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Introduction: While Immune checkpoint inhibition (ICI) therapy shows

significant efficacy in metastatic melanoma, only about 50% respond, lacking

reliable predictive methods. We introduce a panel of six proteins aimed at

predicting response to ICI therapy.

Methods: Evaluating previously reported proteins in two untreated melanoma

cohorts, we used a published predictivemodel (EaSIeR score) to identify potential

proteins distinguishing responders and non-responders.

Results: Six proteins initially identified in the ICI cohort correlated with predicted

response in the untreated cohort. Additionally, three proteins correlated with

patient survival, both at the protein, and at the transcript levels, in an independent

immunotherapy treated cohort.

Discussion: Our study identifies predictive biomarkers across three melanoma

cohorts, suggesting their use in therapeutic decision-making.
KEYWORDS

metastatic melanoma, immunotherapy, immunotherapy response, responders, non-
responders, proteomics
1 Introduction

Cutaneous malignant melanoma is among the most therapy-

resistant cancers with a high metastatic potential to distant organs.

Over the past decade, the treatment landscape of advanced and

unresectable melanomas has been profoundly transformed, largely

driven by advancements in our understanding of cancer biology and

pathogenesis (1–6). This surge in knowledge has paved the way for

innovative biological therapies, most notably immune-checkpoint

inhibitors (ICI). However, the efficacy of ICI remains limited to a

specific subset of patients, and the current clinical landscape lacks

reliable biomarkers to assess the suitability of ICI therapy for

individual patients.

Attributes of the melanoma sample could enhance the

prediction of the immunotherapy response, such as; proteins

related to antigen presentation (4–6), tumor mutation burden (7–

9), CD8 protein in T-cells (10), the presence of tumor-infiltrating

lymph cel ls (11, 12) , the composit ion of the tumor

microenvironment (TME) (13, 14), expression of self-antigens

(15). Furthermore, Garutti et al. and Blank et al. (16, 17)

emphasize the concept of “immunogram” which combines several

parameters (e.g., mutational burden – tumor foreignness, general

immune status – lymphocyte count, immune cell infiltration –

intratumoral T cells, absence of checkpoints – PD-L1, absence of

soluble inhibitors – Il-6, absence of inhibitory tumor metabolisms –

LDH, glucose utilization, tumor sensitivity to immune effectors –

MHC expression etc.) to estimate the efficacy of immunologic

treatments. Nevertheless, a critical unmet need in melanoma

management remains: the identification of robust biomarkers
02
capable of distinguishing responders from non-responders to ICI

therapy in the early stage of melanoma progression.

Recently, a computational method predicting the immunotherapy

response (ITR) of cancer patients was developed by quantifying

signatures of the TME and its association with 14 different

transcriptome-based predictors of anticancer immune responses.

These predictors model different hallmarks of response to immune-

checkpoint inhibitors (18). Based on this information, the authors

constructed a machine learning model designated as the Estimate

Systems Immune Response (EaSIeR) score, aimed at discerning the

potential ITR in patients. The underlying algorithms for this model rely

on RNA-seq data of the antitumoral immune response of 7,550

patients treated with PD-1/PD-L1 inhibitors across a spectrum of 18

solid tumors, including melanoma (18). Throughout this manuscript,

we refer to the categorization that the EaSIeR score provides (ITR for

responders and non-responders).

Here, we utilized data generated from the Human Melanoma

Proteome Atlas project (19, 20). Within the scope of this study,

quantitative proteomics and comprehensive histopathological

characterizations were conducted on 505 tumor samples,

encompassing primary tumors and metastases across 26 organs.

Building on this foundational work, we identified 401 potential

biomarkers associated with ICI response (14) in the first cohort

(Cohort 1), where immunotherapy data was available for 22

melanoma patients. In the present study, we assess the

immunotherapy response association of these proteins in two

independent cohorts of metastatic melanoma patients who have

not received immunotherapy (Cohort 2 and Cohort 3). Our

analysis involved predicting the patient’s potential immunotherapy
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response utilizing the EaSIeR scoring system. The overarching aim of

our study is to elucidate the potential immune-response associations

of these 401 protein candidates within two large, independent

melanoma patient cohorts naive to immunotherapy, and validate

the top candidate hits through transcriptomic datasets. (For detailed

data about the clinical information of Cohort 1, Cohort 2, and Cohort

3, see Supplementary Tables S3A–S3C and Materials and Methods).
2 Materials and methods

2.1 The melanoma patient cohorts

In this study, we included three independent cohorts of metastatic

melanoma patients. The first dataset, also referred to as Cohort 1,

served as our discovery cohort to investigate proteins that potentially

could predict the response to immunotherapy. We used this cohort as

the groundwork for our study. Cohort 1 consisted of twenty-four

melanoma samples from twenty-two patients, all of which had not

received any prior immunotherapy treatment at the time of sampling,

ensuring that the assessment of protein expression profiles occurred

prior to any therapeutic interventions. Based on the progression data

from patients undergoing immune checkpoint inhibitor (ICI)

treatment, we defined two distinct subgroups: one characterized by

progression (progressed subgroup) and the other by non-progression

(non-progressed subgroup) during immunotherapy. Subsequently, we

identified proteins within these subgroups that predict either better

outcomes (no progression during immunotherapy, resulting in long

progression-free survival) or worse outcomes (progression during

immunotherapy, leading to short progression-free survival) in

response to immunotherapy. The quantitative proteomics analysis

led to the identification of a set of proteins that were significantly

correlated with short or long progression-free survival and therefore

were considered potential predictors of better or worse ITR. (Multiple

Cox regression *p-value < 0.05). The detailed clinicopathological data

of the cohort is presented in the Supplementary Material

(Supplementary Table S3A) (14).

