄ ωp

∂ ωp

∂ d

(
1 + 2ξ 2

(ξ 2+1)2

ω2
p

ω2

)
2
√

ω2 + ω2
p

(
1 + ξ 2

(ξ 2+1)2

ω2
p

ω2

)

=
h̄ ωp

(
1 + 2ξ 2

(ξ 2+1)2

ω2
p

ω2

)
4

√
ω2

ω2
p

+ (
1 + ξ 2

(ξ 2+1)2

ω2
p

ω2

) 1

d
. (C5)

Here, it must be remembered that the plasma frequency
depends on the geometric parameters d and A, i.e., ωp =
ωp(d,A). By substituting (C2) into (C5) the explicit distance
and surface area dependence can be obtained. However, if
the �d change in the distance does not modify the plasma
frequency considerably, i.e., ωp(d + �d) ≈ ωp, then (C5)
gives the frequency-dependent repulsive force between the
plates that scales as ∝ 1/d with the distance. For fixed d the
limit limω→∞ F = 0 for all ξ ; on the other hand, the limit
limω→0 F = ∞ for 0 < ξ � 1. In the case of LP (ξ = 0), the
limit limω→0 F = h̄ ωp/4d, which is the maximum of the force
F for LP.

At the minimum of the zero-point energy, ω∗ =
ωp

√
ξ/(1 + ξ 2), the repulsive force in (C5) takes the form

F ∗ = κ

4

h̄ ωp(d,A)

d
= κ

2

√
πRB

A
e2

d3/2
, (C6)

where κ = (1 + ξ )/
√

1 + ξ 2 and RB = h̄2/me2 is the Bohr
radius. For ξ = 0 this coincides with the force in the ω → 0
limit.
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