The proteins that were identified in Cohort 1 were also

examined in two independent melanoma cohorts (Cohort 2 and

Cohort 3). Cohort 2 included 142 metastatic melanoma samples

and also served as a first selection cohort in our analysis. At the time

of sample collection, the patients had not received any prior

treatment, and we have limited information about the subsequent

application of immunotherapy in Cohort 2 patients. From the

samples of Cohort 2 information of histopathology, and both

quantitative proteomics and transcriptomics analyses were

available. By proteomics and transcriptomics, 12,695 proteins and

11,468 genes were quantified. The resulting data from proteomics

and transcriptomics served as a basis for the adjustment of protein

scoring in our study. In Cohort 2, we utilized the EaSIeR scoring

system to predict the responders and non-responders to

immunotherapy based on the mechanistic signatures (e.g.,

immune cell quantification, pathway activity, transcription factor

activity, ligand-receptor pairs, cell-cell interactions (18)) which

determine the responsiveness of the samples at protein level. By
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scoring the responder and non-responder samples, we were able to

identify the proteins in both groups and compare with the proteins

from Cohort 1. The comprehensive clinicopathological information

about the aforementioned cohort is involved in the Supplementary

Material (Supplementary Table S3B). A manuscript describing this

cohort is submitted to biorxiv.org (21).

Cohort 3, also referred to as a second selection cohort, consisted

of a total of 44 metastatic melanoma samples. These patients had

not undergone any immunotherapy treatment at the time of sample

collection. Although we have information about the use of

immunotherapy in this cohort, there is no available data on the

immunotherapy response. From Cohort 3 quantitative proteomics

information was available, all together 9040 proteins were identified

and quantified by LC-MS/MS in Cohort 3. Therefore, we were able

to correlate these proteins with transcriptome-based mechanistic

signatures (e.g., immune cell quantification, pathway activity,

transcription factor activity, ligand-receptor pairs, cell-cell

interactions (18)) which contribute to anticancer immune

responses. Based on the correlation, ITR score could be

investigated in the samples. The detailed clinicopathological

information about the aforementioned cohort is described in the

Supplementary Material (Supplementary Table S3C).
2.2 Data generation steps for the
three cohorts

The transcript expression profiling of samples from Cohort 2 was

obtained from a previous study (22) and can be found in the NCBI

Gene Expression Omnibus (GEO) database (GSE65904) (23).

Proteomic data obtained from the Human Melanoma Proteome

Atlas project (19, 20) are related to mass spectrometry (LC-MS/

MS) analyses carried out in protein extracts obtained from formalin-

fixed and paraffin-embedded (FFPE) (Cohort 1) and from fresh-

frozen (Cohort 2 and Cohort 3)melanoma tissues. LC-MS/MS data

were collected in both Data-Dependent Acquisition (DDA) and

Data-Independent Acquisition (DIA) modes, for Cohort 2 and

Cohort 1, Cohort 3, respectively. For data analysis, peptide, protein

identification and quantification in DDA and DIA experiments were

performed using the Proteome Discoverer Software (Thermo Fisher

Scientific) and Spectronaut X platform (Biognosis AG), respectively.

Searches were conducted using the Homo sapiens database from

Uniprot, containing isoforms, with the following parameters: cysteine

carbamidomethylation (+57.0215 Da) as fixed modification and

methionine oxidation (+15.9949 Da), N-terminal acetylation

(+42.0105 Da) as dynamic modifications. A maximum of two

missed cleavages were accepted. FDR was set at 1% for peptides

and proteins identification. The raw protein intensities were

normalized by log2 transformation, and standardization was

performed by subtracting individual values by the median in each

sample (Cohort 1 and Cohort 3). For TMT-11 labeled samples

(Cohort 2), the protein intensities from a pooled reference sample

(in channel 126 in each batch) were subtracted from each channel in

the corresponding batch to obtain the final relative protein

abundance values (log2 transformed and zero centered).
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2.3 Selection of proteins from a previously
published dataset, testing and calculation
of the predicted immune response in
additional melanoma patients

Based on Szadai et al. (Cohort 1 (14),) proteins associated with

response to immunotherapy from 22 patients were selected to analyze

this association in two new different cohorts (Cohort 2, Cohort 3).

Firstly, the ITR scoring system, based on RNA-seq data proposed by

Óscar Lapuente-Santana et al. (18), which estimates the likelihood of

patients responding to immune checkpoint blockade therapy was used.

To test whether this scoring can be applied also at the protein level we

used the Cohort 2 (142 patients) to correlate the predicted EaSIeR

scoring obtained from RNA-seq data and the predicted EaSIeR scoring

obtained from proteomic data (both datasets collected from the same

cohort). The correlation was evaluated using a Pearson correlation test,

with *p-values < 0.05 considered statistically significant.

(Supplementary Tables S2A, B). After observing a significant

correlation between EaSIeR scores derived from RNA and protein

levels in Cohort 2, we calculated the EaSIeR score for each of the 44

patients in Cohort 3. This allowed us to assign an ITR (immune

checkpoint blockade therapy response) scoring to each patient in

Cohort 3 (Supplementary Table S3D).
2.4 Correlation between proteins linked to
ITR and the scoring of ITR in patients

To determine which of the potential immune-response-related

proteins selected from Cohort 1 (14) could be found in Cohorts 2 and

3, we first correlated the EaSIeR scores assigned to the patients in each

cohort with the expression levels of each protein. Pearson correlations

with adjusted p-values < 0.05 were considered significant. Second,

patients from Cohorts 2 and 3 were stratified based on EaSIeR score

(i.e., predicted ITR) to quartiles (Q1-Q4). The best potential responder

patients were grouped in Q4 and poorest potential responders were in

Q1. Next, a Student’s T-test was used to identify differentially expressed

proteins (DEP) between poorest responders (Q1) and the best

responders (Q4). Proteins with adjusted p-values (using Benjamini-

Hochberg (FDR) method) < 0.05 were considered differentially

expressed (Supplementary Table S2A).

All analyses described in Figures 1–3 were performed using

RStudio version 4.2.1. The summary results of the analysis can be

found in Supplementary Material 3. The code used for the analysis

of this section is available in Supplementary Material 3.
2.5 Selection of the proteins best
associated with ITR and their gene
ontology enrichment analysis

Proteins identified in Cohorts 2 and 3, which were found to be

significantly associated with immune therapy response (ITR) [as
Frontiers in Oncology 04
observed by Szadai et al. (14)], were combined using Venn diagram

and common proteins were considered for further analyses.

To investigate the molecular functionality of the proteins

associated with ITR, we selected the list of proteins that were

observed as significant in Cohort 2, as it was the largest list. We

then conducted a Gene Ontology (GO) Enrichment Analysis (see

Supplementary Tables S2F, S3E).
2.6 Relationship of the top selected
proteins with survival

Significant proteins found to be potentially related to ITR in

both Cohorts 2 and 3 were considered the top significant proteins.

To analyze the relationship of each of these proteins with survival,

we used data from Cohort 2. First, a univariate analysis per protein

was performed based on Kaplan–Meier (KM) curves. Secondly, we

conducted Cox regression analysis to adjust the models for age at

diagnosis, gender, tumor content of the sample, and clinical stage.

To create Kaplan–Meier (KM) curves, proteins were categorized

into low and high expression groups. This categorization was done

by applying a receiver operating characteristic (ROC) curve per

protein to detect the best cut-off point (based on Youden index) for

discriminating between less or more than 2 years of survival. The

protein expression (categorical variable) was used as the

independent variable and the survival time of the patients served

as the dependent variable. Patients whose protein values exceeded

or fell below the cut-off point were categorized as having high or low

protein expression, respectively.
2.7 Validation of the top proteins in
transcriptomic cohorts
with immunotherapy

Publicly available transcriptomic data obtained from melanoma

tumors harvested before the initiation of PD1 inhibitor (24) and

CTLA4 inhibitor (9) were used to investigate the top genes

associated with progression-free and overall survival. Patients

were ranked based on the gene expression of each gene. The

survival of patients with the highest gene expression (top 10, 20

and 30% expression) was compared to survival of patients with the

lowest expression) bottom 10, 20, 30%, respectively) for the Liu

et al. dataset (24). To avoid selection bias, multiple cutoffs were used

to avoid (see Supplementary Table S2E). For the Van Allen dataset

(9) due to the lower number of samples, the top 25% and 50% were

compared to the bottom 25% and 50%. The Log-rank test was used

to determine significance.
2.8 Illustrations

The illustrions of Figure 1 and Figure 4 were created with

Biorender 2021 Software (25). The Kaplan-Meier survival analysis
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was created by GraphpadPrism 8.0.1 (26). For the references Zotero

Reference program was used (27).
2.9 Statistical analyses

For the correlation of the predicted EaSIeR scoring obtained

from RNA-seq data and the predicted EaSIeR scoring obtained

from proteomic data Pearson correlation test was used, with *p-

values < 0.05 were considered statistically significant. To compare

the responders and non-responders in Cohort 2 and Cohort 3,

patients were were stratified based on EaSIeR score (i.e., predicted

ITR) to quartiles (Q1-Q4). Best responders were grouped in Q4 and

the poorest responders were in Q1. Student’s T-test was used to

identify differentially expressed proteins (DEP) between poorest

responders (Q1) and best responders (Q4). Proteins with adjusted

p-values (Benjamini-Hochberg (FDR) method) < 0.05 were

considered differentially expressed. To filter the common proteins

from Cohort 2 and 3, Venn diagram was utilized. For the

enrichment analysis for Gene Ontology Molecular Function

(GOMF) plot from Cohort 2, we represented the top statistically

significantly expressed proteins. Proteins with adjusted p-values <

0.05 were considered differentially expressed. This analysis was

done using the R package clusterProfiler (version no. 4.4.4) (28),

and ggplot2 (version no. 3.3.6) (29) for visualization. The code for

the enrichment analysis can be found in Supplementary Table S3E.

To investigate the relationship of each of these proteins with

survival we used data from Cohort 2.

The ROC curve was produced using IBM SPSS statistics

package (26.0 version) software (30), with a significant threshold

of P < 0.05.

For the Kaplan-Meier survival analyses, we considered six

proteins from the survival data of Cohort 2. These analyses were

conducted for overall survival intervals (measured in years) and the

calculations were based on models generated by the optimal cut-off

value of each protein (Supplementary Tables S2B–D, Supplementary

Figure S2). The KM curves were created using ‘ggsurvival’ and

‘ggsurvminer’ R packages. Additionally, Cox regression analysis was

performed using ‘survival’ and ‘survminer’ R packages with p-values

< 0.05 considered significant. To assess the goodness offit for the Cox

regression, we calculated the Log-Likelihood ratio and Harrell’s C-

statistic for the six selected proteins. The analysis was performed

using GraphPad Prism 10 (version 10.11(323)) (31) (Supplementary

Table S2C). Furthermore, the ROC analysis was conducted using

SPSS 25 software (SPSS Inc, Chicago, IL, USA) (32) (Supplementary

Table S2B, D, Supplementary Material 3). For the Kaplan-Meier

survival analyses of the validation cohort we performed analysis for

overall-survival, progression free-survival and disease-free survival,

measured in years (Supplementary Figure S3). Patients in the Liu

et al. (24) dataset were categorized based on gene expression levels,

with the top 10%, 20%, and 30% compared to the bottom 10%, 20%,

and 30% for survival analysis. Multiple cutoffs were employed to

mitigate selection bias (refer to Supplementary Table S2E). In the Van

Allan dataset (9), due to fewer samples, comparisons were made

between the top 25% and 50% versus the bottom 25% and 50%.

Significance was determined using the log-rank test.
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For the validation cohort, Kaplan-Meier survival analysis and

figures including showing p-values, quartile values, mean values

and 95% confidence intervals were produced was produced using

Graphpad Prism 8 (26) (Supplementary Figure S3).

From the KM analysis, we extracted p-values based on Log-

rank, Breslow, and Tarone-Ware tests. Proteins with a p-value <

0.05 in at least one of the three tests were considered significantly

related to survival (Supplementary Tables S2B–S2D).
3 Results

3.1 Selection of the immune checkpoint
predictor proteins from cohort 1 and the
potential immune therapy response based
on protein expression levels in cohort 2
and 3

The three cohorts of metastatic malignant melanoma patients

included in this study served multiple purposes: (a) the selection of

potential immune-response-associated proteins (Cohort 1), (b) the

identification and analysis of these proteins in treatment-naive

cohorts (Cohort 2 and 3), (c) the exploration of their relationship

with patient survival, and (d) their validation in independent

cohorts treated with immunotherapy. The top candidates were

further corroborated using transcriptomic data obtained from

tumor samples in a cohort of patients that were administered

either PD1 inhibitor (24) or CTLA4 inhibitor therapies (9).

Tumor samples from Cohort 1-3 were included in the first

human melanoma proteome atlas study. Detailed information

concerning these cohorts and the data analysis workflow (Figure 1).

A total of 401 proteins were initially identified from Cohort 1 as

potential immune-response-associated proteins. Within this metastatic

cohort, 22 patients had undergone immunotherapy with varying

degrees of treatment outcomes. Proteomic analyses conducted on

samples from Cohort 1 (14) revealed that these 401 proteins were

significantly correlated with progression-free survival, as evidenced by

multiple Cox regression analyses (*p-value < 0.05), thereby positioning

them as potential predictors of immunotherapy efficacy.

In order to expand the implications of these findings to Cohorts

2 and 3, we initially assess the utility of these proteins as potential

indicators of immunotherapy response within these treatment-

naive cohorts.

Considering that the samples from these cohorts were

treatment-naïve at the time of evaluation, a non-conventional

approach was employed to estimate the potential immunotherapy

response in patients from Cohorts 2 and 3. Utilizing the EaSIeR

scoring system (ITR scoring), we first estimated the ITR of 142

samples from 119 patients in Cohort 2. A statistically significant

correlation (Pearson correlation test, *p-value < 0.0001, r = 0.7)

(Supplementary Figure S1, Supplementary Table S2A) was observed

between transcriptomics and proteomics data across these samples,

enabling us to estimate the ITR of patients from Cohort 2 and 3

based proteomics data. After computing the estimated

immunotherapy response score, based on protein expression

profiles in samples from both Cohort 2 and 3, we further
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examined if the previously identified 401 proteins could be

associated with the immunotherapy response scores in these

independent, non-treated cohorts (Cohort 2 and 3).
3.2 Significant proteins associated with ITR

After performing a Pearson correlation between the abundance

profiles of each of the 401 previously identified proteins and the

immunotherapy response scores in patients from Cohort 2, we

found 48 proteins that exhibit significant correlation (*p-value <

0.05). Within this subset, 20 proteins were positively correlated with

ITR (Pearson correlation coefficient (r), r (0.684) > 0), while 28 were

negatively correlated (Pearson correlation coefficient (r), r (-0.485)

< 0). A similar analysis performed on data from Cohort 3 resulted in

eight proteins with significant correlation (*p-value < 0.05), two of

them were negatively correlated with ITR, and six were positively

correlated. To see the proteins that exhibited significant

upregulation and downregulation, they were displayed at the

single-cell level, based on the expression of RNA representing the

production of these proteins in melanocytes. (Figure 2,

Supplementary Tables S1, S2A, S3D, E).
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Based on this analysis, we opted to prioritize six proteins

(ITGAX, SAMSN1, CD163, TNFAIP2, MTSS2, PSMB5) as they

emerged as the foremost candidates by virtue of their significant

correlation to immunotherapy response in both Cohorts 2 and 3.
3.3 Impact of the six proteins on
ITR prediction

To determine the influence of the six identified proteins on

ITR prediction within the two distinct cohorts (Cohort 2 and 3),

we categorized the ITR into quartiles (Q1-Q4). The magnitude of

the difference between the upper Q4 and lower Q1 quartiles served

as a proxy for the protein’s predictive power in distinguishing the

responsiveness to therapy. In our analysis, all six proteins

demonstrated significant differences between Q1 and Q4

(Student T test, *p-value < 0.05) (depicted in Figure 3A,

Supplementary Table S2A). Specifically, ITGAX, SAMSN1,

TNFAIP2, and CD163 proteins were upregulated and associated

with higher scores in potential responders. Conversely, MTSS2

and PSMB5 showed lower scores and were downregulated in the

same group. As expected, these findings are in concordance with
FIGURE 1

Workflow of the study step by step. From the first identified proteins through the testing of the ITR scoring until the final selection of the top six
proteins. (A) 401 proteins were previously identified predicting ITR from a discovery cohort (Cohort 1, n=22). (B) Global proteomics outcomes were
scored (ITR score) for immunotherapy response based on a machine-learning algorithm in a second independent cohort of patients with metastatic
melanoma without immunotherapy (n=142). (C) 48 proteins were associated with ITR in Cohorts 1 and 2, 28 proteins upregulated and 20
downregulated. (D) Among these 48 proteins, 6 showed the best ITR score in Cohort 3, which is also composed of patients with metastatic
melanoma (n=44). (E) correlation of the 6 proteins with the best ITR score with survival. (F) Validation using transcriptomic data in a cohort where
patients received immunotherapy.
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the trends observed in the previous Pearson correlation analysis

(Supplementary Tables S2A, B).
3.4 Association between the selected six
proteins and survival

3.4.1 Kaplan-Meier univariate analysis
We analyzed the impact of these proteins on overall survival.

The survival information was obtained from 127 patients of Cohort

2. The Kaplan-Meier curves unveiled that different levels of ITGAX,

SAMSN1, and TNFAIP2 proteins were significantly associated with

2-year survival (depicted in Figure 3B) (Cox regression, *p-value <

0.05). On the other hand, proteins CD163, PSMB5, and MTSS2 did

not significantly associate with 2-year survival (Supplementary

Figure S2, Supplementary Tables S2B–D).
3.4.2 Independent survival prognostic values of
the selected six proteins

Furthermore, we delved into the prognostic survival values of these

proteins in relation to other clinical parameters (e.g., age at diagnosis,

gender, tumor content (%), and disease stage) within Cohort 2. Cox-

regression models were created based on the clinical parameters (Cox

model 1: associations with survival, Cox model 2: associations with Cox

model 1 plus age at diagnosis, gender, and tumor content (%), Cox

model 3: associations with Cox model 2 plus disease stage) and the

independence of the identified proteins was analyzed from the clinical

parameters. Interestingly, distinct outcomes emerged from the Cox

regression survival analyses (Cox models 1, 2, and 3). ITGAX,

SAMSN1, and TNFAIP2 were significant favorable predictors of
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survival from Cox model 1 (Cox regression, *p-value <0.05).

Involving other clinical parameters such as age at diagnosis, gender,

and tumor content (%) in Cox survival analysis model 2, ITGAX,

SAMSN1, TNFAIP2 and CD163 showed significant values. Three

proteins (TNFAIP2, SAMSN1, CD163) for the third Cox survival

analysis model represented significant independence from the clinical

parameters, meaning that these proteins may be survival predictors

regardless of clinical parameters such as gender, age at diagnosis, tumor

content (%) or disease stage. Furthermore, we performed the

Goodness-of fit for Cox estimation for all the three models. In the

results, SAMSN1, TNFAIP2 showed significant results in model 1 and

model 2, additionally in model 1 ITGAX represented significant fitting

results as well. In model 3, all the 6 proteins showed significance

(Supplementary Table S2C). To support our data, we compared our

results with the survival data from TCGA database. Based on the

comparison, SAMSN1, CD163, TNFAIP2 and ITGAX showed

significant upregulation in parallel with survival, in contrast PSMB5

displayed significant downregulation in association with the survival

(Supplementary Table S2A). Notably, when considering the

investigated clinical parameters in our results, SAMSN1 and

TNFAIP2 proteins appeared as the most independent survival

predictors (Table 1, Supplementary Tables S2B–D).
3.5 Validation of the identified proteins
using transcriptomic data from patient
cohorts undergoing immunotherapy

We selected the top 6 proteins that displayed a significant

association with survival above and investigated whether the

transcript levels of the genes encoding these proteins could predict
FIGURE 2

The y axis shows the RNA expression at single cell level (nTMP) values, x axis shows the correlation between protein intensity and ITR, and the
identified 6 proteins marked with orange circle. Negatively correlated proteins are illustrated in red color, and positively correlated proteins are
shown in blue color.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1428182
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Szadai et al. 10.3389/fonc.2024.1428182
the prognosis of patients receiving PD1 inhibitor (24) or CTLA4

inhibitor therapies (9). Among the 6 genes investigated, 5

demonstrated a significant prognostic association (summary of all

genes in all datasets tested displayed in Supplementary Table S2E).

Expression of CD163, ITGAX and TNFAIP2 were associated with

better PFS and OS in response to PD1 inhibitor therapies (Log rank

test, *p-value <0.05). ITGAX and TNFAIP2 were associated to both

PD1 inhibitor and CTLA4 inhibitor therapies, whereas high

expression of PSMB5 was linked to poorer PFS following PD1
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inhibition (Figure 4, Supplementary Figure S3, Supplementary

Table S2E). SAMSN1 gene exhibited a weak association with

overall survival in the PD1 inhibitor therapy dataset, whereas

MTSS1L did not demonstrate a connection with either

progression-free or overall survival in the two datasets tested. These

results collectively support our earlier findings that expression of

CD163, ITGAX, TNFAIP2 and SAMSN1 may be linked to positive

responses to immune-based therapies, whereas PSMB5 expression

may correspond to resistance against such therapies.
B

A

FIGURE 3

The differences of ITR scores in immunotherapy response and disparities in protein expression predicting survival. (A) represents ITR boxplot of the 6
proteins, Q1 vs Q4 values for each protein are shown to the left and the right side, respectively. Q1 representing potential non-responders is
highlighted by a red box, while Q4 signifying potential responders are presented with a blue box. (*p-value < 0.05, Student-T test). (Supplementary
Tables S2A, B, S3E). (B) Kaplan-Meier plots of the SAMSN1, TNFAIP2, and ITGAX, in patients where elevated expression of these proteins show a
significant correlation with increased overall survival.
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3.6 Biological function of the
identified biomarkers

We investigated the molecular functions of the initial set of 48

proteins that displayed association with immunotherapy response in

Cohort 2. Based on the Gene Ontology Molecular Function (GOMF)

enrichment analysis, we observed that ITGAX as well as ICAM2, and

VWF were linked to integrin binding. PSMB5 was found to be

involved in the threonine-type endopeptidase activity, while

TNFAIP2 and VAMP8 were implicated in SNARE binding,
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implying cell communication across membranes and exocytosis

(33) (This is summarized in Figure 5 and detailed in

Supplementary Tables S2F, S3E). Furthermore, utilizing the mRNA

expression values (nTPM) at single cell level as published in The

Human Protein Atlas (34), we determined that ITGAX, TNFAIP2,

SAMSN1, and PSMB5 exhibit high mRNA levels in melanocytes.

Conversely, the mRNA expression of CD163 and MTSS2 in

melanocytes is absent, implying that the source of these proteins

could be from other cells in the microenvironment (for more detailed

information, please refer to Supplementary Tables S2F, S3E).
TABLE 1 The identified proteins with their corresponding genes, accompanied by the outcomes of Cox regression survival analysis.

Survival Parameters Cox 1 (Pv) Cox1 (HR) Cox2 (Pv) Cox 2 (HR) Cox3 (Pv) Cox 3 (HR)

ITGAX <0.05* 0.731 <0.05* 0.731 0.084 0.773

gender – – 0.266 0.770 0.982 0.994

age at diagnosis – – 0.123 1.013 0.291 1.009

tumor content % – – 0.873 1.001 0.492 1.002

disease stage – – – – <0.001* 3.243

PSMB5 0.065 1.418 0.059 1.474 0.061 1.494

gender – – 0.354 0.802 0.868 1.042

age at diagnosis – – 0.077 1.015 0.224 1.011

tumor content % – – 0.804 0.999 0.770 1.001

disease stage – – – – <0.001* 3.460

SAMSN1 <0.05* 0.538 <0.05* 0.518 <0.05* 0.566

gender – – 0.378 0.812 0.926 1.023

age at diagnosis – – 0.069 1.015 0.219 1.010

tumor content % – – 0.878 1.001 0.497 1.002

disease stage – – – – <0.001* 3.185

CD163 0.067 0.738 <0.05* 0.689 <0.05* 0.661

gender – – 0.256 0.765 0.952 0.985

age at diagnosis – – 0.055 1.016 0.144 1.012

tumor content % – – 0.815 0.999 0.981 1.000

disease stage – – – – <0.001* 3.470

TNFAIP2 <0.05* 0.512 <0.05* 0.486 <0.05* 0.529

gender – – 0.409 0.822 0.832 1.053

age at diagnosis – – 0.108 1.013 0.268 1.009

tumor content % – – 0.523 0.998 0.824 0.999

disease stage – – – – <0.001* 3.208

MTSS2 0.961 1.009 0.894 1.026 0.431 0.856

gender – – 0.239 0.753 0.941 1.019

age at diagnosis – – 0.121 1.013 0.266 1.010

tumor content % – – 0.861 1.001 0.449 1.003

disease stage – – – – <0.001* 3.487
Cox model 1 consists of survival, and Cox model 2 involves Cox model 1 along with age at diagnosis, gender, and tumor content (%). Cox model 3 includes all the parameters from Cox model 2
plus the disease stage. (Pv – p value, HR – hazard ratio, Cox regression analysis *p-value < 0.05 considered as significant marked with *).
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4 Discussion

Identifying suitable biomarkers to predict immunotherapy

response presents a significant challenge within melanoma

research and clinical practice. Currently, in the case of advanced

melanoma patients, molecular-level assessment of the BRAF

mutation status guides the selection of kinase inhibitors.

However, the efficacy of targeted therapy remains uncertain

owing to intricate mechanisms of resistance (35). Additionally,
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the expression of PD-L and PD-L1 proteins can exert an impact

on the response within the tumor microenvironment (TME)

enhancing the ability of immune cells to counteract undesirable

signals originating from melanoma cells (36).

Although PD-L1, and PD-1-based immunotherapies currently

serve as first-line treatments for advanced metastatic melanomas,

the emergence of resistance remains a prevalent concern (35). Other

approaches, such as digital imaging, have been explored for

assessing PD-1/PD-L1 expression within melanoma tumor
FIGURE 4

Representative Kaplan-Meier survival analyses of the genes corresponding to the six top identified proteins focusing on overall-, and progression-
free survival in the validation cohort of PD1 immunotherapy transcriptomic cohort. The cut off values used are the following: CD163 – PFS:20%,
OS:20%, ITGAX – PFS10%, OS:10%, TNFAIP2 – PFS:20%, OS:20%, SAMSN1 – OS:10%, PSMB5 – PFS:20%. (PFS/ Progression-free survival/, OS/Overall
Survival/).
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samples, aiding in identifying suitable therapy composition and

timing (37). Moreover, factors such as PD-1/PD-L1 expression,

tumor stage, driver mutation status, and metastatic extent can offer

valuable insights into the prognosis (37).

Due to the complexity of molecular pathways influencing

melanoma progression, therapy response, and resistance, identifying

a solitary protein biomarker that mirrors these events is challenging.

In our study, we leveraged a previously published dataset, the Human

Melanoma Proteome Atlas project study (19, 20), which offers

proteomic and clinical insights from 263 primary and metastatic

melanoma samples. Amidst the diverse patient cohorts in theHuman

Melanoma Proteome Atlas study (19, 20), we narrowed our focus to

individuals who received immunotherapy and exhibited a treatment

response. To manage the extensive array of proteins within the

immunotherapy patient pools, we employed a machine learning

tool to predict the Immune-Therapy Response (ITR) (18). The

scoring system incorporates all information on cell compartments

from the melanoma samples and gives a score that may help in

decision-making regarding therapy response. Through an extensive

proteomic analysis conducted across three independent cohorts we

identified six candidate proteins. Notably, the protein levels of

ITGAX, SAMSN1, MTSS1L, PSMB5, TNFAIP2, and CD163

exhibited a correlation with the predicted ITR. Moreover, CD163,

TNFAIP2, and SAMSN1 displayed a robust association with survival

outcomes that remained significant independently of key clinical

parameters such as gender, age at diagnosis, tumor content (%),

and disease stage. Moreover, when delving into published

transcriptomic databases containing immunotherapy-related

information, we observed a substantial correlation between the

expression pattern of the identified proteins and both overall and

progression-free survival. In parallel with the TCGA dataset, five
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(PSMB5, SAMSN1, CD163, TNFAIP2, ITGAX) out of the six

identified proteins showed significant association with survival (38).

Furthermore, the six proteins that were identified exhibit

association with distinct mechanisms. ITGAX (Uniprot: P20702),

also known as CD11c serves as a receptor for fibrinogen and has an

important role in cell adhesion mechanisms (39). This function likely

extends to the tumor microenvironment (TME), where it participates

in cell adhesion modulator (40), and cell-cell interactions during

inflammatory responses (41) and is also produced in lower amounts

by melanocytes (42). The ITGAX subunits are one of the most widely

overexpressed proteins in various cancers (43), rendering them

potential targets for antitumor therapies (44). Macrophages and T-

cells are enriched with ITGAX. However, there are debated findings

regarding integrin subunits in the context of melanoma, they may be

related to the pathological stage, disease-free survival and melanoma

metastasis. Moreover, a strong correlation has been established

between the expression of integrin subunits and immune cell

infiltration (45). These observations provide a plausible rationale for

the positive role attributed to ITGAX. In our dataset, we observed an

upregulation of ITGAX in parallel with better survival and enhanced

therapy response. The transcriptomic data further strengthen this

notion, as the ITGAX gene exhibited significant overexpression

within the long-survival group marked by prolonged PFS and OS in

both the PD1 inhibitor and CTLA4 inhibitor datasets. This

consistency underscores the robust predictive potential of ITGAX.

Further, treatments targeting integrin subunits have been successfully

employed against various diseases. Notably, FDA-approved

monoclonal antibodies, such as etrolizumab, have been deployed to

obstruct CD11a units and ITGB7 (integrin subunit beta 7) in

inflammatory diseases such as severe plaque psoriasis, Crohn’s

disease or ulcerative colitis, respectively (46, 47). Based on our
FIGURE 5

The gene ontology molecular function (GOMF) plot of the top 20 proteins from cohort 2 based on the enrichment analysis. The image illustrates the
most relevant molecular pathways connected to the first selected 48 proteins. In the case of pathways, the size of circles indicates the number of
proteins involved in the functions. The proteins are presented in colors based on the magnitude of fold change.
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results, we hypothesize that the role played by ITGAX holds promise

in predicting the response to immunotherapy in melanoma.

The SAMSN1 (SAM domain, SH3 domain, and nuclear

localization signals 1 (48) Uniprot: Q9NSI8) protein was also

identified in patients exhibiting enhanced therapy response and

higher survival rates. Interestingly, we observed a substantial

upregulation in the expression of SAMSN1 gene related to overall

survival in patients who received PD1 inhibitor therapy. SAMSN1 is

implicated as a negative regulator in B-cell activation (48). Addition

to this notion, Jönsson et al. underscored the association of the

CD20-positive B-cell subset with a favorable prognosis for patients

diagnosed with metastatic melanoma (49). In addition, Helmank

et al. found that responders to neoadjuvant immunotherapy

exhibited elevated levels of a predetermined B-cell signature in

both baseline and early on-treatment samples (50). Moreover, in

vitro studies have demonstrated that SAMSN1 contributes to the

downregulation of cell proliferation and is also synthesized by

melanocytes (34, 51). As a tumor suppressor gene, the decreased

expression of SAMSN1 was found in several cancers (52).

Additionally, low SAMSN1 protein production in hepatocellular

carcinoma and gastric cancer was associated with decreased overall

survival and expanded tumor size (52–54). Thus, our results are in

line with recent publications advocating that the levels of SAMSN1

protein can be associated with better immunotherapy response.

The TNFAIP2 (TNF alpha-induced protein 2, Uniprot:

Q03169) was identified in our study as a predictor of better

therapy response and was also upregulated in melanoma patients

in correlation with long survival both in proteomic and in PD1 and

CTLA4 immunotherapy transcriptomic cohorts. TNFAIP2 protein

is known as an important player in inflammation, angiogenesis,

proliferation, and migration and it is a cancer-related gene (55, 56).

The TNF alpha-induced protein 2 is produced mostly by

lymphocytes, macrophages, mast cells in inflammation, and

melanocytes (55, 57). The TNFAIP2 expression can exhibit

variation across different cancer types. For instance, in a recent

publication, there was a comparison of normal and tumor tissue for

mRNA variants of TNFAIP2 among all the cancers in the TCGA

database. Lin Jia et al. discovered that TNFAIP2 mRNAs were

upregulated in renal clear cell carcinoma, while in skin cutaneous

melanoma, a contrasting pattern emerged where TNFAIP2 mRNAs

were downregulated (55). Furthermore, a Kaplan-Meier survival

analysis revealed that high TNFAP2 mRNA expression correlated

with extended survival (55), aligning with the outcome observed in

our study at the proteomic level.

The PSMB5 or proteasome 20S subunit beta 5 (Uniprot:

P28074), demonstrated a correlation with decreased expression

alongside improved survival and a positive response to

immunotherapy. At the transcriptomic level, a significantly

decreased gene expression was observed during progression-free

survival in the PD1 immunotherapy dataset. The functional role of

PSMB5 is intricate, primarily revolving around proteolytic

functions, including degrading ubiquitinated proteins in the cell.

Moreover, PSMB5 is produced by melanocytes, further

accentuating its relevance in the context of melanoma (58, 59).
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FDA-approved anti-proteasome agents like Bortezomib are used to

treat multiple myeloma and mantle cell lymphoma in which the

proteasome activity is high and associated with oncogenic functions

(60). Wei et al. also demonstrated in triple-negative breast cancer

that PSMB5 is an indicator of poor prognosis and the silencing of

the PSMB5 gene can increase the sensitivity of breast cancer cells to

chemotherapy and subsequently to apoptosis (61). Moreover, Harel

et al. found similar results in PSMB5 downregulation in responders

of melanoma patients with advanced stage (62). Our results are in

strong agreement with existing literature, suggesting that decreased

PSMB5 protein expression might serve as a marker for enhanced

prognosis in melanoma immunotherapy response.

Lastly, CD163 is an acute phase-regulated receptor involved in

protecting tissues from free hemoglobin-mediated oxidative damage

(63) (Uniprot: Q86VB7), and MTSS2 (MTSS I-BAR domain

containing 2, Uniprot: Q765P7) is related to tumor metastasis and

cancer progression via interactions with the actin cytoskeleton, and

belongs to the MTSS family (64). Notably, both identified proteins

seem not to be produced by melanocytes (65, 66). Our findings

showed an upregulation of CD163 associated with improved

immunotherapy response and improved survival. Moreover, the

gene expression of CD163 was significantly upregulated in the

long-survival group (prolonged progression-free and overall

survival) in the PD1 and CTLA4 immunotherapy transcriptomic

cohorts. Contrary to our data, a recent publication presented that

CD163+ tumor-associated macrophages inmelanomawere positively

correlated with deeper Breslow level, advanced stage of the disease,

and shorter overall survival (67). Interestingly, in 2018, a previous

report showed that soluble CD163 expression in serum was

significantly increased in advanced cutaneous melanoma patients

who were responders to the nivolumab immunotherapy (68).

In addition to these results, we were able to analyze CD163

protein expression in the tumor tissue, which was correlated with

immunotherapy information. This added another layer to

our understanding of proteins with predictive values in

immunotherapy response.

Furthermore, MTSS2, was found to be significantly

downregulated in patients with better therapy response. However,

we have not seen a significant correlation between the expression of

MTSS2 and survival in immunotherapy cohorts with

transcriptomic data. MTSS2, previously named MTSS1L (69) is

expressed in the central nervous system (CNS) (70) and is part of

the MTSS protein family (71). Despite this, we have limited

information about the role of the MTSS2 protein in melanoma

progression or therapy response, Hubert et al. suggested that the

MTSS2 gene might play a role in cancer susceptibility (72).

MTSS2 belongs to the subgroup of I-BAR (Bin/amphiphysin/

Rvs) domain-containing proteins (73) similar to MTSS1. Notably,

MTSS1 has a closer association with melanoma progression where

it plays a pivotal role in driving melanocyte metastasis, and elevated

MTSS1 expression identifies a subgroup within primary melanomas

associated with adverse prognosis (74) (Figure 6).

Moreover, it is noteworthy to mention that among the 6 identified

proteins in our findings, two were associated with immunemechanisms
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(SAMSN1 and CD163), while another two played roles in functions in

the tumor microenvironment (TNFAIP2 and ITGAX).). Additionally,

exploring the use of these identified proteins in adjuvant

immunotherapy settings would be more informative. However, there

is limited literature in this era, CD163, as a macrophage marker (63),

ITGAX, as a dendritic cell marker (39), and SAMSN1, which is a

negative regulator in B cell activation (48), could serve as ideal targets to

study even for adjuvant immunotherapy response.

Furthermore, utilizing the identified biomarkers through

histopathology is one of the most effective approaches to translate

our findings to clinical practice. Since antibodies are available for

immunohistochemistry staining of SAMSN1, ITGAX (as CD11c),

and CD163, this method could obtain information to predict

responders and non-responders before initiating therapy.

Nonetheless, further investigations are needed in this area.

In conclusion, we highlight for the first time an analysis of one

of the largest proteomic datasets in melanoma, searching for

predictors which may be associated with immunotherapy

response. Through a comprehensive analysis of more than 200

samples from both treated and untreated patients, ranked by a well-

defined scoring system, we have identified six candidate proteins.

These six identified proteins as potential biomarkers have been

studied across three different metastatic patient cohorts. They exhibit

significant correlations with immunotherapy response when evaluated

through modelling, as well as independent associations irrespective of

other clinical parameters. Moreover, we were able to validate the

indicated proteins in various immunotherapy transcriptomic

datasets.The necessity for well-defined biomarkers capable of

predicting immunotherapy response as well as survival, and disease

progression has reached a critical juncture in the realm of melanoma

patient care. Our findings showed functional relationships that some of

these biomarkers have with the stroma (e.g., ITGAX, PSMB5,

TNFAIP2, and MTSS2). Others exhibit stronger connections with

immune cells (e.g., CD163, SAMSN1). These proteins hold the promise

for sparkling further investigations and may serve as foundation for

advancing diagnostics, guiding tailored therapy decisions, aiding in
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personalized decisions, and ultimately enhancing the life expectancy of

metastatic melanoma patients.
5 Limitations

We acknowledge that our study has certain limitations. For

instance, there is no available data on the treatments applied in the

two untreated cohorts (Cohort 2 and Cohort 3). Additionally, there

is a difference among the sample sizes of the indicated cohorts, with

some having fewer than 100 patients and others having more than

100 patients. To test these proteins in independent cohorts (e.g.,

IHC cohorts) with a larger number of patients, and to translate the

utilization of these proteins to clinical practice is one of our main

future aims.
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